Articles | Volume 17, issue 6
https://doi.org/10.5194/essd-17-2437-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/essd-17-2437-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Nineteenth- and twentieth-century semi-quantitative surface ozone along subtropical European to tropical Africa Atlantic coasts
EPhysLab, CIM-UVigo, Universidade de Vigo, 32004 Ourense, Spain
Department of Atmospheric Chemistry and Climate, Institute of Physical Chemistry “Blas Cabrera”, CSIC, 28006 Madrid, Spain
Juan-Carlos Antuña-Marrero
EPhysLab, CIM-UVigo, Universidade de Vigo, 32004 Ourense, Spain
Grupo de Óptica Atmosférica, Facultad de Ciencias, Universidad de Valladolid, 47011 Valladolid, Spain
Antonio Cid Samamed
Physical Chemistry Department, Faculty of Sciences, Universidade de Vigo, Campus de As Lagoas S/N, 32004 Ourense, Spain
Celia Pérez-Souto
EPhysLab, CIM-UVigo, Universidade de Vigo, 32004 Ourense, Spain
Laura de la Torre
EPhysLab, CIM-UVigo, Universidade de Vigo, 32004 Ourense, Spain
Maria Antonia Valente
Instituto Dom Luiz, Faculty of Sciences, Universidade de Lisboa, 1749-016 Lisbon, Portugal
Yuri Brugnara
Empa, Laboratory for Air Pollution/Environmental Technology, 8600 Dübendorf, Switzerland
Alfonso Saiz-Lopez
Department of Atmospheric Chemistry and Climate, Institute of Physical Chemistry “Blas Cabrera”, CSIC, 28006 Madrid, Spain
Luis Gimeno
EPhysLab, CIM-UVigo, Universidade de Vigo, 32004 Ourense, Spain
Galicia Supercomputing Center (CESGA), 15705 Santiago de Compostela, Spain
Related authors
Juan A. Añel, Michael García-Rodríguez, and Javier Rodeiro
Geosci. Model Dev., 14, 923–934, https://doi.org/10.5194/gmd-14-923-2021, https://doi.org/10.5194/gmd-14-923-2021, 2021
Short summary
Short summary
This work shows that it continues to be hard, if not impossible, to obtain some of the most used climate models worldwide. We reach this conclusion through a systematic study and encourage all development teams and research centres to make public the models they use to produce scientific results.
Wanmin Gong, Stephen R. Beagley, Kenjiro Toyota, Henrik Skov, Jesper Heile Christensen, Alex Lupu, Diane Pendlebury, Junhua Zhang, Ulas Im, Yugo Kanaya, Alfonso Saiz-Lopez, Roberto Sommariva, Peter Effertz, John W. Halfacre, Nis Jepsen, Rigel Kivi, Theodore K. Koenig, Katrin Müller, Claus Nordstrøm, Irina Petropavlovskikh, Paul B. Shepson, William R. Simpson, Sverre Solberg, Ralf M. Staebler, David W. Tarasick, Roeland Van Malderen, and Mika Vestenius
Atmos. Chem. Phys., 25, 8355–8405, https://doi.org/10.5194/acp-25-8355-2025, https://doi.org/10.5194/acp-25-8355-2025, 2025
Short summary
Short summary
This study showed that the springtime O3 depletion plays a critical role in driving the surface O3 seasonal cycle in the central Arctic. The O3 depletion events, while occurring most notably within the lowest few hundred metres above the Arctic Ocean, can induce a 5–7 % loss in the pan-Arctic tropospheric O3 burden during springtime. The study also found enhancements in O3 and NOy (mostly peroxyacetyl nitrate) concentrations in the Arctic due to northern boreal wildfires, particularly at higher altitudes.
Patricia Coll-Hidalgo, Raquel Nieto, Alexandre Ramos, Patrick Ludwig, and Luis Gimeno
EGUsphere, https://doi.org/10.5194/egusphere-2025-1775, https://doi.org/10.5194/egusphere-2025-1775, 2025
Preprint withdrawn
Short summary
Short summary
This study uses Lagrangian moisture tracking and high-resolution weather simulations to trace moisture sources for Storm Ianos (Sept 2020). The analysis identified the Ionian Basin and southwestern Balkans as the primary sources, with secondary contributions from the surrounding seas. Large transport moisture traveled via three main pathways, with the Marmara-Black Sea route most significant. For record-breaking rainfall local evaporation over Greece and the Ionian Sea dominated moisture uptake.
Brieuc Thomas, Jose Carlos Fernández-Alvarez, Xurxo Costoya, Maite deCastro, Raquel Nieto, David Carvalho, Luis Gimeno, and Moncho Gómez-Gesteira
EGUsphere, https://doi.org/10.5194/egusphere-2025-1339, https://doi.org/10.5194/egusphere-2025-1339, 2025
Short summary
Short summary
Understanding climate change is crucial, but global models lack fine detail for local assessments. Regional climate models improve accuracy by simulating climate at higher resolution. This study compares two approaches: one continuous and one resetting daily to reduce errors and speed up processing. Both perform well and similarly, but the reinitialized method is 30 times more efficient. Its lower cost makes it a promising option for high-resolution climate modelling and regional predictions.
Yugo Kanaya, Roberto Sommariva, Alfonso Saiz-Lopez, Andrea Mazzeo, Theodore K. Koenig, Kaori Kawana, James E. Johnson, Aurélie Colomb, Pierre Tulet, Suzie Molloy, Ian E. Galbally, Rainer Volkamer, Anoop Mahajan, John W. Halfacre, Paul B. Shepson, Julia Schmale, Hélène Angot, Byron Blomquist, Matthew D. Shupe, Detlev Helmig, Junsu Gil, Meehye Lee, Sean C. Coburn, Ivan Ortega, Gao Chen, James Lee, Kenneth C. Aikin, David D. Parrish, John S. Holloway, Thomas B. Ryerson, Ilana B. Pollack, Eric J. Williams, Brian M. Lerner, Andrew J. Weinheimer, Teresa Campos, Frank M. Flocke, J. Ryan Spackman, Ilann Bourgeois, Jeff Peischl, Chelsea R. Thompson, Ralf M. Staebler, Amir A. Aliabadi, Wanmin Gong, Roeland Van Malderen, Anne M. Thompson, Ryan M. Stauffer, Debra E. Kollonige, Juan Carlos Gómez Martin, Masatomo Fujiwara, Katie Read, Matthew Rowlinson, Keiichi Sato, Junichi Kurokawa, Yoko Iwamoto, Fumikazu Taketani, Hisahiro Takashima, Monica Navarro Comas, Marios Panagi, and Martin G. Schultz
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-566, https://doi.org/10.5194/essd-2024-566, 2025
Revised manuscript accepted for ESSD
Short summary
Short summary
The first comprehensive dataset of tropospheric ozone over oceans/polar regions is presented, including 77 ship/buoy and 48 aircraft campaign observations (1977–2022, 0–5000 m altitude), supplemented by ozonesonde and surface data. Air masses isolated from land for 72+ hours are systematically selected as essentially oceanic. Among the 11 global regions, they show daytime decreases of 10–16% in the tropics, while near-zero depletions are rare, unlike in the Arctic, implying different mechanisms.
Yuri Brugnara, Martin Steinbacher, Simone Baffelli, and Lukas Emmenegger
EGUsphere, https://doi.org/10.5194/egusphere-2024-3556, https://doi.org/10.5194/egusphere-2024-3556, 2024
Short summary
Short summary
GAW-QC is an interactive dashboard for the quality control of in-situ atmospheric composition measurements made at stations taking part in the Global Atmosphere Watch network. Even though it is mainly targeted at station operators who want to analyze recent, not yet published measurements, it allows anybody to verify the quality of already published measurements using various anomaly detection algorithms as well as visual comparisons.
Katrine A. Gorham, Sam Abernethy, Tyler R. Jones, Peter Hess, Natalie M. Mahowald, Daphne Meidan, Matthew S. Johnson, Maarten M. J. W. van Herpen, Yangyang Xu, Alfonso Saiz-Lopez, Thomas Röckmann, Chloe A. Brashear, Erika Reinhardt, and David Mann
Atmos. Chem. Phys., 24, 5659–5670, https://doi.org/10.5194/acp-24-5659-2024, https://doi.org/10.5194/acp-24-5659-2024, 2024
Short summary
Short summary
Rapid reduction in atmospheric methane is needed to slow the rate of global warming. Reducing anthropogenic methane emissions is a top priority. However, atmospheric methane is also impacted by rising natural emissions and changing sinks. Studies of possible atmospheric methane removal approaches, such as iron salt aerosols to increase the chlorine radical sink, benefit from a roadmapped approach to understand if there may be viable and socially acceptable ways to decrease future risk.
Heesung Chong, Gonzalo González Abad, Caroline R. Nowlan, Christopher Chan Miller, Alfonso Saiz-Lopez, Rafael P. Fernandez, Hyeong-Ahn Kwon, Zolal Ayazpour, Huiqun Wang, Amir H. Souri, Xiong Liu, Kelly Chance, Ewan O'Sullivan, Jhoon Kim, Ja-Ho Koo, William R. Simpson, François Hendrick, Richard Querel, Glen Jaross, Colin Seftor, and Raid M. Suleiman
Atmos. Meas. Tech., 17, 2873–2916, https://doi.org/10.5194/amt-17-2873-2024, https://doi.org/10.5194/amt-17-2873-2024, 2024
Short summary
Short summary
We present a new bromine monoxide (BrO) product derived using radiances measured from OMPS-NM on board the Suomi-NPP satellite. This product provides nearly a decade of global stratospheric and tropospheric column retrievals, a feature that is currently rare in publicly accessible datasets. Both stratospheric and tropospheric columns from OMPS-NM demonstrate robust performance, exhibiting good agreement with ground-based observations collected at three stations (Lauder, Utqiagvik, and Harestua).
Stefan Brönnimann, Yuri Brugnara, and Clive Wilkinson
Clim. Past, 20, 757–767, https://doi.org/10.5194/cp-20-757-2024, https://doi.org/10.5194/cp-20-757-2024, 2024
Short summary
Short summary
The early 20th century warming – the first phase of global warming in the 20th century – started from a peculiar cold state around 1910. We digitised additional ship logbooks for these years to study this specific climate state and found that it is real and likely an overlap of several climatic anomalies, including oceanic variability (La Niña) and volcanic eruptions.
Cyril Caram, Sophie Szopa, Anne Cozic, Slimane Bekki, Carlos A. Cuevas, and Alfonso Saiz-Lopez
Geosci. Model Dev., 16, 4041–4062, https://doi.org/10.5194/gmd-16-4041-2023, https://doi.org/10.5194/gmd-16-4041-2023, 2023
Short summary
Short summary
We studied the role of halogenated compounds (containing chlorine, bromine and iodine), emitted by natural processes (mainly above the oceans), in the chemistry of the lower layers of the atmosphere. We introduced this relatively new chemistry in a three-dimensional climate–chemistry model and looked at how this chemistry will disrupt the ozone. We showed that the concentration of ozone decreases by 22 % worldwide and that of the atmospheric detergent, OH, by 8 %.
Manon Rocco, Erin Dunne, Alexia Saint-Macary, Maija Peltola, Theresa Barthelmeß, Neill Barr, Karl Safi, Andrew Marriner, Stacy Deppeler, James Harnwell, Anja Engel, Aurélie Colomb, Alfonso Saiz-Lopez, Mike Harvey, Cliff S. Law, and Karine Sellegri
EGUsphere, https://doi.org/10.5194/egusphere-2023-516, https://doi.org/10.5194/egusphere-2023-516, 2023
Preprint archived
Short summary
Short summary
During the Sea2cloud campaign in the Southern Pacific Ocean, we measured air-sea emissions from phytopankton of two key atmospheric compounds: DMS and MeSH. These compounds are well-known to play a great role in atmospheric chemistry and climate. We see in this paper that these compounds are most emited by the nanophytoplankton population. We provide here parameters for climate models to predict future trends of the emissions of these compounds and their roles and impacts on the global warming.
François Burgay, Rafael Pedro Fernández, Delia Segato, Clara Turetta, Christopher S. Blaszczak-Boxe, Rachael H. Rhodes, Claudio Scarchilli, Virginia Ciardini, Carlo Barbante, Alfonso Saiz-Lopez, and Andrea Spolaor
The Cryosphere, 17, 391–405, https://doi.org/10.5194/tc-17-391-2023, https://doi.org/10.5194/tc-17-391-2023, 2023
Short summary
Short summary
The paper presents the first ice-core record of bromine (Br) in the Antarctic plateau. By the observation of the ice core and the application of atmospheric chemical models, we investigate the behaviour of bromine after its deposition into the snowpack, with interest in the effect of UV radiation change connected to the formation of the ozone hole, the role of volcanic deposition, and the possible use of Br to reconstruct past sea ice changes from ice core collect in the inner Antarctic plateau.
Markus Jesswein, Rafael P. Fernandez, Lucas Berná, Alfonso Saiz-Lopez, Jens-Uwe Grooß, Ryan Hossaini, Eric C. Apel, Rebecca S. Hornbrook, Elliot L. Atlas, Donald R. Blake, Stephen Montzka, Timo Keber, Tanja Schuck, Thomas Wagenhäuser, and Andreas Engel
Atmos. Chem. Phys., 22, 15049–15070, https://doi.org/10.5194/acp-22-15049-2022, https://doi.org/10.5194/acp-22-15049-2022, 2022
Short summary
Short summary
This study presents the global and seasonal distribution of the two major brominated short-lived substances CH2Br2 and CHBr3 in the upper troposphere and lower stratosphere based on observations from several aircraft campaigns. They show similar seasonality for both hemispheres, except in the respective hemispheric autumn lower stratosphere. A comparison with the TOMCAT and CAM-Chem models shows good agreement in the annual mean but larger differences in the seasonal consideration.
Hisahiro Takashima, Yugo Kanaya, Saki Kato, Martina M. Friedrich, Michel Van Roozendael, Fumikazu Taketani, Takuma Miyakawa, Yuichi Komazaki, Carlos A. Cuevas, Alfonso Saiz-Lopez, and Takashi Sekiya
Atmos. Chem. Phys., 22, 4005–4018, https://doi.org/10.5194/acp-22-4005-2022, https://doi.org/10.5194/acp-22-4005-2022, 2022
Short summary
Short summary
We have undertaken atmospheric iodine monoxide (IO) observations in the global marine boundary layer with a wide latitudinal coverage and sea surface temperature (SST) range. We conclude that atmospheric iodine is abundant over the Western Pacific warm pool, appearing as an iodine fountain, where ozone (O3) minima occur. Our study also found negative correlations between IO and O3 concentrations over IO maxima, which requires reconsideration of the initiation process of halogen activation.
Zhiyuan Gao, Nicolas-Xavier Geilfus, Alfonso Saiz-Lopez, and Feiyue Wang
Atmos. Chem. Phys., 22, 1811–1824, https://doi.org/10.5194/acp-22-1811-2022, https://doi.org/10.5194/acp-22-1811-2022, 2022
Short summary
Short summary
Every spring in the Arctic, a series of photochemical events occur over the ice-covered ocean, known as bromine explosion events, ozone depletion events, and mercury depletion events. Here we report the re-creation of these events at an outdoor sea ice facility in Winnipeg, Canada, far away from the Arctic. The success provides a new platform with new opportunities to uncover fundamental mechanisms of these Arctic springtime phenomena and how they may change in a changing climate.
Arseniy Karagodin-Doyennel, Eugene Rozanov, Timofei Sukhodolov, Tatiana Egorova, Alfonso Saiz-Lopez, Carlos A. Cuevas, Rafael P. Fernandez, Tomás Sherwen, Rainer Volkamer, Theodore K. Koenig, Tanguy Giroud, and Thomas Peter
Geosci. Model Dev., 14, 6623–6645, https://doi.org/10.5194/gmd-14-6623-2021, https://doi.org/10.5194/gmd-14-6623-2021, 2021
Short summary
Short summary
Here, we present the iodine chemistry module in the SOCOL-AERv2 model. The obtained iodine distribution demonstrated a good agreement when validated against other simulations and available observations. We also estimated the iodine influence on ozone in the case of present-day iodine emissions, the sensitivity of ozone to doubled iodine emissions, and when considering only organic or inorganic iodine sources. The new model can be used as a tool for further studies of iodine effects on ozone.
Anoop S. Mahajan, Mriganka S. Biswas, Steffen Beirle, Thomas Wagner, Anja Schönhardt, Nuria Benavent, and Alfonso Saiz-Lopez
Atmos. Chem. Phys., 21, 11829–11842, https://doi.org/10.5194/acp-21-11829-2021, https://doi.org/10.5194/acp-21-11829-2021, 2021
Short summary
Short summary
Iodine plays a vital role in oxidation chemistry over Antarctica, with past observations showing highly elevated levels of iodine oxide (IO) leading to severe depletion of boundary layer ozone. We present IO observations over three summers (2015–2017) at the Indian Antarctic bases of Bharati and Maitri. IO was observed during all campaigns with mixing ratios below 2 pptv, which is lower than the peak levels observed in West Antarctica, showing the differences in regional chemistry and emissions.
Anoop S. Mahajan, Qinyi Li, Swaleha Inamdar, Kirpa Ram, Alba Badia, and Alfonso Saiz-Lopez
Atmos. Chem. Phys., 21, 8437–8454, https://doi.org/10.5194/acp-21-8437-2021, https://doi.org/10.5194/acp-21-8437-2021, 2021
Short summary
Short summary
Using a regional model, we show that iodine-catalysed reactions cause large regional changes in the chemical composition in the northern Indian Ocean, with peak changes of up to 25 % in O3, 50 % in nitrogen oxides (NO and NO2), 15 % in hydroxyl radicals (OH), 25 % in hydroperoxyl radicals (HO2), and up to a 50 % change in the nitrate radical (NO3). These results show the importance of including iodine chemistry in modelling the atmosphere in this region.
David Garcia-Nieto, Nuria Benavent, Rafael Borge, and Alfonso Saiz-Lopez
Atmos. Meas. Tech., 14, 2941–2955, https://doi.org/10.5194/amt-14-2941-2021, https://doi.org/10.5194/amt-14-2941-2021, 2021
Short summary
Short summary
Trace gases play a key role in the chemistry of urban atmospheres. Therefore, knowledge about their spatial distribution is needed to fully characterize the air quality in urban areas. Using a new Multi-AXis Differential Optical Absorption Spectroscopy two-dimensional (MAXDOAS-2D) instrument, along with inversion algorithms, we report for the first time two-dimensional maps of NO2 concentrations in the city of Madrid, Spain.
Juan A. Añel, Michael García-Rodríguez, and Javier Rodeiro
Geosci. Model Dev., 14, 923–934, https://doi.org/10.5194/gmd-14-923-2021, https://doi.org/10.5194/gmd-14-923-2021, 2021
Short summary
Short summary
This work shows that it continues to be hard, if not impossible, to obtain some of the most used climate models worldwide. We reach this conclusion through a systematic study and encourage all development teams and research centres to make public the models they use to produce scientific results.
Swaleha Inamdar, Liselotte Tinel, Rosie Chance, Lucy J. Carpenter, Prabhakaran Sabu, Racheal Chacko, Sarat C. Tripathy, Anvita U. Kerkar, Alok K. Sinha, Parli Venkateswaran Bhaskar, Amit Sarkar, Rajdeep Roy, Tomás Sherwen, Carlos Cuevas, Alfonso Saiz-Lopez, Kirpa Ram, and Anoop S. Mahajan
Atmos. Chem. Phys., 20, 12093–12114, https://doi.org/10.5194/acp-20-12093-2020, https://doi.org/10.5194/acp-20-12093-2020, 2020
Short summary
Short summary
Iodine chemistry is generating a lot of interest because of its impacts on the oxidising capacity of the marine boundary and depletion of ozone. However, one of the challenges has been predicting the right levels of iodine in the models, which depend on parameterisations for emissions from the sea surface. This paper discusses the different parameterisations available and compares them with observations, showing that our current knowledge is still insufficient, especially on a regional scale.
Yang Wang, Arnoud Apituley, Alkiviadis Bais, Steffen Beirle, Nuria Benavent, Alexander Borovski, Ilya Bruchkouski, Ka Lok Chan, Sebastian Donner, Theano Drosoglou, Henning Finkenzeller, Martina M. Friedrich, Udo Frieß, David Garcia-Nieto, Laura Gómez-Martín, François Hendrick, Andreas Hilboll, Junli Jin, Paul Johnston, Theodore K. Koenig, Karin Kreher, Vinod Kumar, Aleksandra Kyuberis, Johannes Lampel, Cheng Liu, Haoran Liu, Jianzhong Ma, Oleg L. Polyansky, Oleg Postylyakov, Richard Querel, Alfonso Saiz-Lopez, Stefan Schmitt, Xin Tian, Jan-Lukas Tirpitz, Michel Van Roozendael, Rainer Volkamer, Zhuoru Wang, Pinhua Xie, Chengzhi Xing, Jin Xu, Margarita Yela, Chengxin Zhang, and Thomas Wagner
Atmos. Meas. Tech., 13, 5087–5116, https://doi.org/10.5194/amt-13-5087-2020, https://doi.org/10.5194/amt-13-5087-2020, 2020
Thomas R. Lewis, Juan Carlos Gómez Martín, Mark A. Blitz, Carlos A. Cuevas, John M. C. Plane, and Alfonso Saiz-Lopez
Atmos. Chem. Phys., 20, 10865–10887, https://doi.org/10.5194/acp-20-10865-2020, https://doi.org/10.5194/acp-20-10865-2020, 2020
Short summary
Short summary
Iodine-bearing gasses emitted from the sea surface are chemically processed in the atmosphere, leading to iodine accumulation in aerosol and transport to continental ecosystems. Such processing involves light-induced break-up of large, particle-forming iodine oxides into smaller, ozone-depleting molecules. We combine experiments and theory to report the photolysis efficiency of iodine oxides required to assess the impact of iodine on ozone depletion and particle formation.
Cited articles
Alexandersson, H.: A homogeneity test applied to precipitation data, J. Climatol., 6, 661–675, https://doi.org/10.1002/joc.3370060607, 1986.
Alvim-Ferraz, M. C. M., Sousa, S. I. V., Pereira, M. C., and Martins, F. G.: Contribution of anthropogenic pollutants to the increase of tropospheric ozone levels in the Oporto Metropolitan Area, Portugal since the 19th century, Environ. Pollut., 140, 516–524, 2006.
Añel, J. A.: The importance of reviewing the code, Commun. ACM, 54, 40–41, https://doi.org/10.1145/1941487.1941502, 2011.
Añel, J. A.: Comment on “Most computational hydrology is not reproducible, so is it really science?” by Hutton et al., Water Resour. Res., 53, 2572–2574, https://doi.org/10.1002/2016WR020190, 2017.
Añel, J. A., Gimeno, L., Samamed, A. C., Pérez-Souto, C., Torre, L. de la, Valente, M. A., Saiz-Lopez, A., Brugnara, Y., and Antuña-Marrero, J. C.: Pre-industrial semiquantitative daily mean surface ozone data, PANGAEA, https://doi.org/10.1594/PANGAEA.969259, 2024a.
Añel, J. A., Gimeno, L., Samamed, A. C., Pérez-Souto, C., Torre, L. de la, Valente, M. A., Saiz-Lopez, A., Brugnara, Y., and Antuña-Marrero, J. C.: Pre-industrial semiquantitative monthly mean surface ozone data, PANGAEA, https://doi.org/10.1594/PANGAEA.969241, 2024b.
Anfossi, D., Sandroni, S., and Viarengo, S.: Tropospheric ozone in the nineteenth century: The Moncalieri series, J. Geophys. Res., 96, 17349–17352, 1991.
Bérigny, A.: Observations faites à Versailles avec le papier dit ozonométrique (séance du 8 Avril 1856), Ann. Soc. Meteorol. Paris, 4, 79–81, 1856a.
Bérigny, A.: Observations ozonométriques faites avec le papier Schöenbein à la caseme Saint-Cloud (séance du 13 Mai 1856), Ann. Soc. Meteorol. Paris, 4, 84–97, 1856b.
Bérigny, A.: Recherches et observations pratiques sur le papier ozonométrique (séance du 9 Juin 1857), Annu. Société Météorologique Fr., 5, 149–156, 1857.
Bérigny, A.: Gamme chromatique pour l'ozonomètre (séance du 9 Mars 1858), Ann. Soc. Meteorol. Paris, 6, 25–29, 1858.
Bojkov, R. D.: Surface Ozone During the Second Half of the Nineteenth Century, J. Clim. Appl. Meteorol., 25, 343–352, 1986.
Brito Capello, J. C.: Annaes do Observatorio do Infante D. Luiz, 1856–1863, 129 pp., 1863.
Brito Capello, J. C.: Postos Meteorologicos 1876, Primeiro Semestre, Anexo ao Volume XIV dos Annaes do Observatorio do Infante D. Luiz, 34 pp., 1877.
Cartalis, C. and Varotsos, C.: Surface ozone in Athens, Greece, at the beginning and at the end of the twentieth century, Atmos Env., 28, 3–8, 1994.
De Almeida Lima, J. A.: Annaes do Observatorio do Infante D. Luiz, 1913, 261 pp., , 1913.
De Almeida Lima, J. A.: Annaes do Observatorio do Infante D. Luiz, 1914, 260 pp., 1914.
De Almeida Lima, J. A.: Annaes do Observatorio do Infante D. Luiz, 1915, 269 pp., 1918.
De Lina Vidal, A. A.: Annaes do Observatorio do Infante D. Luiz, 1905, 126 pp., 1905.
Fox, C. B.: Ozone and Antozone, Their History and Nature When, Where, Why, how is Ozone Observed in the Atmosphere?, Churchill, 1873.
Fradesso da Silveira, J. H.: Annaes do Observatorio do Infante D. Luiz, 1864, 223 pp., 1864.
Fradesso da Silveira, J. H.: Annaes do Observatorio do Infante D. Luiz, 1865, 237 pp., 1865.
Fradesso da Silveira, J. H.: Annaes do Observatorio do Infante D. Luiz, 1873, 26 pp., 1873.
Gaudel, A., Cooper, O. R., Ancellet, G., Barret, B., Boynard, A., Burrows, J. P., Clerbaux, C., Coheur, P.-F., Cuesta, J., Cuevas, E., Doniki, S., Dufour, G., Ebojie, F., Foret, G., Garcia, O., Granados-Muñoz, M. J., Hannigan, J. W., Hase, F., Hassler, B., Huang, G., Hurtmans, D., Jaffe, D., Jones, N., Kalabokas, P., Kerridge, B., Kulawik, S., Latter, B., Leblanc, T., Le Flochmoën, E., Lin, W., Liu, J., Liu, X., Mahieu, E., McClure-Begley, A., Neu, J. L., Osman, M., Palm, M., Petetin, H., Petropavlovskikh, I., Querel, R., Rahpoe, N., Rozanov, A., Schultz, M. G., Schwab, J., Siddans, R., Smale, D., Steinbacher, M., Tanimoto, H., Tarasick, D. W., Thouret, V., Thompson, A. M., Trickl, T., Weatherhead, E., Wespes, C., Worden, H. M., Vigouroux, C., Xu, X., Zeng, G., and Ziemke, J.: Tropospheric Ozone Assessment Report: Present-day distribution and trends of tropospheric ozone relevant to climate and global atmospheric chemistry model evaluation, Elem. Sci. Anth., 6, 39, https://doi.org/10.1525/elementa.291, 2018.
Guijarro, J. A.: User's guide of the climatol R Package (version 4.1.1), 2023.
Guijarro, J. A. and Añel, J. A.: Climatol 4.0.0 (4.0.0), Zenodo [data set], https://doi.org/10.5281/zenodo.12786077, 2024.
Houzeau, A.: Observations sur la valeur du papier dit ozonométrique et exposition d'une nouvelle méthode analytique pour reconnaitre et doser l'ozone (seance du 10 Mars 1857), Ann. Soc. Meteorol. Paris, 5, 43–53, 1857.
Kley, D., Volz, A., and Mülheims, F.: Ozone Measurements in Historic Perspective, in: Tropospheric Ozone: Regional and Global Scale Interactions, edited by: Isaksen, I. S. A., Springer Netherlands, Dordrecht, 63–72, https://doi.org/10.1007/978-94-009-2913-5_4, 1988.
Linvill, D. E., Hooker, W. J., and Olson, B.: Ozone in Michigan's Environment 1876–1880, Mon. Weather Rev., 108, 1883–1891, 1980.
Marenco, A., Gouget, H., Nédélec, P., Pagés, J.-P., and Karcher, F.: Evidence of a long-term increase in tropospheric ozone from Pic du Midi data series: Consequences: Positive radiative forcing, J. Geophys. Res., 99, 16617–16632, 1994.
Mendes Víctor, L. A.: Anais do Instituto Geofísico do Infante D. Luís 1999, 65 pp., 2001.
Möller, D.: Atmospheric Chemistry: A Critical Voyage Through the History, De Gruyter, ISBN 978-3-11-073739-4, 2022.
Monks, P. S., Ravishankara, A. R., von Schneidemesser, E., and Sommariva, R.: Opinion: Papers that shaped tropospheric chemistry, Atmos. Chem. Phys., 21, 12909–12948, https://doi.org/10.5194/acp-21-12909-2021, 2021.
Nolle, M., Ellul, R., Ventura, F., and Güsten, H.: A study of historical surface ozone measurements (1884–1900) on the island of Gozo in the central Mediterranean, Atmos. Environ., 39, 5608–5618, 2005.
Pavelin, E. G., Johnson, C. E., Rughooputh, S., and Toumi, R.: Evaluation of pre-industrial surface ozone measurements made using Schönbein's method, Atmos Environ., 33, 919–929, 1999.
Ramirez-Gonzalez, I. A., Añel, J. A., and Cid Samamed, A.: Ozone measurement practice in the laboratory using Schönbein's method, Geosci. Commun., 3, 99–108, https://doi.org/10.5194/gc-3-99-2020, 2020.
Raposo, P. M. P.: Meteorology, Timekeeping and “Scientific Occupation”: Colonial Observatories in the Third Portuguese Empire, Cah. Fr. Viète, III, 139–168, 2017.
Sandroni, S. and Anfossi, D.: Historical data of surface ozone at tropical latitudes, Sci. Total Environ., 148, 23–29, 1994.
Sandroni, S., Anfossi, D., and Viarengo, S.: Surface ozone levels at the end of the nineteenth century in South America, J. Geophys. Res., 97, 2535–2539, 1992.
Schönbein, C.: Recherche sur la nature de l'odeur qui se manifeste dans certaines actions chimiquies, Comptes Redus Seances París, 10, 706–710, 1840a.
Schönbein, C. F.: Beobachtungen über den bei der Elektrolyse des Wassers und dem Ausströmen der gewöhnlichen Elektricität aus Spitzen sich entwickelnden Geruch, Ann. Phys. Chim. Poggendorfs Ann., 50, 258–278, 1840b.
Schönbein, C. F.: Über das Ozon, J. Prakt. Chim., 51, https://doi.org/10.1002/prac.18500510147, 1850.
Schultz, M. G., Schröder, S., Lyapina, O., Cooper, O. R., Galbally, I., Petropavlovskikh, I., Von Schneidemesser, E., Tanimoto, H., Elshorbany, Y., Naja, M., Seguel, R. J., Dauert, U., Eckhardt, P., Feigenspan, S., Fiebig, M., Hjellbrekke, A.-G., Hong, Y.-D., Kjeld, P. C., Koide, H., Lear, G., Tarasick, D., Ueno, M., Wallasch, M., Baumgardner, D., Chuang, M.-T., Gillett, R., Lee, M., Molloy, S., Moolla, R., Wang, T., Sharps, K., Adame, J. A., Ancellet, G., Apadula, F., Artaxo, P., Barlasina, M. E., Bogucka, M., Bonasoni, P., Chang, L., Colomb, A., Cuevas-Agulló, E., Cupeiro, M., Degorska, A., Ding, A., Fröhlich, M., Frolova, M., Gadhavi, H., Gheusi, F., Gilge, S., Gonzalez, M. Y., Gros, V., Hamad, S. H., Helmig, D., Henriques, D., Hermansen, O., Holla, R., Hueber, J., Im, U., Jaffe, D. A., Komala, N., Kubistin, D., Lam, K.-S., Laurila, T., Lee, H., Levy, I., Mazzoleni, C., Mazzoleni, L. R., McClure-Begley, A., Mohamad, M., Murovec, M., Navarro-Comas, M., Nicodim, F., Parrish, D., Read, K. A., Reid, N., Ries, L., Saxena, P., Schwab, J. J., Scorgie, Y., Senik, I., Simmonds, P., Sinha, V., Skorokhod, A. I., Spain, G., Spangl, W., Spoor, R., R. Springston, S., Steer, K., Steinbacher, M., Suharguniyawan, E., Torre, P., Trickl, T., Weili, L., Weller, R., Xiaobin, X., Xue, L., and Zhiqiang, M.: Tropospheric Ozone Assessment Report: Database and metrics data of global surface ozone observations, Elem. Sci. Anth., 5, 58, https://doi.org/10.1525/elementa.244, 2017.
Silvestre, J.: Historia dos estabelecimentos scientificos litterarios e artisticos de Portugal nos successsivos reinados da monarchia, 493 pp., 1881.
Tarasick, D., Galbally, I. E., Cooper, O. R., Schultz, M. G., Ancellet, G., Leblanc, T., Wallington, T. J., Ziemke, J., Liu, X., Steinbacher, M., Staehelin, J., Vigouroux, C., Hannigan, J. W., García, O., Foret, G., Zanis, P., Weatherhead, E., Petropavlovskikh, I., Worden, H., Osman, M., Liu, J., Chang, K.-L., Gaudel, A., Lin, M., Granados-Muñoz, M., Thompson, A. M., Oltmans, S. J., Cuesta, J., Dufour, G., Thouret, V., Hassler, B., Trickl, T., and Neu, J. L.: Tropospheric Ozone Assessment Report: Tropospheric ozone from 1877 to 2016, observed levels, trends and uncertainties, Elem. Sci. Anthr., 7, 39, https://doi.org/10.1525/elementa.376, 2019.
U.S. EPA: Integrated science assessment for ozone and related photochemical oxidants, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA, https://assessments.epa.gov/risk/document/&deid=348522 (last access: 26 May 2025), 2020.
Vaquero, J. M., Bravo-Paredes, N., Obregón, M. A., Sánchez-Carrasco, V. M., Valente, M. A., Trigo, R. M., Domínguez-Castro, F., Montero-Martín, J., Vaquero-Martínez, J., Antón, M., García, J. A., and Gallego, M. C.: Early meteorological records from Extremadura region, SW Iberia (CliPastExtrem), PANGAEA, https://doi.org/10.1594/PANGAEA.928037, 2021.
Vaquero, J. M., Bravo-Paredes, N., Obregón, M. A., Carrasco, V. M. S., Valente, M. A., Trigo, R. M., Domínguez-Castro, F., Montero-Martín, J., Vaquero-Martínez, J., Antón, M., García, J. A., and Gallego, M. C.: Recovery of early meteorological records from Extremadura region (SW Iberia): The `CliPastExtrem' (v1.0) database, Geosci. Data J., 9, 207–220, https://doi.org/10.1002/gdj3.131, 2022.
Volz, A. and Kley, D.: Evaluation of the Montsouris series of ozone measurements made in the nineteenth century, Nature, 332, 240–242, https://doi.org/10.1038/332240a0, 1988.
Short summary
Ozone (discovered in 1837) was first measured in 1847 using paper strips that reacted with ozone, providing an indication of its concentration based on colour changes. Here, we present the data, covering over 60 years of daily observations conducted along the eastern Atlantic coast, spanning from the tropics to the northern extratropics.
Ozone (discovered in 1837) was first measured in 1847 using paper strips that reacted with...
Altmetrics
Final-revised paper
Preprint