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Abstract. Ocean fronts have garnered significant attention from researchers across various scientific disciplines
due to their profound ecological and climatic impacts. The development of front detection algorithms has enabled
the automatic extraction of frontal information from satellite observations, providing valuable tools for under-
standing the biophysical interactions within marine ecosystems. However, the lack of comprehensive validation
and comparison of cross-satellite products against in situ observations, along with limited accessibility to frontal
datasets, must be addressed to enable the broader application of front detection algorithms. This study promoted
the improved histogram-based front detection algorithm to global oceans with additional enhancements, generat-
ing the first publicly available, high-resolution, daily global mesoscale front dataset spanning from 1982 to 2023
(Xing et al., 2024a, https://doi.org/10.5281/zenodo.14373832). Global validation using in situ underway obser-
vations shows that most in situ and satellite-detected fronts can be matched with each other, with high temporal
and spatial consistency, demonstrating the dataset’s acceptable performance in detecting fronts. Cross-dataset
comparisons reveal that multi-satellite blended products offer the best front detection performance, followed
by observation-assimilated ocean model products, while single-satellite and purely simulated products show
the lowest performance. In addition, in situ observations show a strong spatial resemblance to global frontal
frequency, providing independent validation of the satellite-based global frontal occurrence map. These results
enhance confidence in the application of satellite-based front detection, and our global front dataset and detection
algorithm may be valuable for both regional and global studies in marine ecology, fisheries, ocean dynamics, and
climate change.

Published by Copernicus Publications.
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1 Introduction

Ocean fronts are typically narrow, high-gradient three-
dimensional transition zones in the ocean where water prop-
erties (such as temperature, salinity, density, and chlorophyll)
exhibit sharp variations over short distances (Belkin et al.,
2009; Fedorov, 1986). These fronts are ubiquitous, high-
energy dynamic processes in the global upper ocean that can
alter physical, ecological, and biogeochemical processes of
marine ecosystems through strong water mass convergence,
secondary circulation, turbulent mixing, and other dynamic
mechanisms (Mcwilliams, 2021). The significant character-
istics of ocean fronts are their strong vertical mixing and
retention capacity, which brings nutrients into the euphotic
layer, fueling phytoplankton bloom and further creating bi-
ological hotspots (Belkin et al., 2009; Ito et al., 2023). The
accumulation of floating organisms around ocean fronts at-
tracts and aggregates higher trophic levels, establishing pro-
ductive food webs in these regions (Belkin, 2021; Woodson
and Litvin, 2015). These processes significantly regulate air—
ocean interactions and contribute to climate change by en-
hancing the exchange of heat, oxygen, carbon, and other cli-
matically important gases (D’Asaro et al., 2011). Addition-
ally, recent research has found that frontal occurrences can
be influenced by the El Nifio-Southern Oscillation in cer-
tain upwelling systems (Amos and Castelao, 2022; Zhang
et al., 2023), and frontal occurrences may further strengthen
with global warming in some boundary current systems and
upwelling systems (Xing et al., 2024b). Over the past few
decades, significant attention has been devoted to studying
ocean fronts by oceanographers, climatologists, ecologists,
and fishery scientists, seeking to clarify front-driven bio-
physical coupling mechanisms and their effects on climate
change.

In earlier studies, research on front dynamic processes and
their ecological and climatic effects primarily focused on
specific cases of known fronts through field surveys and nu-
merical modeling (Alemany et al., 2009; Jing et al., 2015;
Munk et al., 2010; Stukel et al., 2017; Taylor and Fer-
rari, 2011). The advancement of satellite Earth observation,
combined with automated detection algorithms, has intro-
duced new methodology for elucidating front-driven changes
in marine ecosystems (Belkin and O’Reilly, 2009; Castelao
et al., 2006; Cayula and Cornillon, 1992). These technolo-
gies are capable of simultaneously observing most or even
all of the horizontal structure of fronts in the global ocean
and recording their historical variations over recent decades
(Mauzole, 2022; Xing et al., 2023a, 2024b), providing a cost-
effective alternative to high-cost in situ measurements and
labor-intensive manual detection of satellite images. Infor-
mation on front occurrence derived from satellite-based auto-
matic detection algorithms can be easily matched with other
physical, ecological, and biological data in the areas of in-
terest, allowing for broader applications beyond case stud-
ies of specific fronts. Recently, front detection algorithms
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have been increasingly applied across various fields, includ-
ing marine ecology (Cox et al., 2016; Queiroz et al., 2016),
marine protection (Miller et al., 2015b; Scales et al., 2014),
fisheries (Woodson et al., 2012; Xu et al., 2017), marine pol-
Iution (Le et al., 2024), climate change (Kahru et al., 2018;
Xing et al., 2024b), ocean dynamics (Amos and Castelao,
2022; Belkin et al., 2024; Wang et al., 2021).

As studies on ocean fronts continue to grow, the availabil-
ity of front data has become a significant barrier for further
investigations. The National Oceanic and Atmospheric Ad-
ministration (NOAA) has provided a near real-time dataset of
frontal gradient magnitude and direction since 2012, which
specifically covers the coastal areas of the United States. Su-
dre et al. (2023) developed a high-resolution thermal front
dataset for the Mediterranean Sea and the southwest Indian
Ocean, spanning from 2003 to 2020. However, while these
datasets are derived using the Belkin—O’Reilly algorithm and
cover limited regions and time periods (Belkin and O’Reilly,
2009), there is currently no publicly available global dataset
of ocean fronts spanning the past few decades that utilizes
the histogram-based Cayula and Cornillon algorithm (CCA)
— the most widely used detection algorithm in marine ecol-
ogy and fisheries (Cayula and Cornillon, 1992, 1995). Re-
searchers from disciplines outside satellite observations often
encounter a steep learning curve, requiring considerable time
and effort to obtain the front information they need, which
poses a significant challenge for many ecologists and fish-
eries scientists. In particular, the histogram-based CCA and
its subsequent improvements involve complex calculations,
demanding a high level of proficiency and substantial com-
putational resources. Although the original CCA has been
integrated into the Marine Geospatial Ecology Tools to assist
researchers in obtaining front information from satellite ob-
servations (Roberts et al., 2010), it does not include the more
recent improved algorithms (Nieto et al., 2012), particularly
the one proposed by Xing et al. (2023a), which effectively
addresses some known limitations of the original CCA, such
as undetected coastal fronts, repeated detections, and discon-
tinuities. In comparison, research on ocean eddies, another
key dynamic process, has experienced explosive growth over
the last decade following the release of the first public global
eddy dataset (Chelton et al., 2011). Therefore, it is impera-
tive to create an open-access global front dataset to address
the increasing demands of front-related interdisciplinary re-
search and applications.

The statistical analysis that integrates frontal indicators
with other environmental and biological data relies heav-
ily on reliable information regarding front occurrences; thus,
the robustness of the data is fundamental for its application
in ecology and fisheries research. Front occurrence data de-
rived from satellite-based automatic detection can be affected
by multiple factors, including the limitations of the detec-
tion algorithms and errors in satellite-observed data. There-
fore, such data needs to be further validated by ship-based in
situ observations. Ullman and Cornillon (2000) and Chang
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and Cornillon (2015) used continuous temperature measure-
ments from a container ship regularly navigating between
Port Elizabeth, NJ and Bermuda to validate the CCA in the
North Atlantic Ocean, while Miller (2009) used manually
annotated front locations in the coastal waters of the north-
west Iberian Peninsula to validate satellite-based frontal de-
tection. While front detection algorithms, such as CCA, have
been widely applied to global waters, their reliability has not
been comprehensively validated using in situ data across the
broader global ocean. Aside from a few well-studied regions,
this leaves uncertainty about whether they perform consis-
tently well in other areas. Additionally, previous studies have
applied the CCA to various sea surface temperature (SST)
datasets, including MODIS Level 3 SST, AVHRR Level 3
SST, and multi-satellite reanalyzed Level 4 SST (Mauzole,
2022; Xing et al., 2023b). Frontal detection can be signifi-
cantly affected by cloud contamination in Level 3 SST data,
potentially leading to misinterpretation of frontal variations
(Suberg et al., 2019). Previous studies have proposed dif-
ferent global frontal occurrence patterns based on varying
datasets (Mauzole, 2022; Xing et al., 2023b), and the reasons
for these differences remain a subject of debate. However,
few studies have systematically compared detection perfor-
mance across different SST datasets. Such comparisons are
essential to guide researchers in selecting the most suitable
SST data for obtaining reliable front information.

In this study, we applied additional modifications and
enhancements to the recently improved CCA proposed by
Xing et al. (2023a), extending it to global satellite-observed
SST to create a publicly accessible, high-resolution, daily
ocean front dataset spanning the past 42 years (Xing et
al., 2024a, https://doi.org/10.5281/zenodo.14373832). This
dataset is readily downloadable and intended for broad appli-
cations in ecology, fisheries, and oceanography research. To
comprehensively validate and assess the spatiotemporal reli-
ability of both the dataset and detection algorithm, we used
an extensive set of global in situ sea surface underway mea-
surements collected over the past 35 years. These in situ data
further allowed us to evaluate the performance of frontal de-
tection across various independent SST products, including
multiple satellite, ocean model, and reanalysis SST datasets
(see Table 1), supporting the robustness of our global front
detection algorithm and data product.

2 Data

Five independent SST datasets were used for front detection
in this study to conduct cross-dataset validation with under-
way observations, all of which have been widely applied
in previous oceanographic and ecological research. Each
dataset offers its own advantages and represents a distinct
data source (Table 1). Based on the validation results with
global underway data, we selected the optimal SST dataset
to determine the final global front dataset.
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2.1 Satellite-observed dataset

Our global mesoscale front dataset is constructed from a
multi-satellite blended Level 4 SST dataset derived from
the version 3 Climate Data Record produced by Eu-
ropean Space Agency’s Climate Change Initiative SST
project (ESA SST CCI CDRv3, https://doi.org/10.5285/
429654136a7148e39b7feb56f8bb02d2, Good and Embury,
2024). This dataset provides 0.05° x 0.05° cloud-free daily
mean SST and sea ice concentration data spanning from 1982
to 2023. It is generated by the Operational Sea Surface Tem-
perature and Ice Analysis (OSTIA) system, which blends
three series of thermal infrared sensors (AVHRRs, ATSRs,
and SLSTRs) with two microwave sensors (AMSR). This
dataset has undergone extensive long-term validation against
a large number of global independent on-site observations
and is deemed suitable for climate applications (Embury et
al., 2024).

The MODIS Aqua night-time L3 SST dataset from NASA
was also utilized to detect global fronts, serving as a
single-satellite cloud-contaminated product for dataset com-
parison (https://doi.org/10.5067/MODAM-8D4N9, NASA
OBPG, 2020). This dataset is derived from the mid-
infrared wavelength channels, with a spatial resolution of
0.0417° x 0.0417° and a temporal resolution of 8d, cov-
ering the period from 2003 to 2023 (Kilpatrick et al.,
2015). Furthermore, a satellite-blended Level 4 SST anal-
ysis, version 5.1, from Remote Sensing Systems (REMSS)
was adopted for global front detection as a comparative
dataset representing an analysis product (https://doi.org/
10.5067/GHMWI-4FRO05, Remote Sensing Systems, 2017).
This dataset is generated from five through-cloud microwave
sensors (TMI, AMSR-E, AMSR2, WindSat, GMI) and four
high-resolution infrared sensors (MODIS-Terra, MODIS-
Aqua, VIIRS-NPP, VIIRS-N20) through optimal interpo-
lation, providing 0.0879° x 0.0879° cloud-free daily SST
spanning 2003 to 2023.

2.2 Reanalysis and numerical simulation dataset

The daily reanalysis SST dataset was extracted from
Global Ocean Physics Reanalysis (GLORYS12) provided
by CMEMS to detect and validate global fronts, serv-
ing as the output of observation-assimilated models. This
dataset is derived from the eddy-resolving (1/12°) NEMO
platform, covering the period from 1993 to 2023, and
is forced by ECMWF ERA-Interim and ERAS5 reanalysis
products. It also assimilates various ocean parameters ob-
tained from in situ observations and satellite datasets by
a reduced-order Kalman filter (Jean-Michel et al., 2021).
The daily eddy-resolving historical simulations from the
CMIP6 HighResMIP experiment were also employed for
cross-dataset front validations, serving as a pure model com-
parison (Roberts et al., 2019). This simulation is based on
the HadGEM3-GC31-HH model from the Met Office Hadley
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Table 1. Information on the different SST datasets used for front detection in this study.

SST product  Data source Time range  Spatial Temporal ~ Website

resolution  resolution

ESA CCI Multi-satellite blended 1982-2023 ~5km 1d https://doi.org/10.5285/
analysis 4a9654136a7148e39b7feb56f8bb02d2 (Good

and Embury, 2024)

MODIS Cloud-contaminated 2003-2023 ~4km 8d https://doi.org/10.5067/MODAM-8D4N9
single-satellite (NASA OBPG, 2020)
observation

REMSS Microwave and 2003-2023 ~9km 1d https://data.remss.com/SST/daily/mw_ir/v05.1/
infrared analysis (last access: 31 October 2024)

GLORYS Observation- 1993-2023 ~8km 1d https://doi.org/10.48670/moi-00021 (E.U.
assimilated Copernicus Marine Service Information, 2023)
model

HadGEM3 Pure ocean simulation 1982-2023 ~8km 1d https://esgf-node.llnl.gov/projects/cmip6/ (last

access: 24 September 2024)

Centre, with a nominal 8 km resolution, covering the period
from 1982 to 2023.

2.3 Underway data

To compare and validate satellite-based front detec-
tion, we used global in situ SST data from the Sur-
face Underway Marine Database (SUMD), provided by
NOAA NCEI (https://www.ncei.noaa.gov/archive/accession/
NCEI-SUMD, last access: 4 November 2024). This dataset is
sourced from thermosalinographs, meteorological packages,
and other sensors deployed on over 450 ships and unoccu-
pied surface vehicles. All SST data in each sensor’s trajectory
have undergone standardized quality control procedures and
criteria. Figure 1 shows the spatial distribution of the SUMD
SST data utilized in this study, covering nearly all global re-
gions. The highest density of SST records is found in the
North Atlantic Ocean, with lower densities in the Southern
Ocean, Arctic Ocean, and Indian Ocean. Most SST records
are concentrated between 10 and 40°N. The SST data from
SUMD have a high observation frequency, varying from sec-
onds to minutes, resulting in spatial resolutions typically less
than 1 km, even though the sailing speeds may differ among
trajectories.

3 Methods

3.1 Global front detection algorithm

The histogram-based CCA is designed to identify boundaries
that separate distinct water masses, defining them as oceanic
fronts (Cayula and Cornillon, 1992, 1995). An enhanced ver-
sion, the CCAIM, was proposed by Xing et al. (2023a), in-
tegrating inverse distance weighting and mathematical mor-
phology operators into the original CCA to better cap-
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ture previously missed coastal fronts, significantly improve
frontal continuity, and reduce duplicate detections. In this
study, we refined CCAIM by introducing a pre-processing
step to enhance its suitability for global front detection and
incorporated additional functionality to identify frontal zones
along with their warm and cold sides. The final dataset in-
cludes detailed position information about the fronts and
frontal zones, along with indications of their warm and cold
sides, and can be accessed at https://doi.org/10.5281/zenodo.
14373832 (Xing et al., 2024a).

3.1.1 The procedural steps in CCAIM

This global detection algorithm consists of six key pro-
cesses: pre-processing, histogram analysis, cohesion testing,
frontal localization, multi-window combination, and front
pruning. During pre-processing, CCAIM applies inverse dis-
tance weighting to estimate SST values along the edges of
land and regions contaminated by clouds, using available
SST pixels nearby. A 3 x 3 median filter is applied to reduce
random noise, and daily SST images are then divided into
32 x 32 pixel windows with 16-pixel overlaps. Within each
window, histogram analysis, cohesion testing, and frontal lo-
calization are conducted independently. The histogram anal-
ysis is designed to detect the presence of two distinct SST
populations using a threshold greater than 0.75 for the ratio
of between-cluster variance to total-cluster variance. If these
populations exceed a cohesion coefficient of 0.93 and have a
mean SST difference over 0.25 °C, CCAIM designates edge
pixels in the warm SST population adjacent to the cold pop-
ulation as frontal pixels, compiling results from all overlap-
ping windows to form a candidate frontal map (as shown in
Fig. 2a). Following this, CCAIM performs a series of mor-
phological operations, such as closing, thinning, and filling,
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Figure 1. The data distribution of Surface Underway Marine Database. (a) Trajectories of all SST underway observations, with colors
indicating the number of data records. (b) The number of SST records within each 5° x 5° grid, along with their meridional averages.

to bridge any fragmented fronts with gaps of less than 2 pix-
els and to create fronts of 1-pixel width (Fig. 2b). A con-
tour pruning algorithm is then applied to segment the can-
didate front branches into independent fronts, removing any
branches shorter than 10 pixels (Fig. 2c¢).

3.1.2 Modifications for global front detection

Due to its large statistical window, CCAIM faces challenges
in detecting fronts near image edges. Additionally, fixed-
window segmentation in CCAIM often produces artifacts in
long-term frontal occurrence maps, as shown in Fig. S1 in
the Supplement, resulting in visible stripes in both longitu-
dinal and latitudinal directions from detection biases in the
fixed window approach. To mitigate these issues, our global
detection algorithm introduces some modifications for daily
global SST images (Fig. 3). First, we create two duplicated
edge zones in the latitudinal direction with a random width
of 33—64 pixels and link them to their opposite edges. Sec-
ond, in the longitudinal direction, we add a land-pixel zone
at the image edges near Antarctica and a sea ice-pixel zone
at the image edges near the Arctic, both with a random width
of 1-32 pixels (Fig. 3). These random-width buffer zones,
designed according to the 32-pixel window size of CCAIM,
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effectively reduce artifacts caused by fixed-window segmen-
tation, thereby enhancing the reliability of front detection.
In our global front detection algorithm, mesoscale SST
gradient fields are calculated using a modified Sobel oper-
ator (Xing et al., 2022, 2023b), followed by a logarithmic
transformation to approximate a Gaussian distribution. Pix-
els within the range where the SST gradient magnitude de-
creases to half the value of the nearest frontal pixels are des-
ignated as frontal zones. This aligns with the definition of a
frontal zone as an area where the SST gradient magnitude is
relatively higher than that of surrounding waters (Legeckis,
1978). It is important to note that the threshold value used for
defining frontal zones is subjective, and users can adopt al-
ternative threshold values that suit their research needs, such
as a fixed width around the front or variable threshold val-
ues (Xing et al., 2023b). Morphological operations are ap-
plied to the candidate frontal zones identified by the afore-
mentioned threshold value. The execution of these operations
is similar to those used in the multi-window combination in
CCAIM, which aims to reduce anomalous pixel spines and
gaps within frontal zones. Subsequently, this algorithm com-
pares the SST values of each pixel within the frontal zones to
those of the nearest corresponding frontal pixels, identifying
pixels with higher SST as the warm side and those with lower

Earth Syst. Sci. Data, 17, 2831-2848, 2025
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Figure 2. Process of the front detection algorithm applied to the SST image from 25 January 2023. The colors of (a)—(c) denote the SST
values, while (d) and (e) represent SST gradient field and the identified warm/cold frontal zones.

SST as the cold side of the frontal zone. Figure 2d and e il-
lustrate examples of the detected frontal zones and their war-
m/cold sides derived from the SST image.

3.2 Front detection from underway data

High-resolution underway observations offer an effective ap-
proach for validating the presence of satellite-based fronts
along specific trajectories. For this analysis, all underway
observations were initially divided into various continuous
trajectories, defined by intervals where either the time be-
tween two adjacent observations exceeded 0.5d or the dis-
tance exceeded 0.1°. Short trajectories of less than 1° were
excluded, and a 0.05° median filter and a 0.05° mean filter
were applied to remove anomalous values and submesoscale
SST variations. To address spatial resolution discrepancies
between underway and satellite data, all continuous SST un-
derway observations were linearly interpolated along their
trajectories to a 0.05° spatial resolution matching that of the
satellite data. Subsequently, along-track mesoscale SST gra-
dient magnitudes were calculated by the absolute SST dif-
ference at a distance of 0.25° between any two sides of any
observed point along the underway trajectories, followed by
converting their unit to °C/100 km. This approach aligns with
the modified Sobel operator, which is optimized for quanti-
fying mesoscale SST gradient variations while ignoring sub-
mesoscale information (Xing et al., 2022, 2023b). Follow-
ing definitions from previous studies (Fedorov, 1986; Ullman
and Cornillon, 2000), mesoscale fronts in the SST under-
way data were identified at observation points where along-

Earth Syst. Sci. Data, 17, 2831-2848, 2025

track SST gradient magnitudes were local maxima, either
exceeding 4 °C/100 km or surpassing 1 °C/100 km while be-
ing more than twice the average gradient within a 32-point
range along the trajectory. In this process, the selection of a
32-observation-point range is intentionally designed to align
with the 32-pixel window size used in CCAIM. Figure 4a
shows a typical example of identified fronts from along-
track SST data observed by the Saildrone SD-1021 in Febru-
ary 2019.

3.3 Statistical analysis

Although ocean fronts detected from in situ underway data
require a subjective threshold, they provide an independent
global comparison with satellite-based front detection. We
hypothesize that the fronts identified from SUMD data are
accurate and use hit rate and precision as two statistical in-
dicators to validate and compare our global front detection
across different datasets (Xing et al., 2023a). The hit rate
is defined as the proportion of fronts detected from under-
way data that can be found within the satellite-based fronts
within a 3d window and a 5-pixel (approx. 25 km) radius.
Satellite-identified fronts are interpolated to the underway
trajectories with a 0.05° spatial resolution using the nearest-
neighbor method. Precision is then calculated as the propor-
tion of satellite-identified along-track front data that can be
found within the SUMD-based fronts within a 3d window
and a 5-pixel along-track radius. For fronts detected from
the MODIS SST dataset, we extended the window to 8d to
match its 8d temporal resolution. We calculated these two
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Figure 4. Ocean fronts identified from underway observations. (a) An example of along-track fronts observed by Saildrone SD-1021 from
1 January to 25 February 2019. Colored points represent underway SST observations, and blue orthogonal lines indicate the locations of de-
tected fronts. The colors correspond to ESA SST data from 12 February 2019, while black lines represent the detected fronts. (b) Comparison
of global long-term frontal occurrences identified by SUMD data with those detected by ESA data on a 5° x 5° grid. The red line represents
the average values of SUMD-based frontal occurrence, while the light-gray shading denotes the 25th and 75th percentiles. (¢) Long-term
frontal occurrence calculated from SUMD-detected fronts (1989-2023).
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indicators within each 5° x 5° grid to examine the spatial dis-
tribution of satellite-based front detection performance, and
computed them for each year and month to explore their in-
terannual and seasonal variations.

The long-term frontal occurrence frequency was also used
for cross-dataset comparison to assess the robustness of our
global front datasets. For satellite-based front data, this met-
ric is calculated as the ratio of days with detected fronts to
total observation days within each pixel. For SUMD-based
fronts, it is calculated as the ratio of points with detected
fronts to the total number of observation points along tra-
jectories within each 5° x 5° grid. We calculated the aver-
age frontal occurrence, along with the 25th and 75th per-
centiles at 0.05 % intervals, followed by a 0.5 % moving av-
erage filter to reduce noise. We also computed the Pearson
correlation coefficients of the front distribution to compare
the relationships between our front datasets and those ob-
tained from other SST datasets. The hit rate and precision of
ESA SST-based persistent frontal pixels, calculated within a
30km range, were also used to compare frontal occurrence
with those from other datasets (Xing et al., 2024b).

4 Results

4.1 Validation of global front dataset using underway
data

The hit rate quantifies the proportion of true fronts (SUMD-
based fronts) that can be detected through satellite observa-
tions. In our global front dataset, hit rates are consistently
high across most global ocean regions, with zonal averages
typically ranging from 70 % to 90 % and a global integrated
value of 77.65 % (Fig. 5a). Low hit rates are observed in
the western equatorial Pacific and the southern regions of
the Southern Ocean, where both underway observations and
satellite-detected fronts are sparse. Significant interannual
and seasonal variations in hit rate are also observed, fluctu-
ating between 70 % and 85 % (Fig. 5b and c). A slight de-
creasing trend appears alongside the rapid increase in obser-
vational data, with peak hit rates occurring between August
and November, and lower rates typically seen in May and
June in the Northern Hemisphere. Overall, the consistently
high hit rate across the global oceans indicates that most of
the SUMD-detected fronts can be reliably identified by our
global front dataset.

Precision quantifies the proportion of true fronts (SUMD-
based fronts) among all satellite-detected fronts. The preci-
sion of our global front dataset exhibits significant merid-
ional variations, with a global integrated value of 67.43 %. It
peaks in temperate waters at approximately 70 % and reaches
its lowest value around equatorial waters at approximately
35 % (Fig. 6a). Higher precision is observed in strong-front
regions, such as coastal and western boundary current wa-
ters. When weak fronts (SST gradient < 1.5 °C/100km) are
excluded, precision consistently shows higher values across
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the global oceans, reaching 74.69 % (Fig. 6b). The low preci-
sion in equatorial waters becomes negligible after excluding
weak fronts, as weak fronts are particularly prominent in this
region. Precision shows a slight increasing trend with the rise
in observational fronts and exhibits large fluctuations prior to
2001 due to limited data availability, stabilizing after 2001.
Seasonal variations in precision follow a dome-shaped pat-
tern, peaking during warm periods and bottoming out during
cold periods. Overall, the global front dataset captures more
weak fronts that cannot be detected by SUMD, while strong
fronts identified by SUMD and ESA SST datasets show bet-
ter consistency.

4.2 Cross-dataset comparison with underway data

Aside from our global front dataset derived from the ESA
SST product, the hit rate and precision of fronts detected
from four other SST products were also individually cal-
culated using underway data to facilitate a comparison of
the front detection performance across the five independent
SST products. Statistical indicators for global front detec-
tion show significant variation across different SST datasets
(Fig. 7). REMSS and ESA-identified fronts exhibit similar
spatial patterns in hit rate and precision (Fig. S2), achieving
the highest values across the datasets, exceeding 75 % in hit
rate and 60 % in precision. In contrast, fronts detected using
the MODIS dataset show the lowest hit rate at only 50.98 %,
suggesting a strong effect of cloud contamination on front
detection accuracy. Additionally, MODIS SST data usually
show higher error rates at high latitudes, which probably con-
tributes to the lower hit rate in these regions (Fig. S2a). The
hit rate for MODIS data improves only marginally to 51.62 %
after excluding data north of 70° N and south of 60° S, under-
scoring MODIS’s relatively poor performance in front detec-
tion compared with other datasets. GLORYS and HadGEM3
show moderate global hit rates, but with the lowest preci-
sion reaching only 56.83 % and 58 %, respectively (Fig. 7).
GLORYS benefits from extensive observational assimilation,
achieving a hit rate 7.1 % higher than the purely simulated
HadGEM3, reflecting the added value of assimilated obser-
vations in numerical simulations for front detection.
Although GLORYS has a lower hit rate, its spatial pattern
aligns closely with those of ESA and REMSS (Figs. 5a and
S2). For MODIS and HadGEM3-detected fronts, lower hit
rates are observed in equatorial waters. The spatial distribu-
tion of precision across datasets mirrors that of ESA-detected
fronts, with higher precision typically found in strong-front
regions and lower precision around the Equator (Fig. S2).
Similar to ESA SST, a slight upward trend in hit rate is also
seen in MODIS and REMSS-detected fronts, ranging from
70 % to 85 % and 45 % to 60 %, respectively. In contrast,
hit rates for GLORYS and HadGEM3-detected fronts remain
stable despite the sharp increase in available observations.
Precision shows relatively low variation but presents an up-
ward trend, which can be attributed to the increase in avail-
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able observations. Generally, multi-satellite blended REMSS
and ESA SST products present the best front detection per-
formance among the five datasets, followed by observation-
assimilated GLORYSS product, while single-satellite MODIS
and purely simulated HadGEM3 have the lowest detection
performance.

4.3 Cross-dataset comparison of long-term frontal
occurrence

Figure 8 illustrates the global spatial distribution of frontal
occurrence frequency based on ESA SST front detection data
over the past 42 years. High frontal occurrence frequency is
found in coastal waters, boundary currents, and the Antarc-
tic Circumpolar Current, whereas equatorial waters and the
interiors of subtropical gyres exhibit the lowest frequencies.
Additionally, frontal occurrence peaks in temperate regions,
largely due to the presence of western boundary currents
and their extensions, while reaching a minimum in tropical
regions. This spatial distribution closely resembles that de-
rived from SUMD data, with SUMD-based frontal occur-
rence increasing in tandem with ESA-based frontal occur-
rence, showing a correlation coefficient of 0.54 at the 0.01
significance level (Fig. 4).

Frontal occurrences derived from other satellite- and
simulation-based datasets also show significant correlations
(P < 0.01) with those from our global front dataset (Figs. 9
and 10). MODIS SST-derived frontal occurrence is notably
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low, probably due to cloud-related data gaps and elevated
noise in the MODIS dataset (Fig. 9b). REMSS SST-derived
fronts display the highest correlation with ESA SST; how-
ever, significant artifacts appear in the long-term frontal oc-
currence data, with stripes of high occurrence frequency ev-
ident in temperate waters, despite the use of random win-
dows in front detection (Fig. 9c). MODIS and REMSS SST-
derived frontal occurrences have the highest hit rate but low-
est precision, indicating that they capture more persistent
frontal pixels than ESA SST, potentially due to noise-related
frequency variations and artifacts of stripes (Fig. 9e). For
GLORYS, frontal occurrences are relatively high in areas
with 1 %—4 % frequency, closely aligning with ESA SST data
in regions above 4 % and showing both a high hit rate and
precision (Fig. 10), thus demonstrating strong similarity to
ESA SST fronts. In contrast, HaJdGEM3 SST-derived frontal
occurrences show the lowest similarity to ESA SST, with a
relatively low occurrence frequency and precision. Overall,
cross-dataset comparisons support the robustness of the long-
term frontal occurrence and the detection of persistent fronts
in our global front dataset.

5 Discussion
Oceanographic features like fronts cannot be directly ob-

served and are implicitly present in both observed and sim-
ulated marine environmental data. This gap in interdisci-
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plinary research forces oceanographers and ecologists to de-
vote substantial time and resources to acquiring essential
frontal data. This study provides the first publicly available
global ocean front dataset covering the past 42 years, with
broad applications in oceanography, ecology, and fisheries
research. Climate change is altering global oceanic circula-
tion and dynamic processes (Cheng et al., 2022), potentially
leading to significant changes in the occurrence, intensity,
and position of ocean fronts (Franco et al., 2022; Kahru et al.,
2018; Xing et al., 2024b). Our frontal dataset offers a valu-
able tool to investigate changes in fronts and their effects on

https://doi.org/10.5194/essd-17-2831-2025

the redistribution of ecological and climatic services under
global warming. This daily frontal information can be eas-
ily integrated with biogeochemical data, plankton data, and
fish and marine predator distribution data (Haéck et al., 2023;
Miller et al., 2015a; Nieto et al., 2017). This will help quan-
tify front-induced ecological impacts and elucidate the un-
derlying biophysical coupling mechanisms, supporting more
accurate ecological predictions. More importantly, given the
different ecological roles of the warm and cold sides of fronts
(Snyder et al., 2017; Zhang et al., 2019), our dataset also
provides information on the warm and cold sides within
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frontal zones, facilitating statistical investigations similar to
the comparative analyses between cyclonic and anticyclonic
eddies (Chelton et al., 2011; Xing et al., 2023c). Addition-
ally, our front data offer valuable references for the design of
marine protected areas, considering the potential aggregation
effects of human activities, protected species, and floating
marine debris (Le et al., 2024; Miller et al., 2015a; Queiroz
et al., 2016). With the significant progress in artificial intelli-
gence models, deep learning methods have been developed to
detect and predict ocean fronts (Yang et al., 2024). However,
obtaining a reliable training set for front occurrence remains
a challenge. Our global front dataset fills this gap and may
facilitate further research in this field.

Satellite-based automatic front detection algorithms typi-
cally rely on relatively subjective threshold values, necessi-
tating comprehensive validation before application (Belkin
et al., 2023; Ullman and Cornillon, 2000; Yao et al., 2012).
This study is the first to validate CCAIM on a global scale
using worldwide underway observations. The spatial distri-
bution of validated results demonstrates a globally consistent
high performance, with 77.65 % of fronts accurately identi-
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fied by CCAIM and a precision of 67.43 %. These results
align with the findings of Ullman and Cornillon (2000), who
reported missed front error rates (1 — hit rate) and false front
error rates (1 — precision) of approximately 30 % and 27 %-—
28 %, respectively, for CCA in the North Atlantic Ocean.
Satellite SST images are captured at fixed times each day,
which can differ from the timing of underway data collected
on the same day. This temporal discrepancy may introduce
variability due to intraday front and SST changes, affect-
ing statistical indicators. Our global front detection using
CCAIM excluded short fronts and branches shorter than 10
pixels, which are often identified by SUMD algorithms, po-
tentially lowering the hit rate. The histogram-based algo-
rithm identifies fronts by distinguishing between two water
masses within a single window (Chang and Cornillon, 2015).
However, when multiple water masses are present within the
same window, it may fail to detect some fronts, partially ex-
plaining the reduced hit rate. Additionally, the large win-
dow size of the histogram-based algorithm, combined with
the morphological operator applied to multiple window com-
binations, is designed to identify longer, spatially continu-
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ous fronts (Chang and Cornillon, 2015; Nieto et al., 2012;
Xing et al., 2023a). In some cases, this approach may gen-
erate fronts in regions without local maxima in the SST gra-
dient by connecting fragmented surrounding fronts (Cayula
and Cornillon, 1992; Xing et al., 2023a). In contrast, SUMD-
based SST front detection does not consider the spatial distri-
bution of SST, potentially overlooking certain fronts due to
disturbances from local submesoscale processes or anoma-
lous surface observations, thereby reducing precision values.

Notably, precision improved to 74.69 % when weak fronts
with SST gradients less than 1.5 °C/100 km were excluded.
This aligns with previous findings by Ullman and Cornil-
lon (2000) and Chang and Cornillon (2015), who reported
that false front error rates significantly decreased as SST gra-
dients increased. Fronts in equatorial waters typically exhibit
weak SST gradients due to uniform heating from intense so-
lar shortwave radiation (Xing et al., 2023b). Consequently,
fewer “true” fronts can be detected in SUMD-based in situ
observations due to its fixed gradient thresholds, resulting in
relatively lower precision in our dataset and a potential risk
of identifying more “false” fronts. For gradient-based frontal
detection algorithms, Xing et al. (2023b) recommend using
a sliding-window threshold to improve the detection of weak
fronts in low-gradient regions and seasons. Adopting these
variable thresholds in SUMD-based frontal detection could
potentially enhance the precision values of our global front
dataset significantly. However, SUMD-based frontal detec-
tion also relies on relatively subjective thresholds due to
the lack of explicit frontal definition (Fedorov, 1986), even
though both previous studies and our validation assume the
detected features to represent true fronts (Chang and Cornil-
lon, 2015). Using higher gradient thresholds generally identi-
fies fewer fronts, which increases the hit rate while lowering
precision, and vice versa. To support the robustness of our
validation, we conducted a sensitivity analysis on the thresh-
olds used in SUMD-based frontal detection. Specifically, we
adjusted the ‘2 times” criterion in the “more than 2 times
the average gradient” in the Method section to 1, 1.5, 2.5,
and 3 times. The results showed minimal changes in the hit
rate, while precision decreased with higher thresholds (Ta-
ble 2), further demonstrating the reliability of our global val-
idation. Overall, the statistical indicators of our dataset can
be considered to demonstrate acceptable performance for ac-
curately tracking front occurrence (Ullman and Cornillon,
2000). It should be noted that our front dataset is derived
from satellite-observed SST, meaning it excludes some sub-
surface fronts that lack a clear surface signal. Deep-depth
observational profiles from eXpendable BathyThermographs
and Argo offer potential for further investigating the differ-
ences between our front dataset and subsurface fronts (Rin-
toul et al., 1997; Budillon and Rintoul, 2003).

SST datasets have been widely used in studies of front de-
tection, each with its own strengths and limitations. Multi-
satellite blended SST data effectively reduce the effect of
cloud-induced missing values (Embury et al., 2024); how-
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Table 2. The sensitivity analysis of the thresholds used in SUMD-
based frontal detection. The “2 times” threshold in the criterion
“more than 2 times the average gradient” in the Methods section
was adjusted to 1, 1.5, 2.5, and 3 times for sensitivity analysis.

Statistical 1 1.5 2 2.5 3
indicators

Hit rate 76.90% 77.58% 77.65% 78.87% 78.81%
Precision  71.13% 69.70% 67.43% 64.14% 61.11%

ever, their frontal detection can be affected by errors in-
troduced during the temporal and spatial merging of data
from multiple sources. Conversely, single-satellite SST ob-
servations avoid the influence of multi-source data fusion
but are criticized for the significant number of missing val-
ues due to cloud contamination (Suberg et al., 2019). Simi-
larly, numerical simulations of SST may generate false fronts
due to model-related uncertainties (Jean-Michel et al., 2021).
Our results revealed that cloud-contaminated SST datasets,
such as MODIS, missed approximately half of the SUMD-
based in situ fronts. In contrast, multi-satellite blended SST
products like ESA and REMSS showed the best perfor-
mance among all datasets analyzed (Fig. 7). Ullman et
al. (2007) noted that frontal occurrence derived from cloud-
contaminated images was half that of cloud-free images, and
Obenour (2013) suggested that at least 90 % of available SST
data within the CCA windows is necessary to produce reli-
able frontal occurrence estimates. While cloud-contaminated
SST datasets have been successfully applied to assess long-
term frontal occurrence changes under global warming (Yang
et al., 2023), Suberg et al. (2019) cautioned that missing
values caused by clouds and sea fog may potentially in-
troduce artificial trends. No abrupt changes in frontal oc-
currence were observed in the validation of multi-satellite
blended SST datasets over the past 30 years, both tempo-
rally and spatially (Figs. 5 and 7). This consistency suggests
that the processes of multi-source data fusion do not signif-
icantly affect their spatial and temporal variations, making
these datasets more suitable for statistical studies on frontal
occurrence changes. Furthermore, our comparison of valida-
tion results between observation-assimilated ocean models
and pure ocean models suggests that observation assimila-
tion enhances the accuracy of ocean front simulations. How-
ever, the relatively low performance of these models high-
lights the need to improve their ability to simulate mesoscale
and submesoscale fronts (Roberts et al., 2019). Enhancing
this capability is essential for optimizing Earth system mod-
els and improving the accuracy of climate projections, given
the critical role these processes play in air—ocean interactions
(D’ Asaro et al., 2011).

Clarifying the global pattern of frontal occurrence is es-
sential for investigating spatiotemporal variations and identi-
fying persistent oceanic fronts. Recently, several studies have
proposed global frontal occurrence maps using different de-
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tection algorithms and SST datasets (Mauzole, 2022; Xing et
al., 2023b, 2024b). However, these global patterns rely solely
on satellite observations and lack validation against indepen-
dent in situ observations. Our comparisons between ESA-
based and SUMD-based fronts indicate that satellite-based
automatic front detection reliably captures the primary spa-
tial pattern of frontal occurrence. Notable features, such as
more frequent frontal occurrences in coastal regions, bound-
ary current and extension regions, as well as Antarctic Cir-
cumpolar Current regions, are consistently observed in the
SUMD-based frontal occurrence map (Fig. 4). Despite the
general consistency across maps, some well-known persis-
tent fronts in open oceans, such as boundary current fronts
and Antarctic Circumpolar Current fronts, are absent in maps
of Mauzole (2022). Additionally, many shelf and slope fronts
appear less discernible or disappear entirely in Mauzole’s
maps but are clearly visible in other maps. Whether this dis-
crepancy arises from advancements in detection algorithms
or differences in SST datasets remains unclear (Xing et al.,
2023b). Our comparisons reveal that the occurrence fre-
quency in MODIS maps is lower than that in maps derived
from multi-satellite blended ESA and REMSS SST products
due to missing values caused by cloud and sea fog (Figs. 9
and 10). However, even cloud-contaminated MODIS SST
data can produce detailed maps highlighting well-known per-
sistent fronts in both coastal and open oceans, which are not
adequately captured in maps of Mauzole (2022) despite us-
ing similarly cloud-contaminated SST images. This demon-
strates that improvements in frontal occurrence maps from
Xing et al. (2024b) are largely attributed to advancements
in detection algorithms rather than solely addressing miss-
ing values. In addition, many anomalous values due to miss-
ing data lower the precision of persistent frontal pixels in
MODIS-derived products. For REMSS-based frontal occur-
rence maps, artifacts in the form of stripes with a 2° inter-
val, corresponding to the operational windows in REMSS’s
optimal interpolation process for blending multi-satellite ob-
servations (Kawai et al., 2006), reduce precision. Further in-
vestigation into the relationship between these artifacts and
the merging process may enhance the robustness of REMSS
products in depicting frontal variations. Overall, among these
products, the ESA SST product used in our global front
dataset appears to be the most suitable for studying frontal
changes and conducting statistical analyses.

6 Code and data availability

The code and data of our global daily mesoscale front dataset
can be accessed at https://doi.org/10.5281/zenodo.14373832
(Xing et al., 2024a). Our global front dataset from 1982 to
2023 is archived in NetCDF format under the variable name
“front”, comprising 15340 individual daily files. The daily
front variable is stored as a two-dimensional numerical ma-
trix with dimensions of 7200 in the zonal direction and 3600
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in the meridional direction. The values of the front variable
are unitless, where regions with values greater than zero rep-
resent the warm sides of detected frontal zones, while those
with values less than zero indicate the cold sides. All po-
sitions where the front variable equals —10, 10, or 30 corre-
spond to detected frontal lines, with these values respectively
indicating frontal lines near cold sides, warm sides, and no-
front zones. Users can extract specific frontal properties such
as frontal lines, frontal zones, warm sides, and cold sides
from the front variable based on their interests, and further
derive metrics such as frontal distance, occurrence frequency,
and other related properties. Using the detected fronts from
5 January 2023, stored in the NetCDF file 20230105.nc
(available at https://doi.org/10.5281/zenodo.14373832, Xing
et al., 2024a) as an example, Fig. 11a displays the detected
frontal lines across the global oceans and the Western North
Pacific, plotted using all points where the front variable
equals —10, 10, or 30. Figure 11b illustrates the detected
frontal zones, highlighting both cold and warm sides. The
cold (warm) sides are represented by areas where the front
variable is less (greater) than zero, while the contours of the
frontal zones are plotted by the boundary lines separating
these regions from the no-front areas.

7 Conclusions

This study extended the recently improved front detection
algorithm to global oceans with simple modifications and
additional enhancements, such as the use of random win-
dows to reduce artifacts caused by fixed-window segmen-
tation, and the identification of the cold and warm sides
of the frontal zone to increase its applicability. The algo-
rithm was then applied to produce the first publicly avail-
able daily global ocean front dataset spanning 1982 to 2023
based on 15340 high-resolution SST images (Xing et al.,
2024a, https://doi.org/10.5281/zenodo.14373832). Utilizing
global in situ underway observations, this study conducted
comprehensive validations and cross-dataset comparisons of
satellite-based global front detection.

1. Statistical indicators show that most of the in situ ob-
served fronts (77.65 %) can be reliably identified by our
global front dataset, with high temporal and spatial con-
sistency. In addition, 67.43 % of the fronts in our dataset
can be matched with in situ observed fronts, and this
value increases to 74.69 % if weak fronts are excluded.
Given the limitations of underway observations and the
gradient-based detection method for fronts, our front
dataset demonstrates acceptable performance for accu-
rately quantifying front occurrence.

2. Cross-dataset comparisons reveal that multi-satellite
blended ESA and REMSS products deliver the
best front detection performance, followed by the
observation-assimilated GLORYS product. In con-
trast, single-satellite MODIS and the purely simulated
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Figure 11. An example of the global front dataset from 5 January 2023. Panel (a) displays the detected frontal lines, while (b) illustrates the

frontal zones with cold and warm sides.

HadGEM3 demonstrate the lowest detection perfor-
mance, primarily due to cloud-related data gaps and
simulation inaccuracies.

3. In situ observed fronts exhibit a strong spatial re-
semblance to the long-term global frontal occurrence
frequency, providing independent validation of the
satellite-based global frontal occurrence map. The high
spatial congruence among maps derived from vari-
ous satellite observations and ocean models further
strengthens the robustness of our frontal occurrence pat-
tern and the detection of persistent fronts. This also sug-
gests that advancements in detection algorithms are a
key factor explaining the differences in global front oc-
currence patterns reported in previous studies.

The comprehensive validation of front detection algorithms
using in situ observations enhances confidence in the ap-
plication of satellite-based front detection. Our open-access
dataset and detection algorithm can provide a valuable tool
for studies on ocean dynamics, marine ecology, biogeochem-
istry, ocean management, climate change, and as a training
dataset for artificial intelligence in both regional and global
oceans.
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