Articles | Volume 16, issue 1
https://doi.org/10.5194/essd-16-59-2024
https://doi.org/10.5194/essd-16-59-2024
Data description paper
 | 
05 Jan 2024
Data description paper |  | 05 Jan 2024

Temporal and spatial mapping of theoretical biomass potential across the European Union

Susann Günther, Tom Karras, Friederike Naegeli de Torres, Sebastian Semella, and Daniela Thrän

Related subject area

Domain: ESSD – Global | Subject: Energy and Emissions
A global forest burn severity dataset from Landsat imagery (2003–2016)
Kang He, Xinyi Shen, and Emmanouil N. Anagnostou
Earth Syst. Sci. Data, 16, 3061–3081, https://doi.org/10.5194/essd-16-3061-2024,https://doi.org/10.5194/essd-16-3061-2024, 2024
Short summary
A global surface CO2 flux dataset (2015–2022) inferred from OCO-2 retrievals using the GONGGA inversion system
Zhe Jin, Xiangjun Tian, Yilong Wang, Hongqin Zhang, Min Zhao, Tao Wang, Jinzhi Ding, and Shilong Piao
Earth Syst. Sci. Data, 16, 2857–2876, https://doi.org/10.5194/essd-16-2857-2024,https://doi.org/10.5194/essd-16-2857-2024, 2024
Short summary
Insights into the spatial distribution of global, national, and subnational greenhouse gas emissions in the Emissions Database for Global Atmospheric Research (EDGAR v8.0)
Monica Crippa, Diego Guizzardi, Federico Pagani, Marcello Schiavina, Michele Melchiorri, Enrico Pisoni, Francesco Graziosi, Marilena Muntean, Joachim Maes, Lewis Dijkstra, Martin Van Damme, Lieven Clarisse, and Pierre Coheur
Earth Syst. Sci. Data, 16, 2811–2830, https://doi.org/10.5194/essd-16-2811-2024,https://doi.org/10.5194/essd-16-2811-2024, 2024
Short summary
Estimating the uncertainty of the greenhouse gas emission accounts in global multi-regional input–output analysis
Simon Schulte, Arthur Jakobs, and Stefan Pauliuk
Earth Syst. Sci. Data, 16, 2669–2700, https://doi.org/10.5194/essd-16-2669-2024,https://doi.org/10.5194/essd-16-2669-2024, 2024
Short summary
A consistent dataset for the net income distribution for 190 countries and aggregated to 32 geographical regions from 1958 to 2015
Kanishka B. Narayan, Brian C. O'Neill, Stephanie Waldhoff, and Claudia Tebaldi
Earth Syst. Sci. Data, 16, 2333–2349, https://doi.org/10.5194/essd-16-2333-2024,https://doi.org/10.5194/essd-16-2333-2024, 2024
Short summary

Cited articles

Avramia, I. and Amariei, S.: Spent Brewer’s Yeast as a Source of Insoluble β-Glucans, Int. J. Mol. Sci., 22, 825, https://doi.org/10.3390/ijms22020825, 2021. 
Bell, J., Paula, L., Dodd, T., Németh, S., Nanou, C., Mega, V., and Campos, P.: EU ambition to build the world's leading bioeconomy-Uncertain times demand innovative and sustainable solutions, New Biotechnol., 40, 25–30, https://doi.org/10.1016/j.nbt.2017.06.010, 2018. 
Bellot, F.-F., Horschig, T., and Brosowski, A.: Quantification of European Biomass Potentials, OpenAgrar [data set] https://doi.org/10.48480/pc11-xz36, 2021. 
Blickensdörfer, L., Schwieder, M., Pflugmacher, D., Nendel, C., Erasmi, S., and Hostert, P.: Mapping of crop types and crop sequences with combined time series of Sentinel-1, Sentinel-2 and Landsat 8 data for Germany, Remote Sens. Environ., 269, 112831, https://doi.org/10.1016/j.rse.2021.112831, 2022. 
Brosowski, A., Thrän, D., Mantau, U., Mahro, B., Erdmann, G., Adler, P., Stinner, W., Reinhold, G., Hering, T., and Blanke, C.: A review of biomass potential and current utilisation – Status quo for 93 biogenic wastes and residues in Germany, Biomass Bioenerg., 95, 257–272, https://doi.org/10.1016/j.biombioe.2016.10.017, 2016. 
Download
Short summary
The following study was undertaken to provide a continuous open access dataset for 2010-2020 from country to local level. In order to understand the reliability of the final dataset and to enable further use, the modelled data were validated against statistics, which is a novelty in this field. The dataset has been shown to be in good agreement with the statistical data. Biomass potentials modelled in this study are published in an open access database.
Altmetrics
Final-revised paper
Preprint