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Abstract. Internal waves (IWs) are an important ocean phenomenon facilitating energy transfer between mul-
tiscale ocean processes. Understanding such processes necessitates the collection and analysis of extensive ob-
servational data. IWs predominantly occur in marginal seas, with the South China Sea (SCS) being one of the
most active regions, characterized by frequent and large-amplitude IW activities. In this study, we present a
comprehensive IW dataset for the northern SCS (https://doi.org/10.12157/IOCAS.20240409.001, Zhang and Li,
2024), covering the area from 112.40 to 121.32° E and from 18.32 to 23.19° N, spanning the period from 2000
to 2022 with a 250 m spatial resolution. During the 22 years, a total of 15 830 MODIS images were down-
loaded for further processing. Out of these, 3085 high-resolution MODIS true-color images were identified to
contain IW information and were included in the dataset with precise IW positions extracted using advanced
deep learning techniques. IWs in the northern SCS are categorized into four regions based on extracted IW spa-
tial distributions. This classification enables detailed analyses of IW characteristics, including their spatial and
temporal distributions across the entire northern SCS and its specific sub-regions. Interestingly, our temporal
analysis reveals characteristic “double-peak” patterns aligned with the lunar day, highlighting the strong connec-
tion between IWs and tidal cycles. Furthermore, our spatial analysis identifies two IW quiescent zones within
the IW clusters influenced by underwater topography, highlighting regional variations in IW characteristics and
suggesting underlying mechanisms which merit further investigation. There are also three gap regions between
distinct IW clusters, which may indicate different IW sources. The constructed dataset holds significant potential
for studying IW–environment interactions, developing monitoring and prediction models, validating numerical
simulations, and serving as an educational resource to promote awareness and interest in IW research.

1 Introduction

Oceanic internal waves (IWs) are prominent phenomena in
marginal seas and continental shelf areas, characterized by
their long-distance horizontal propagation and large ampli-
tude within stratified waters (Haury et al., 1979; Magalhaes
et al., 2020, 2022; Pan et al., 2007; Zhang et al., 2022; Zhao
et al., 2014). Their significance lies in their role in trans-
mitting energy between multiscale ocean processes and their
critical impact on the ocean environment, acoustics, and un-

derwater navigation (Jia et al., 2019; Ramp et al., 2022b).
IWs manifest as either a periodic wave series with distinct
amplitude and crest length or solitary solitons. While the
IW crest length extends several hundreds of kilometers, their
wavelength in the propagation direction spans only a few
hundred meters to a few kilometers. Their isolated nature and
infrequent occurrence make these waves difficult to capture.
Understanding IWs requires extensive collection and analy-
sis of observational data. Traditional methods using oceano-
graphic instruments are costly, labor-intensive, and unsuit-
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able for large-scale observations due to the submerged nature
of IWs.

A viable solution to this challenge is offered by remote
sensing techniques benefitting from repeated orbits, large
spatial coverage, and cost efficiency (Li et al., 2008; Zhang
et al., 2019). Over the past 20 years, the amount of satel-
lite data has grown exponentially, enabling the construction
of an IW dataset at a larger and longer scale. Active satel-
lite sensors can detect the sea surface manifestations of IWs
because the convergent and divergent motions they induce
modulate the sea surface roughness (Alpers, 1985; Zheng et
al., 2001), a predominant factor affecting the backscattering
intensity of active microwave sensors, such as the synthetic
aperture radar (SAR) (Furtney et al., 2024; Jia et al., 2018;
Zhao et al., 2004). Passive satellite sensors, such as radiome-
ters, can also detect the IW-induced sea surface roughness
signatures by receiving sunlight reflected by the ocean sur-
face (de Macedo et al., 2023; Hu et al., 2021; Sun et al.,
2021). Because passive satellite sensors can provide images
with higher temporal resolution, wider image swath, and free
access, we mainly use passive satellite sensors for the investi-
gation. For instance, since 2000, data with nearly daily global
monitoring at a spatial resolution of 250 m have been pro-
vided by the Moderate-resolution Imaging Spectroradiome-
ter (MODIS) on board the Aqua and Terra satellites, which is
suitable for more in-depth IW investigation since it achieves
the best possible balance between orbital duration and spatial
coverage (de Macedo et al., 2023).

The advent of cloud computing platforms, such as the
Earth Observation (EO) Browser from ESA, Worldview from
NASA, and Google Earth Engine (GEE) from Google, have
streamlined the repetitive and arduous image pre-processing
steps (e.g., radiometric, atmospheric, and geometric correc-
tions). Therefore, the primary challenge in constructing IW
datasets is accurately detecting and obtaining the limited
quasi-linear IW features dispersed across extensive satel-
lite observations. Manually extracting the IW crest can re-
duce errors but significantly increase processing time. Con-
sequently, researchers have developed automated tools to
extract IW features from satellite observations. These tools
typically employ conventional or semi-automated extraction
methods, utilizing basic image processing techniques such
as image segmentation and edge detection (Kurekin et al.,
2020). However, edge detection algorithms often produce
discontinuous edge pixels, which may not represent a com-
plete IW crest. Meanwhile, image segmentation techniques
struggle to establish consistent threshold values and require
additional processing steps to detect boundary pixels.

In recent years, deep convolutional neural networks (DC-
NNs) have showcased their capacity in image pattern clas-
sification and have become a dependable tool for extracting
accurate pixel-level targets from oceanic remote sensing im-
agery (Li et al., 2022, 2020; Liu et al., 2019; Wang and Li,
2023). Numerous machine learning techniques have been put
forth for the automatic extraction of the IW crest from geo-

stationary optical and spaceborne SAR imagery (Bao et al.,
2019; Ma et al., 2023; Tao et al., 2022; Zheng et al., 2021).
However, these studies have only been tested and validated
on individual sensors and limited geographical areas with
few images, making them insufficient for creating a compre-
hensive IW database over a long period. Recently, Zhang et
al. (2023) developed the robust DCNN-based IWE-Net (IW
extraction network) model for automatically extracting IW
signatures from several satellite sensors with different spa-
tial resolutions even in difficult imaging circumstances. Im-
plementing IWE-Net allows for fast and accurate processing
of a large volume of satellite images.

The northern South China Sea (SCS) serves as an excep-
tional natural laboratory for studying IWs of large ampli-
tudes (Alford et al., 2015; Bai et al., 2017, 2014; Cai et al.,
2012; Guo and Chen, 2014; Liang et al., 2019; Liu and Hsu,
2004; Ramp et al., 2022a). IW propagation characteristics,
such as the reflection, refraction, and shoaling process, have
been extensively studied in the literature. In addition to ac-
tive IW activity, the northern SCS is influenced by circula-
tion patterns, eddies, Kuroshio intrusion, and other dynamic
processes, which can affect IW characteristics (Dong et al.,
2016; Liu et al., 2014; Liu and Abernathey, 2023; Liu et
al., 2022, 2016; Xu et al., 2020). Given the multiscale dy-
namics and active IW activity, a long-term IW dataset would
enhance the study of these interactions. The purpose of this
study is to utilize IWE-Net to extract IWs from the complete
set of MODIS images spanning 22 years in the northern SCS.
Following essential post-processing steps, we create a com-
prehensive and accessible IW dataset, providing valuable re-
sources for research on various IW life stages and their inter-
actions with surrounding dynamic processes.

The paper is organized as follows: Sect. 2 describes the
satellite images and the deep learning model; Sect. 3 presents
the results; Sect. 4 highlights the new findings from the con-
structed dataset; and Sect. 6 provides the conclusion and fu-
ture outlooks.

2 Data and methods

2.1 MODIS imagery collection

The MODIS sensors, positioned at approximately 700 km
in Sun-synchronous orbits, are on board NASA’s Terra and
Aqua satellites, launched in December 1999 and May 2002,
respectively. These sensors provide near-daily global cover-
age, capturing imagery over a 2300 km wide swath with spa-
tial resolutions ranging from 250 m to 1 km (bands 1 and 2 at
250 m, bands 3–7 at 500 m, and bands 8–36 at 1 km). MODIS
data processing involves several steps, including data down-
load, geometric correction, radiometric calibration, atmo-
spheric correction, and re-projection.

Through an interactive browsing experience, users can ex-
plore global and full-resolution satellite images stored by
the Global Imagery Browse Services (GIBS) system using
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Figure 1. True-color MODIS image captured by Aqua on 14 July 2021 showing IW signatures around Dongsha Atoll in the northern South
China Sea.

NASA’s Worldview (https://worldview.earthdata.nasa.gov/,
last access: 5 November 2024). The MODIS corrected re-
flectance products (Fig. 1) use level 1B data (calibrated, ge-
olocated radiances) to produce true-color images with three
channels: red from band 1, green from band 4, and blue from
band 3. This process also involves the removal of signif-
icant atmospheric effects, including Rayleigh scattering, to
enhance the image quality. Worldview offers Terra MODIS
products from 25 February 2000 and Aqua products from
4 July 2002. The target area covers 112.40–121.32° E and
18.32–23.19° N. We collected 15 830 MODIS true-color im-
ages from 2000 to 2022 as model input, with 8345 from Terra
and 7485 from Aqua. All these images have a 250 m spatial
resolution and are stored in a GeoTIFF format, which em-
beds geospatial information into image files.

2.2 Deep learning model

The deep learning model IWE-Net (Zhang et al., 2023) is
designed to identify IW locations across a wide range of
satellite imagery, including data from both optical and SAR
sensors operating in Sun-synchronous and geostationary or-
bits with varying spatial resolutions. This model underwent
training and testing using a dataset comprising 1115 satellite
images, encompassing 116 full-swath Environmental Satel-
lite (Envisat) advanced synthetic aperture radar (ASAR) im-
ages, 839 Terra/Aqua MODIS images, and 160 geostationary
Himawari-8 Advanced Himawari Imager (AHI) images. All

these satellite images have clear IW signatures in the SCS,
Sulu Sea, and Celebes Sea. Three major improvements are
incorporated into IWE-Net to increase its resilience and ac-
curacy: squeeze and excitation blocks, online data augmen-
tation, and Matthews correlation coefficient loss function,
which takes into consideration the distinct properties of IW
under various imaging techniques. The structure of the IWE-
Net is presented in Fig. 2.

We employ pixel accuracy, precision, recall, and F1 score
as metrics to evaluate the positional differences between the
IW dataset and the ground truths. Pixel accuracy represents
the proportion of the image’s pixels that were properly classi-
fied. When there is a significant percentage of negative sam-
ples (non-IWs), such as in this task, pixel accuracy often ap-
proaches 1 and exhibits a limited responsiveness. Precision,
recall, and F1 score are suitable metrics to evaluate the clas-
sifier’s output quality when managing uneven classes. Pre-
cision reflects the proportion of the false IW pixels in the
dataset, while recall indicates the proportion of the missed
ones. The F1 score is the harmonic mean of these two met-
rics, balancing precision and recall. The testing set boasts an
overall mean precision of 85.75 %, a recall of 85.67 %, and
an F1 score of 85.71 %, demonstrating the model’s accuracy
in extracting IW signatures.
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Figure 2. IWE-Net model structure with three tailored modifications adapted from Zhang et al. (2023).

2.3 Post-processing

IWE-Net’s performance in the SCS using MODIS images
demonstrates an average precision of 87.90 %, indicating that
around 12 % of the model’s classifications are false posi-
tives. These inaccuracies are primarily due to a small sub-
set of features resembling IWs, such as aircraft trails, linear
and sparse clouds, and surface signals related to shallow wa-
ter topography and plumes. These small-scale misclassifica-
tions, characterized by their varying shapes and orientations
but consistent positions, can be readily eliminated manually,
thus contributing to an overall improvement in the accuracy
of this IW dataset. Since the model-produced IW locations
are stored in longitude and latitude, users can do more post-
processing procedures as needed.

2.4 Data records

This study generated two sets of data: true color
MODIS imagery with observed IWs and corresponding
IW positional information. All data have been archived
and stored on the Zhang and Li (2024) repository at
https://doi.org/10.12157/IOCAS.20240409.001.

2.4.1 MODIS IW imagery

The characteristics of the MODIS IW imagery are listed be-
low.

– The repository is located at
https://doi.org/10.12157/IOCAS.20240409.001 (Zhang
and Li, 2024).

– The data format used is GeoTIFF. The GeoTIFF format
is ideal for storing MODIS imagery of IWs as it embeds
georeferencing information (WGS 84) directly into the
file, ensuring accurate pixel-to-geography mapping. Its
widespread compatibility with GIS platforms and robust
support for large datasets make it a reliable choice for
precise and versatile data handling.

– The file structure is as follows:

◦ All files follow the naming convention of
MODIS_TrueColor_YYYY-MM-DD_SSS.tiff
(where YYYY-MM-DD represents the acquisition
date of the image and SSS represents the satellite,
Terra or Aqua).

◦ The size of the image is 4061 (width) × 2218 (length)
pixels.

◦ The ground pixel resolution is 250 m × 250 m.

◦ The data layers included are the red channel (band 1),
with a data range of [0, 255]; green channel
(band 4), with a data range of [0, 255]; and blue
channel (band 3), with a data range of [0, 255].

◦ Georeferencing information (in the metadata) in-
cludes the projection system, image size, resolu-
tion, etc.
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2.4.2 IW overlay information

The information on the IW overlay is listed below.

– The repository is located at
https://doi.org/10.12157/IOCAS.20240409.001 (Zhang
and Li, 2024).

– The data is in the form of a shapefile. This format ex-
cels in archiving IW position data due to its board com-
patibility with GIS software, enabling seamless inter-
operability and effective data dissemination. It supports
advanced spatial analysis, preserves data integrity, and
efficiently manages large datasets for quick and reliable
access.

– The file structure is as follows:

◦ All files follow the naming convention of
IW_YYYY-MM-DD.shp (where YYYY-MM-
DD represents the date the IWs occurred).

◦ The column names (and data types) are longi-
tude (float, with precision to four decimal places)
and latitude (float, with precision to four decimal
places).

3 IW signature extraction and validation

IWE-Net is an end-to-end model where both input and output
are images. It frames IW location extraction as a binary clas-
sification, with the output image containing only two values:
1 for IW presence and 0 for non-IW features. Figure 3 illus-
trates an example of the output and the corresponding input
image acquired on 28 August 2002. The extraction results
show that most of the IWs are concentrated around Dongsha
Atoll, consistent with the distribution observed in previous
studies. In addition, IWE-Net can also effectively identify
IWs even in darker regions, as shown in the lower-left part
of Fig. 3, far from the sun glint area and barely visible to the
naked eye without image enhancement. It suggests that deep-
learning-based extraction models can potentially exceed the
accuracy of visual interpretation, especially when processing
large datasets. Out of 15 830 input images, 3085 MODIS im-
ages containing IW signatures were identified.

In Fig. 3, white points indicate values predicted to be 1 by
the model, while black points represent predictions of 0, re-
flecting the precision of IW position detection. However, due
to the complex imaging conditions of MODIS in the SCS, no
standard IW products are available, and manual extraction
remains the most accurate method. We created ground-truth
maps based on visual interpretation labels to evaluate the
model’s performance. A new layer was added to the MODIS
image for practical implementation to match the IW refer-
ence image size. IW locations were then marked with white
lines on a black background.

Figure 4 illustrates an example of IW detection using
a MODIS image captured on 20 July 2007 at 02:45 UTC
alongside field observations detailed by Zhao et al. (2012).
The red star marks the locations of the field observations,
while the red arrow indicates the IW observed in these field
studies. According to Zhao et al. (2012), the IW had sev-
eral tens of meters in amplitude and vertical wave-induced
currents exceeding 0.5 m s−1 (see Fig. 3 in their work). This
IW was effectively detected through field observations and
subsequently captured by the Terra MODIS imager approxi-
mately 7 h later. The near-synchronous detection of IWs from
satellite imagery and field observations provides strong val-
idation for the accuracy of the applied model and produced
dataset.

4 Statistical analysis

4.1 IW spatial distributions in the northern SCS

We superimpose the IWE-Net-produced IW crest lines us-
ing MODIS images from 2000 to 2022 in Fig. 5. The spatial
resolution of the superimposed map is 250 m, which is the
same as the input MODIS image. Most IWs are concentrated
around Dongsha Atoll, with four distinct clusters in deep and
shallow ocean areas. More IWs are generally found in conti-
nental shelf regions than in the deep ocean, and their distri-
bution closely aligns with the topographic features.

As shown in Fig. 5, we divided the detected IW locations
into four regions, 1–4, which cover the area from 112.5 to
114.2° E and from 18.5 to 20.9° N, from 114.2 to 118.1° E
and from 19.5 to 22.2° N, from 118.1 to 120.0° E and from
22.0 to 23.0° N, and from 118.1 to 120.5° E and from 19.5
to 22.0° N. The division was based on the geometry of IW
crests, indicating different sources for regions 1 and 3 and
various life stages of IWs before and after IWs propagate
from the deep ocean to the continental shelf areas in regions 2
and 4. IWs in regions 1, 2, and 4 mainly propagate west-
ward, while those in region 3 propagate southward, suggest-
ing different IW generation sources. More IWs are observed
in region 2 than in region 4 because the IWs in region 4 are
primarily solitons. As these solitons move into the shallower
waters of region 2, where the depth is above 1000 m, they
break into multiple IW packets (Li et al., 2013; Ramp et al.,
2022b). In addition, the existence of Dongsha Atoll causes
IW reflection or refraction, complicating the IW characteris-
tic (Jia et al., 2018; Li et al., 2013). The IW wave crests in
region 1 do not always align with IWs in regions 2 and 4,
indicating different IW generation sources or mechanisms.

Underwater topography significantly influences IW evo-
lution. Figure 6 illustrates IW distribution relative to water
depth, indicating a prevalence of IWs in open-ocean areas
with depths under 1000 m. Interestingly, there are more IWs
at depths of 3000 than 2000 m, hinting at an IW evolution
mechanism that warrants further study. In regions 2 and 4
(Fig. 4), the distribution of IW clusters corresponds to spe-
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Figure 3. An example of IWE-Net’s output (b) alongside the original MODIS image (a) was acquired on 28 August 2002. Panels (c) and
(d) show enlarged views of the regions highlighted by the white box in (a) and (b). The red lines in (c) correspond to the white lines in (d).

Figure 4. The Terra MODIS image from July 2007 (left) and corresponding IW locations in the dataset (right). The red star marks the field
observation site from Zhao et al. (2012), and the red arrow points to the IW observed in the field study.
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Figure 5. Overlay of IW detection results from MODIS images (2000–2022). Colors represent the frequency of IW observations at each
location. The map resolution is 250 m, matching the input MODIS image resolution. Two dashed boxes indicate the locations of the enlarged
view (boxes a and b) shown in Fig. 9. Three gaps between different IW clusters and the corresponding spatial distances are labeled with red
annotations.

cific depth characteristics. Region 1 has IWs concentrated
at depths above 600 m despite a total depth range of 100 to
2000 m. In region 2, most IWs occur at depths under 1000 m,
closely following contours between 100 and 1000 m. In re-
gion 2, most IWs occur at depths under 1000 m, closely fol-
lowing contours between 100 and 1000 m. Region 3 sees IWs
primarily at 100 m depths, with their presence decreasing as
they move away from the continental shelf and disappearing
beyond 2000 m. In region 4, IWs are mostly found between
2600 and 3600 m, rarely occurring below 2000 m, reflecting
a strong correlation between IW distribution and water depth.

4.2 IW temporal distributions and monthly variations

Stratification plays a crucial role in IW generation and propa-
gation, with its seasonal variations in the northern SCS caus-
ing changes in IW distribution variation. Figure 7 shows that
IW occurrences peak from May to August, with significantly
fewer detections in other months. This temporal disparity un-
derscores the influence of seasonal changes on the stratifi-
cation and IW activity. Shallow mixed layer depths and in-
tensified stratification during summer months promote IW
activity, enhancing their generation and propagation across
the northern SCS. Notably, in region 3, the distribution is
more concentrated in July, suggesting that IWs in this area
may require more stringent conditions for generation. In win-
ter, intensified monsoon activity leads to deeper and weaker

stratification, reducing the modulation of surface features
and making conditions less favorable for IW generation and
propagation, which results in fewer observed IWs. The four
classified regions exhibit a similar trend to the entire north-
ern SCS. These findings emphasize the seasonal modulation
of stratification and its impact on IW dynamics. They reveal
the complex interplay between atmospheric factors like mon-
soonal circulations and solar radiation in driving seasonal
variations in IW activity within the northern SCS.

4.3 Lunar day influence on IW variations

The IW generation is closely linked to the astronomical tide,
with tidal magnitude directly influencing the IW scale. As-
tronomical tides follow a fortnightly cycle, peaking on the
1st and 15th lunar days during spring tides. As a result, IW
characteristics display fortnightly variations. Figure 8 shows
these variations relative to the lunar day, revealing a typical
double-peak distribution for IWs in the northern SCS. Peak
IW occurrences occur approximately 4 d after the spring tide
as it takes about 4 d for IWs to travel from the generation
site, Luzon Strait, to the observational continental shelf re-
gions before dissipating.

All four regions display a double-peak pattern linked to
tidal dynamics. Regions 2 and 4 are the main channels for
IW in the northern SCS, recording the highest number of IW
observation days – 446 and 240 d, respectively. In contrast,
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Figure 6. Histograms showing the number of IW pixels versus water depth for (a) the entire northern SCS (orange) and (b–e) the four
regions highlighted in Fig. 4 (blue).

region 3 exhibits the fewest IW observation days, with a max-
imum of just 35 d, suggesting that the generation and propa-
gation of IWs are less favorable in this region. Region 4 ex-
hibits sharper and more defined peaks due to the dominance
of IW solitons, whereas region 2 shows broader peaks typi-
cal of IW packet behavior. The shallower water in region 2

slows IW propagation speed compared to region 4, resulting
in the wider peaks observed.
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Figure 7. Monthly distribution histograms of IW days for (a) the entire northern SCS (orange) and (b–e) the four regions (blue).

4.4 IW quiescent zones

Figure 5 shows two distinct blank areas in regions 1 and 2
within IW clusters. One area in region 2 covers the well-
studied Dongsha Atoll, while the less-known area behind it
has received minimal attention in previous research. These
blank spaces signify limited or absent IW activity, delineat-

ing IW quiescent zones. Figure 9 reveals the presence of a
chain of small underwater ridges situated in the northwest
direction of Dongsha Atoll. As two black arrows indicate,
these ridges correspond to a series of IW quiescent zones.
The unique underwater topography contributes to forming
IW quiescent zones within the northern SCS.
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Figure 8. Statistical histograms of IW pixel count vs. lunar day for (a) the entire northern SCS (orange) and (b–e) the four regions (blue).

The IW quiescent zones adjacent to Dongsha Atoll extend
approximately 110 km towards the continental shelf area,
with water depths above 100 m. Conversely, the IW quiescent
zones in region 1 are comparatively smaller, characterized by
conspicuous underwater ridges aligned along the direction
of IW propagation. These underwater ridges segregate IW
crests, with subsequent reconnection occurring at 112.7° E.

IWs exhibit a widespread distribution across the north-
ern SCS, yet noticeable gaps (gaps 1–3) between distinct IW

clusters are evident. Figure 5 shows two IW gap zones, gaps 2
and 3, in regions 2 and 4, separated by 31.7 and 63.6 km. The
occurrence of gap 2 and gap 3 is due to the solitonic nature
of IWs, which have fast phase speeds of over 3.0 m s−1. The
fast propagation of IWs and the observation gaps between
two daily MODIS snapshots likely cause gaps 2 and 3. Ad-
ditionally, gap 1, a 62.6 km gap, is clearly observed between
regions 1 and 2, where the differing orientations of IW wave
crests suggest distinct IW generation sources. Notably, IW
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Figure 9. IW quiescent zones (black arrows) within IW clusters in region 2 (a) and region 1 (b). The locations correspond to two dashed
boxes in Fig. 5.

crests show discontinuous features between regions 2 and 3,
coinciding with abrupt underwater topography and small un-
derwater ridges. As a result, IWs originating from different
sources undergo separate evolution processes and fail to con-
nect.

5 Data availability

The internal wave dataset can be freely downloaded from
https://doi.org/10.12157/IOCAS.20240409.001 (Zhang and
Li, 2024).

6 Conclusion and outlooks

In this study, we have constructed a comprehensive oceanic
IW dataset spanning 2000 to 2022 by applying the deep-
learning-based IWE-Net model to MODIS satellite imagery.
The model accurately extracts IW locations, providing pre-
cise longitude and latitude coordinates of IS crests, which
were then compiled into the shapefile format for easy access
and analysis.

The generated IW dataset potentially advances our under-
standing of IW characteristics in the northern SCS. Primarily,
we gain insights into the region’s prevalent locations and sea-
sonal variations in IW activity by analyzing the spatial and
temporal distributions of IWs based on the collected MODIS
images. This dataset also provides valuable information for
studying the interactions between IWs and mesoscale ocean
phenomena, such as eddies, facilitating further investigations
into ocean dynamics (Li et al., 2016; Xie et al., 2016). Cy-
clonic and anticyclonic mesoscale eddies can cause vertical
fluctuations in ocean temperature isopleths and generate ac-
companying currents, influencing IW characteristics such as

amplitude and propagation direction. We can examine IW
characteristic changes after passing through different eddy
types by analyzing the IW spatial and temporal information
provided in this dataset. Additionally, other dynamic ocean
phenomena, such as the intrusion of the Kuroshio Current,
also affect the generation and propagation of IWs in the SCS.
Analyzing the statistical characteristics of IWs across differ-
ent seasons and years can enhance understanding of how dy-
namic phenomena like the Kuroshio Current affect the IW
behavior, thereby advancing the study of multiscale dynamic
interactions in the SCS.

Moreover, the availability of this extensive IW dataset
is crucial for advancing artificial intelligence oceanography
studies (Li et al., 2022; Wang and Li, 2023). It serves as
valuable ground-truth data for validating IW generation or
forecast models, allowing researchers to assess the perfor-
mance of AI models by comparing their predictions with the
IW locations in the dataset. The dataset can also be used to
validate numerical simulations (Gong et al., 2023), enabling
researchers to refine and improve these numerical models
based on observed IW distributions. It can also serve as a
benchmark for collaborative observations of IWs in the SCS
with other satellite sensors or field campaigns, thereby facil-
itating the construction of matched datasets to support IW
research with artificial intelligence technologies.

It is important to recognize that the constructed IW dataset
has two main sources of error. First, while optical imagery
can capture most IW features, weather conditions such as
clouds and rain can obstruct MODIS imagery, preventing the
detection of IWs even when they are present. Second, the
uneven coverage and gaps between polar-orbiting satellites’
orbits can lead to missed IW detections in the model’s re-
sults. Future efforts should consider adding additional satel-
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lite sensors, especially SAR imagery, to improve the compre-
hensiveness of the IW dataset.

Overall, the IW dataset presented in this paper is a valu-
able resource for oceanography, aiding in studying IW dy-
namics, validating AI models, and refining numerical simu-
lations. This dataset is expected to stimulate further research
and advancements in understanding the complex dynamics of
oceanic IWs. Mooring observations offer vertical structural
information on IWs. By integrating this dataset with mooring
observation data and applying artificial intelligence technol-
ogy, researchers can extend from two-dimensional sea sur-
face information to a three-dimensional understanding of IW
structure.
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