Articles | Volume 16, issue 11
https://doi.org/10.5194/essd-16-5131-2024
https://doi.org/10.5194/essd-16-5131-2024
Data description paper
 | 
06 Nov 2024
Data description paper |  | 06 Nov 2024

Constructing a 22-year internal wave dataset for the northern South China Sea: spatiotemporal analysis using MODIS imagery and deep learning

Xudong Zhang and Xiaofeng Li

Related authors

SICNetseason V1.0: a transformer-based deep learning model for seasonal Arctic sea ice prediction by integrating sea ice thickness data
Yibin Ren, Xiaofeng Li, and Yunhe Wang
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-200,https://doi.org/10.5194/gmd-2024-200, 2024
Preprint under review for GMD
Short summary
Weekly green tide mapping in the Yellow Sea with deep learning: integrating optical and synthetic aperture radar ocean imagery
Le Gao, Yuan Guo, and Xiaofeng Li
Earth Syst. Sci. Data, 16, 4189–4207, https://doi.org/10.5194/essd-16-4189-2024,https://doi.org/10.5194/essd-16-4189-2024, 2024
Short summary
Characteristics of surface physical and biogeochemical parameters within mesoscale eddies in the Southern Ocean
Qian Liu, Yingjie Liu, and Xiaofeng Li
Biogeosciences, 20, 4857–4874, https://doi.org/10.5194/bg-20-4857-2023,https://doi.org/10.5194/bg-20-4857-2023, 2023
Short summary
Impact of surface and subsurface-intensified eddies on sea surface temperature and chlorophyll a in the northern Indian Ocean utilizing deep learning
Yingjie Liu and Xiaofeng Li
Ocean Sci., 19, 1579–1593, https://doi.org/10.5194/os-19-1579-2023,https://doi.org/10.5194/os-19-1579-2023, 2023
Short summary

Related subject area

Domain: ESSD – Ocean | Subject: Physical oceanography
A submesoscale eddy identification dataset in the northwest Pacific Ocean derived from GOCI I chlorophyll a data based on deep learning
Yan Wang, Ge Chen, Jie Yang, Zhipeng Gui, and Dehua Peng
Earth Syst. Sci. Data, 16, 5737–5752, https://doi.org/10.5194/essd-16-5737-2024,https://doi.org/10.5194/essd-16-5737-2024, 2024
Short summary
MASCS 1.0: synchronous atmospheric and oceanic data from a cross-shaped moored array in the northern South China Sea during 2014–2015
Han Zhang, Dake Chen, Tongya Liu, Di Tian, Min He, Qi Li, Guofei Wei, and Jian Liu
Earth Syst. Sci. Data, 16, 5665–5679, https://doi.org/10.5194/essd-16-5665-2024,https://doi.org/10.5194/essd-16-5665-2024, 2024
Short summary
Reprocessing of eXpendable BathyThermograph (XBT) profiles from the Ligurian and Tyrrhenian seas over the time period 1999–2019 with a full metadata upgrade
Simona Simoncelli, Franco Reseghetti, Claudia Fratianni, Lijing Cheng, and Giancarlo Raiteri
Earth Syst. Sci. Data, 16, 5531–5561, https://doi.org/10.5194/essd-16-5531-2024,https://doi.org/10.5194/essd-16-5531-2024, 2024
Short summary
Coastal Atmosphere and Sea Time Series (CoASTS) and Bio-Optical mapping of Marine Properties (BiOMaP): the CoASTS-BiOMaP dataset
Giuseppe Zibordi and Jean-François Berthon
Earth Syst. Sci. Data, 16, 5477–5502, https://doi.org/10.5194/essd-16-5477-2024,https://doi.org/10.5194/essd-16-5477-2024, 2024
Short summary
Spatio-temporal changes in China's mainland shorelines over 30 years using Landsat time series data (1990–2019)
Gang Yang, Ke Huang, Lin Zhu, Weiwei Sun, Chao Chen, Xiangchao Meng, Lihua Wang, and Yong Ge
Earth Syst. Sci. Data, 16, 5311–5331, https://doi.org/10.5194/essd-16-5311-2024,https://doi.org/10.5194/essd-16-5311-2024, 2024
Short summary

Cited articles

Alpers, W.: Theory of radar imaging of internal waves, Nature, 314, 245–247, 1985. 
Bai, X., Liu, Z., Li, X., and Hu, J.: Generation sites of internal solitary waves in the southern Taiwan Strait revealed by MODIS true-colour image observations, Int. J. Remote Sens., 35, 4086–4098, https://doi.org/10.1080/01431161.2014.916453, 2014. 
Bai, X., Li, X., Lamb, K. G., and Hu, J.: Internal Solitary Wave Reflection Near Dongsha Atoll, the South China Sea, J. Geophys. Res.-Oceans, 122, 7978–7991, https://doi.org/10.1002/2017jc012880, 2017. 
Bao, S., Meng, J., Sun, L., and Liu, Y.: Detection of ocean internal waves based on Faster R-CNN in SAR images, J. Oceanol. Limnol., 38, 55–63, https://doi.org/10.1007/s00343-019-9028-6, 2019. 
Download
Short summary
Internal wave (IW) is an important ocean process and is frequently observed in the South China Sea (SCS). This study presents a detailed IW dataset for the northern SCS spanning from 2000 to 2022, with a spatial resolution of 250 m, comprising 3085 IW MODIS images. This dataset can enhance understanding of IW dynamics and serve as a valuable resource for studying ocean dynamics, validating numerical models, and advancing AI-driven model building, fostering further exploration into IW phenomena.
Altmetrics
Final-revised paper
Preprint