Articles | Volume 16, issue 11
https://doi.org/10.5194/essd-16-5131-2024
https://doi.org/10.5194/essd-16-5131-2024
Data description paper
 | 
06 Nov 2024
Data description paper |  | 06 Nov 2024

Constructing a 22-year internal wave dataset for the northern South China Sea: spatiotemporal analysis using MODIS imagery and deep learning

Xudong Zhang and Xiaofeng Li

Related authors

SICNetseason V1.0: a transformer-based deep learning model for seasonal Arctic sea ice prediction by incorporating sea ice thickness data
Yibin Ren, Xiaofeng Li, and Yunhe Wang
Geosci. Model Dev., 18, 2665–2678, https://doi.org/10.5194/gmd-18-2665-2025,https://doi.org/10.5194/gmd-18-2665-2025, 2025
Short summary
Weekly green tide mapping in the Yellow Sea with deep learning: integrating optical and synthetic aperture radar ocean imagery
Le Gao, Yuan Guo, and Xiaofeng Li
Earth Syst. Sci. Data, 16, 4189–4207, https://doi.org/10.5194/essd-16-4189-2024,https://doi.org/10.5194/essd-16-4189-2024, 2024
Short summary
Characteristics of surface physical and biogeochemical parameters within mesoscale eddies in the Southern Ocean
Qian Liu, Yingjie Liu, and Xiaofeng Li
Biogeosciences, 20, 4857–4874, https://doi.org/10.5194/bg-20-4857-2023,https://doi.org/10.5194/bg-20-4857-2023, 2023
Short summary
Impact of surface and subsurface-intensified eddies on sea surface temperature and chlorophyll a in the northern Indian Ocean utilizing deep learning
Yingjie Liu and Xiaofeng Li
Ocean Sci., 19, 1579–1593, https://doi.org/10.5194/os-19-1579-2023,https://doi.org/10.5194/os-19-1579-2023, 2023
Short summary

Related subject area

Domain: ESSD – Ocean | Subject: Physical oceanography
Gap-filled sub-surface mooring dataset off Western Australia during 2010–2023
Toan Bui, Ming Feng, and Christopher C. Chapman
Earth Syst. Sci. Data, 17, 1693–1705, https://doi.org/10.5194/essd-17-1693-2025,https://doi.org/10.5194/essd-17-1693-2025, 2025
Short summary
The International Altimetry Service 2024 (IAS2024) coastal sea level dataset and first evaluations
Fukai Peng, Xiaoli Deng, Yunzhong Shen, and Xiao Cheng
Earth Syst. Sci. Data, 17, 1441–1460, https://doi.org/10.5194/essd-17-1441-2025,https://doi.org/10.5194/essd-17-1441-2025, 2025
Short summary
Global ocean surface heat fluxes derived from the maximum entropy production framework accounting for ocean heat storage and Bowen ratio adjustments
Yong Yang, Huaiwei Sun, Jingfeng Wang, Wenxin Zhang, Gang Zhao, Weiguang Wang, Lei Cheng, Lu Chen, Hui Qin, and Zhanzhang Cai
Earth Syst. Sci. Data, 17, 1191–1216, https://doi.org/10.5194/essd-17-1191-2025,https://doi.org/10.5194/essd-17-1191-2025, 2025
Short summary
A European database of resources on coastal storm impacts
Paola Emilia Souto-Ceccon, Juan Montes, Enrico Duo, Paolo Ciavola, Tomás Fernández-Montblanc, and Clara Armaroli
Earth Syst. Sci. Data, 17, 1041–1054, https://doi.org/10.5194/essd-17-1041-2025,https://doi.org/10.5194/essd-17-1041-2025, 2025
Short summary
Multi-year observations of near-bed hydrodynamics and suspended sediment at the core of the estuarine turbidity maximum of the Changjiang Estuary
Zaiyang Zhou, Jianzhong Ge, Dirk Sebastiaan van Maren, Hualong Luan, Wenyun Guo, Jianfei Ma, Yingjia Tao, Peng Xu, Fuhai Dao, Wanlun Yang, Keteng Ke, Shenyang Shi, Jingting Zhang, Yu Kuai, Cheng Li, Jinghua Gu, and Pingxing Ding
Earth Syst. Sci. Data, 17, 917–935, https://doi.org/10.5194/essd-17-917-2025,https://doi.org/10.5194/essd-17-917-2025, 2025
Short summary

Cited articles

Alpers, W.: Theory of radar imaging of internal waves, Nature, 314, 245–247, 1985. 
Bai, X., Liu, Z., Li, X., and Hu, J.: Generation sites of internal solitary waves in the southern Taiwan Strait revealed by MODIS true-colour image observations, Int. J. Remote Sens., 35, 4086–4098, https://doi.org/10.1080/01431161.2014.916453, 2014. 
Bai, X., Li, X., Lamb, K. G., and Hu, J.: Internal Solitary Wave Reflection Near Dongsha Atoll, the South China Sea, J. Geophys. Res.-Oceans, 122, 7978–7991, https://doi.org/10.1002/2017jc012880, 2017. 
Bao, S., Meng, J., Sun, L., and Liu, Y.: Detection of ocean internal waves based on Faster R-CNN in SAR images, J. Oceanol. Limnol., 38, 55–63, https://doi.org/10.1007/s00343-019-9028-6, 2019. 
Download
Short summary
Internal wave (IW) is an important ocean process and is frequently observed in the South China Sea (SCS). This study presents a detailed IW dataset for the northern SCS spanning from 2000 to 2022, with a spatial resolution of 250 m, comprising 3085 IW MODIS images. This dataset can enhance understanding of IW dynamics and serve as a valuable resource for studying ocean dynamics, validating numerical models, and advancing AI-driven model building, fostering further exploration into IW phenomena.
Share
Altmetrics
Final-revised paper
Preprint