Articles | Volume 17, issue 6
https://doi.org/10.5194/essd-17-2831-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/essd-17-2831-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
A global daily mesoscale front dataset from satellite observations: in situ validation and cross-dataset comparison
Qinwang Xing
College of Marine Living Resource Sciences and Management, Shanghai Ocean University, Shanghai, 201306, China
Haiqing Yu
CORRESPONDING AUTHOR
Institute of Marine Science and Technology, Shandong University, Qingdao, 266237, China
Wei Yu
CORRESPONDING AUTHOR
College of Marine Living Resource Sciences and Management, Shanghai Ocean University, Shanghai, 201306, China
National Engineering Research Center for Oceanic Fisheries, Shanghai Ocean University, Shanghai, 201306, China
Key Laboratory of Sustainable Exploitation of Oceanic Fisheries Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China
Key Laboratory of Oceanic Fisheries Exploration, Ministry of Agriculture and Rural Affairs, Shanghai, 201306, China
College of Marine Living Resource Sciences and Management, Shanghai Ocean University, Shanghai, 201306, China
National Engineering Research Center for Oceanic Fisheries, Shanghai Ocean University, Shanghai, 201306, China
Key Laboratory of Sustainable Exploitation of Oceanic Fisheries Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China
Key Laboratory of Oceanic Fisheries Exploration, Ministry of Agriculture and Rural Affairs, Shanghai, 201306, China
Hui Wang
Institute of Marine Science and Technology, Shandong University, Qingdao, 266237, China
Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519080, China
National Marine Environmental Forecasting Center, Beijing, 100086, China
Related authors
No articles found.
Linxu Huang, Tianyu Zhang, Shouwen Zhang, and Hui Wang
Ocean Sci., 21, 1891–1908, https://doi.org/10.5194/os-21-1891-2025, https://doi.org/10.5194/os-21-1891-2025, 2025
Short summary
Short summary
This study used computer simulations to analyze tide–surge interaction during Typhoon Nida (2016) in the Pearl River Estuary in China. The results showed that the deeper waters were influenced by the tide and the shallower areas were dominated by wind and bottom friction. Surge impacts varied with tidal timing, but key factors remained consistent. The findings show that tidal data should be included in surge forecasts to improve coastal defences.
Na Li, Xueming Zhu, Hui Wang, Shouwen Zhang, and Xidong Wang
Ocean Sci., 19, 1437–1451, https://doi.org/10.5194/os-19-1437-2023, https://doi.org/10.5194/os-19-1437-2023, 2023
Short summary
Short summary
Observations of the sea surface temperature in the Arabian Sea show exceptional warming before the onset of the Indian Ocean summer monsoon. The sea surface temperature change is mainly caused by sea surface heat flux forcing, horizontal advection, and vertical entrainment. Here, we quantify the contribution of those factors to the Arabian Sea warm pool using heat budget analysis and highlight how large-scale ocean modes control its change.
Xueming Zhu, Ziqing Zu, Shihe Ren, Miaoyin Zhang, Yunfei Zhang, Hui Wang, and Ang Li
Geosci. Model Dev., 15, 995–1015, https://doi.org/10.5194/gmd-15-995-2022, https://doi.org/10.5194/gmd-15-995-2022, 2022
Short summary
Short summary
SCSOFS has provided daily updated marine forecasting in the South China Sea for the next 5 d since 2013. Comprehensive updates have been conducted to the configurations of SCSOFS's physical model and data assimilation scheme in order to improve its forecasting skill. The three most sensitive updates are highlighted. Scientific comparison and accuracy assessment results indicate that remarkable improvements have been achieved in SCSOFSv2 with respect to the original version SCSOFSv1.
Xueming Zhu, Ziqing Zu, Shihe Ren, Yunfei Zhang, Miaoyin Zhang, and Hui Wang
Ocean Sci. Discuss., https://doi.org/10.5194/os-2020-104, https://doi.org/10.5194/os-2020-104, 2020
Preprint withdrawn
Short summary
Short summary
In order to improve forecasting skills of South China Sea Operational Forecasting System operated in NMEFC of China, comprehensive updates have been conducted to the configurations of physical model and data assimilation scheme. Scientific inter-comparison and accuracy assessment has been performed by employing GODAE IV-TT Class 4 metrics. The results indicate that remarkable improvements have been achieved in the new version of SCSOFS.
Cited articles
Alemany, D., Acha, E. M., and Iribarne, O.: The relationship between marine fronts and fish diversity in the patagonian shelf large marine ecosystem, J. Biogeogr., 36, 2111–2124, https://doi.org/10.1111/j.1365-2699.2009.02148.x, 2009.
Amos, C. M. and Castelao, R. M.: Influence of the el Niño-southern oscillation on SST fronts along the west coasts of north and south America, J. Geophys. Res.-Oceans, 127, e2022JC018479, https://doi.org/10.1029/2022JC018479, 2022.
Belkin, I. M.: Remote sensing of ocean fronts in marine ecology and fisheries, Remote Sens., 13, 883, https://doi.org/10.3390/rs13050883, 2021.
Belkin, I. M. and O'Reilly, J. E.: An algorithm for oceanic front detection in chlorophyll and SST satellite imagery, J. Marine Syst., 78, 319–326, https://doi.org/10.1016/j.jmarsys.2008.11.018, 2009.
Belkin, I. M., Cornillon, P. C., and Sherman, K.: Fronts in large marine ecosystems, Prog. Oceanogr., 81, 223–236, https://doi.org/10.1016/j.pocean.2009.04.015, 2009.
Belkin, I. M., Lou, S., and Yin, W.: The china coastal front from himawari-8 AHI SST data – part 1: east china sea, Remote Sens., 15, 2123, https://doi.org/10.3390/rs15082123, 2023.
Belkin, I. M., Lou, S., Zang, Y., and Yin, W.: The china coastal front from himawari-8 AHI SST data – part 2: south china sea, Remote Sens., 16, 3415, https://doi.org/10.3390/rs16183415, 2024.
Budillon, G. and Rintoul, S. R.: Fronts and upper ocean thermal variability south of New Zealand, Antarct. Sci., 15, 141–152, https://doi.org/10.1017/S0954102003001135, 2003.
Castelao, R. M., Mavor, T. P., Barth, J. A., and Breaker, L. C.: Sea surface temperature fronts in the California current system from geostationary satellite observations, J. Geophys. Res., 111, C09026, https://doi.org/10.1029/2006JC003541, 2006.
Cayula, J. and Cornillon, P.: Edge detection algorithm for SST images, J. Atmos. Ocean. Tech., 9, 67–80, https://doi.org/10.1175/1520-0426(1992)009<0067:EDAFSI>2.0.CO;2, 1992.
Cayula, J. and Cornillon, P.: Multi-image edge detection for SST images, J. Atmos. Ocean. Tech., 12, 821–829, https://doi.org/10.1175/1520-0426(1995)012<0821:MIEDFS>2.0.CO;2, 1995.
Chang, Y. and Cornillon, P.: A comparison of satellite-derived sea surface temperature fronts using two edge detection algorithms, Deep-Sea Res. Pt. II, 119, 40–47, https://doi.org/10.1016/j.dsr2.2013.12.001, 2015.
Chelton, D. B., Schlax, M. G., and Samelson, R. M.: Global observations of nonlinear mesoscale eddies, Prog. Oceanogr., 91, 167–216, https://doi.org/10.1016/j.pocean.2011.01.002, 2011.
Cheng, L., von Schuckmann, K., Abraham, J. P., Trenberth, K. E., Mann, M. E., Zanna, L., England, M. H., Zika, J. D., Fasullo, J. T., Yu, Y., Pan, Y., Zhu, J., Newsom, E. R., Bronselaer, B., and Lin, X.: Past and future ocean warming, Nat. Rev. Earth Environ., 3, 776–794, https://doi.org/10.1038/s43017-022-00345-1, 2022.
Cox, S. L., Miller, P. I., Embling, C. B., Scales, K. L., Bicknell, A. W. J., Hosegood, P. J., Morgan, G., Ingram, S. N., and Votier, S. C.: Seabird diving behaviour reveals the functional significance of shelf-sea fronts as foraging hotspots, R. Soc. Open Sci., 3, 160317, https://doi.org/10.1098/rsos.160317, 2016.
D'Asaro, E., Lee, C., Rainville, L., Harcourt, R., and Thomas, L.: Enhanced turbulence and energy dissipation at ocean fronts, Science, 332, 318–322, https://doi.org/10.1126/science.1201515, 2011.
Embury, O., Merchant, C. J., Good, S. A., Rayner, N. A., Høyer, J. L., Atkinson, C., Block, T., Alerskans, E., Pearson, K. J., Worsfold, M., Mccarroll, N., and Donlon, C.: Satellite-based time-series of sea-surface temperature since 1980 for climate applications, Sci. Data, 11, 326, https://doi.org/10.1038/s41597-024-03147-w, 2024.
E.U. Copernicus Marine Service Information: Global Ocean Physics Reanalysis, E.U. Copernicus Marine Service Information [data set], https://doi.org/10.48670/moi-00021, 2023.
Fedorov, K. N. (Ed:): The physical nature and structure of oceanic fronts, Springer, https://doi.org/10.1029/LN019, 1986.
Franco, B. C., Ruiz Etcheverry, L. A., Marrari, M., Piola, A. R., and Matano, R. P.: Climate change impacts on the patagonian shelf break front, Geophys. Res. Lett., 49, e2021GL096513, https://doi.org/10.1029/2021GL096513, 2022.
Good, S. A. and Embury, O.: ESA Sea Surface Temperature Climate Change Initiative (SST_cci): Level 4 Analysis product, version 3.0, NERC EDS Centre for Environmental Data Analysis [data set], https://doi.org/10.5285/4a9654136a7148e39b7feb56f8bb02d2, 2024.
Haëck, C., Lévy, M., Mangolte, I., and Bopp, L.: Satellite data reveal earlier and stronger phytoplankton blooms over fronts in the Gulf Stream region, Biogeosciences, 20, 1741–1758, https://doi.org/10.5194/bg-20-1741-2023, 2023.
Ito, D., Kodama, T., Shimizu, Y., Setou, T., Hidaka, K., Ambe, D., and Sogawa, S.: Frontogenesis elevates the maximum chlorophyll a concentration at the subsurface near the Kuroshio during well-stratified seasons, J. Geophys. Res.-Oceans, 128, e2022JC018940, https://doi.org/10.1029/2022JC018940, 2023.
Jean-Michel, L., Eric, G., Romain, B., Gilles, G., Angélique, M., Marie, D., Clément, B., Mathieu, H., Olivier, L. G., Charly, R., Tony, C., Charles-Emmanuel, T., Florent, G., Giovanni, R., Mounir, B., Yann, D., and Pierre-Yves, L. T.: The Copernicus global 1/12° oceanic and sea ice GLORYS12 reanalysis, Front. Earth Sci., 9, 698876, https://doi.org/10.3389/feart.2021.698876, 2021.
Jing, Z., Qi, Y., Du, Y., Zhang, S., and Xie, L.: Summer upwelling and thermal fronts in the northwestern south china sea: observational analysis of two mesoscale mapping surveys, J. Geophys. Res.-Oceans, 120, 1993–2006, https://doi.org/10.1002/2014JC010601, 2015.
Kahru, M., Jacox, M. G., and Ohman, M. D.: CCE1: decrease in the frequency of oceanic fronts and surface chlorophyll concentration in the California current system during the 2014–2016 northeast pacific warm anomalies, Deep-Sea Res. Pt. I, 140, 4–13, https://doi.org/10.1016/j.dsr.2018.04.007, 2018.
Kawai, Y., Kawamura, H., Takahashi, S., Hosoda, K., Murakami, H., Kachi, M., and Guan, L.: Satellite-based high-resolution global optimum interpolation sea surface temperature data, J. Geophys. Res.-Oceans, 111, C06016, https://doi.org/10.1029/2005JC003313, 2006.
Kilpatrick, K. A., Podestá, G., Walsh, S., Williams, E., Halliwell, V., Szczodrak, M., Brown, O. B., Minnett, P. J., and Evans, R.: A decade of sea surface temperature from MODIS, Remote Sens. Environ., 165, 27–41, https://doi.org/10.1016/j.rse.2015.04.023, 2015.
Le, P. T. D., Fischer, A. M., Hardesty, B. D., Auman, H. J., and Wilcox, C.: Relationship between floating marine debris accumulation and coastal fronts in the northeast coast of the USA, Mar. Pollut. Bull., 198, 115818, https://doi.org/10.1016/j.marpolbul.2023.115818, 2024.
Legeckis, R.: A survey of worldwide sea surface temperature fronts detected by environmental satellites, J. Geophys. Res.-Oceans, 83, 4501–4522, https://doi.org/10.1029/JC083iC09p04501, 1978.
Mauzole, Y. L.: Objective delineation of persistent SST fronts based on global satellite observations, Remote Sens. Environ., 269, 112798, https://doi.org/10.1016/j.rse.2021.112798, 2022.
Mcwilliams, J. C.: Oceanic frontogenesis, Annu. Rev. Mar. Sci., 13, 227–253, https://doi.org/10.1146/annurev-marine-032320-120725, 2021.
Miller, P.: Composite front maps for improved visibility of dynamic sea-surface features on cloudy SeaWiFS and AVHRR data, J. Marine Syst., 78, 327–336, https://doi.org/10.1016/j.jmarsys.2008.11.019, 2009.
Miller, P. I., Scales, K. L., Ingram, S. N., Southall, E. J., and Sims, D. W.: Basking sharks and oceanographic fronts: quantifying associations in the north-east Atlantic, Funct. Ecol., 29, 1099–1109, https://doi.org/10.1111/1365-2435.12423, 2015a.
Miller, P. I., Xu, W., and Carruthers, M.: Seasonal shelf-sea front mapping using satellite ocean colour and temperature to support development of a marine protected area network, Deep-Sea Res. Pt. II, 119, 3–19, https://doi.org/10.1016/j.dsr2.2014.05.013, 2015b.
Munk, P., Hansen, M. M., Maes, G. E., Nielsen, T. G., Castonguay, M., Riemann, L., Sparholt, H., Als, T. D., Aarestrup, K., Andersen, N. G., and Bachler, M.: Oceanic fronts in the Sargasso Sea control the early life and drift of Atlantic eels, P. Roy. Soc. B-Biol. Sci., 277, 3593–3599, https://doi.org/10.1098/rspb.2010.0900, 2010.
NASA OBPG: MODIS Aqua Global Level 3 Mapped SST. Ver. 2019.0, PO.DAAC, CA, USA [data set], https://doi.org/10.5067/MODAM-8D4N9, 2020.
Nieto, K., Demarcq, H., and Mcclatchie, S.: Mesoscale frontal structures in the canary upwelling system: new front and filament detection algorithms applied to spatial and temporal patterns, Remote Sens. Environ., 123, 339–346, https://doi.org/10.1016/j.rse.2012.03.028, 2012.
Nieto, K., Xu, Y., Teo, S. L. H., Mcclatchie, S., and Holmes, J.: How important are coastal fronts to albacore tuna (thunnus alalunga) habitat in the northeast Pacific Ocean?, Prog. Oceanogr., 150, 62–71, https://doi.org/10.1016/j.pocean.2015.05.004, 2017.
Obenour, K. M. (Ed:): Temporal trends in global sea surface temperature fronts, University of Rhode Island, https://doi.org/10.23860/thesis-obenour-kelsey-2013, 2013.
Queiroz, N., Humphries, N. E., Mucientes, G., Hammerschlag, N., Lima, F. P., Scales, K. L., Miller, P. I., Sousa, L. L., Seabra, R., and Sims, D. W.: Ocean-wide tracking of pelagic sharks reveals extent of overlap with longline fishing hotspots, P. Natl. Acad. Sci. USA, 113, 1582–1587, https://doi.org/10.1073/pnas.1510090113, 2016.
Remote Sensing Systems: MWIR optimum interpolated SST data set. Ver. 5.0, PO.DAAC [data set], CA, USA, https://doi.org/10.5067/GHMWI-4FR05, 2017.
Rintoul, S. R., Donguy, J. R., and Roemmich, D. H.: Seasonal evolution of upper ocean thermal structure between Tasmania and Antarctica, Deep-Sea Res. Pt. I, 44, 1185–1202, https://doi.org/10.1016/S0967-0637(96)00125-2, 1997.
Roberts, J. J., Best, B. D., Dunn, D. C., Treml, E. A., and Halpin, P. N.: Marine geospatial ecology tools: an integrated framework for ecological geoprocessing with ArcGIS, python, r, MATLAB, and c , Environ. Modell. Softw., 25, 1197–1207, https://doi.org/10.1016/j.envsoft.2010.03.029, 2010.
Roberts, M. J., Baker, A., Blockley, E. W., Calvert, D., Coward, A., Hewitt, H. T., Jackson, L. C., Kuhlbrodt, T., Mathiot, P., Roberts, C. D., Schiemann, R., Seddon, J., Vannière, B., and Vidale, P. L.: Description of the resolution hierarchy of the global coupled HadGEM3-GC3.1 model as used in CMIP6 HighResMIP experiments, Geosci. Model Dev., 12, 4999–5028, https://doi.org/10.5194/gmd-12-4999-2019, 2019.
Scales, K. L., Miller, P. I., Hawkes, L. A., Ingram, S. N., Sims, D. W., and Votier, S. C.: REVIEW: on the front line: frontal zones as priority at-sea conservation areas for mobile marine vertebrates, J. Appl. Ecol., 51, 1575–1583, https://doi.org/10.1111/1365-2664.12330, 2014.
Snyder, S., Franks, P. J. S., Talley, L. D., Xu, Y., and Kohin, S.: Crossing the line: tunas actively exploit submesoscale fronts to enhance foraging success, Limnol. Oceanogr. Lett., 2, 187–194, https://doi.org/10.1002/lol2.10049, 2017.
Stukel, M. R., Aluwihare, L. I., Barbeau, K. A., Chekalyuk, A. M., Goericke, R., Miller, A. J., Ohman, M. D., Ruacho, A., Song, H., Stephens, B. M., and Landry, M. R.: Mesoscale ocean fronts enhance carbon export due to gravitational sinking and subduction, P. Natl. Acad. Sci. USA, 114, 1252–1257, https://doi.org/10.1073/pnas.1609435114, 2017.
Suberg, L. A., Miller, P. I., and Wynn, R. B.: On the use of satellite-derived frontal metrics in time series analyses of shelf-sea fronts, a study of the celtic sea, Deep-Sea Res. Pt. I, 149, 103033, https://doi.org/10.1016/j.dsr.2019.04.011, 2019.
Sudre, F., Hernández-Carrasco, I., Mazoyer, C., Sudre, J., Dewitte, B., Garçon, V., and Rossi, V.: An ocean front dataset for the Mediterranean Sea and southwest Indian ocean, Sci. Data, 10, 730, https://doi.org/10.1038/s41597-023-02615-z, 2023.
Taylor, J. R. and Ferrari, R.: Ocean fronts trigger high latitude phytoplankton blooms, Geophys. Res. Lett., 38, L23601, https://doi.org/10.1029/2011GL049312, 2011.
Ullman, D. S. and Cornillon, P. C.: Evaluation of front detection methods for satellite-derived SST data using in situ observations, J. Atmos. Ocean. Technol., 17, 1667–1675, https://doi.org/10.1175/1520-0426(2000)017<1667:EOFDMF>2.0.CO;2, 2000.
Ullman, D. S., Cornillon, P. C., and Shan, Z.: On the characteristics of subtropical fronts in the north atlantic, J. Geophys. Res.-Oceans, 112, C01010, https://doi.org/10.1029/2006JC003601, 2007.
Wang, Y., Liu, J., Liu, H., Lin, P., Yuan, Y., and Chai, F.: Seasonal and interannual variability in the sea surface temperature front in the eastern Pacific Ocean, J. Geophys. Res.-Oceans, 126, e2020JC016356, https://doi.org/10.1029/2020JC016356, 2021.
Woodson, C. B. and Litvin, S. Y.: Ocean fronts drive marine fishery production and biogeochemical cycling, P. Natl. Acad. Sci. USA, 112, 1710–1715, https://doi.org/10.1073/pnas.1417143112, 2015.
Woodson, C. B., Mcmanus, M. A., Tyburczy, J. A., Barth, J. A., Washburn, L., Caselle, J. E., Carr, M. H., Malone, D. P., Raimondi, P. T., Menge, B. A., and Palumbi, S. R.: Coastal fronts set recruitment and connectivity patterns across multiple taxa, Limnol. Oceanogr., 57, 582–596, https://doi.org/10.4319/lo.2012.57.2.0582, 2012.
Xing, Q., Yu, H., Liu, Y., Li, J., Tian, Y., Bakun, A., Cao, C., Tian, H., and Li, W.: Application of a fish habitat model considering mesoscale oceanographic features in evaluating climatic impact on distribution and abundance of pacific saury (cololabis saira), Prog. Oceanogr., 201, 102743, https://doi.org/10.1016/j.pocean.2022.102743, 2022.
Xing, Q., Yu, H., Wang, H., and Ito, S.: An improved algorithm for detecting mesoscale ocean fronts from satellite observations: detailed mapping of persistent fronts around the china seas and their long-term trends, Remote Sens. Environ., 294, 113627, https://doi.org/10.1016/j.rse.2023.113627, 2023a.
Xing, Q., Yu, H., Wang, H., and Yu, H.: A sliding-window-threshold algorithm for identifying global mesoscale ocean fronts from satellite observations, Prog. Oceanogr., 216, 103072, https://doi.org/10.1016/j.pocean.2023.103072, 2023b.
Xing, Q., Yu, H., Wang, H., Ito, S. I., and Chai, F.: Mesoscale eddies modulate the dynamics of human fishing activities in the global midlatitude ocean, Fish. Fish., 24, 527–543, https://doi.org/10.1111/faf.12742, 2023c.
Xing, Q., Yu, H., Yu, W., and Chen, X.: A global daily mesoscale front dataset from satellite observations (V1.0), Zenodo [code, data set], https://doi.org/10.5281/zenodo.14373832, 2024a.
Xing, Q., Yu, H., and Wang, H.: Global mapping and evolution of persistent fronts in large marine ecosystems over the past 40 years, Nat. Commun., 15, 4090, https://doi.org/10.1038/s41467-024-48566-w, 2024b.
Xu, Y., Nieto, K., Teo, S. L. H., Mcclatchie, S., and Holmes, J.: Influence of fronts on the spatial distribution of albacore tuna (thunnus alalunga) in the northeast pacific over the past 30 years (1982–2011), Prog. Oceanogr., 150, 72–78, https://doi.org/10.1016/j.pocean.2015.04.013, 2017.
Yang, K., Meyer, A., Strutton, P. G., and Fischer, A. M.: Global trends of fronts and chlorophyll in a warming ocean, Commun. Earth Environ., 4, 489, https://doi.org/10.1038/s43247-023-01160-2, 2023.
Yang, Y., Sun, X., Dong, J., Lam, K., and Zhu, X.: Attention-ConvNet network for ocean-front prediction via remote sensing SST images, IEEE T. Geosci. Remote Sens., 62, 1–16, https://doi.org/10.1109/TGRS.2024.3496660, 2024.
Yao, J., Belkin, I., Chen, J., and Wang, D.: Thermal fronts of the southern south china sea from satellite and in situ data, Int. J. Remote Sens., 33, 7458–7468, https://doi.org/10.1080/01431161.2012.685985, 2012.
Zhang, H., Yu, Y., Gao, Z., Zhang, Y., Ma, W., Yang, D., Yin, B., and Wang, Y.: Seasonal and interannual variability of fronts and their impact on chlorophyll-a in the Indonesian seas, J. Phys. Oceanogr., 53, 2847–2859, https://doi.org/10.1175/JPO-D-23-0041.1, 2023.
Zhang, Z., Qiu, B., Klein, P., and Travis, S.: The influence of geostrophic strain on oceanic ageostrophic motion and surface chlorophyll, Nat. Commun., 10, 2838, https://doi.org/10.1038/s41467-019-10883-w, 2019.
Short summary
Ocean fronts play a key role in marine ecosystems and often implicitly exist in satellite observations. This work presents the first publicly available daily global front dataset spanning 1982 to 2023, with comprehensive validations using in situ global observations. Our validations enhance confidence in the application of satellite-based front detection and provide independent support for global front occurrence patterns. The dataset is expected to be widely used in front-related studies.
Ocean fronts play a key role in marine ecosystems and often implicitly exist in satellite...
Altmetrics
Final-revised paper
Preprint