Articles | Volume 16, issue 10
https://doi.org/10.5194/essd-16-4931-2024
https://doi.org/10.5194/essd-16-4931-2024
Data description paper
 | 
29 Oct 2024
Data description paper |  | 29 Oct 2024

Mapping sugarcane globally at 10 m resolution using Global Ecosystem Dynamics Investigation (GEDI) and Sentinel-2

Stefania Di Tommaso, Sherrie Wang, Rob Strey, and David B. Lobell

Related subject area

Domain: ESSD – Land | Subject: Land Cover and Land Use
Annual maps of forest and evergreen forest in the contiguous United States during 2015–2017 from analyses of PALSAR-2 and Landsat images
Jie Wang, Xiangming Xiao, Yuanwei Qin, Jinwei Dong, Geli Zhang, Xuebin Yang, Xiaocui Wu, Chandrashekhar Biradar, and Yang Hu
Earth Syst. Sci. Data, 16, 4619–4639, https://doi.org/10.5194/essd-16-4619-2024,https://doi.org/10.5194/essd-16-4619-2024, 2024
Short summary
Monsoon Asia Rice Calendar (MARC): a gridded rice calendar in monsoon Asia based on Sentinel-1 and Sentinel-2 images
Xin Zhao, Kazuya Nishina, Haruka Izumisawa, Yuji Masutomi, Seima Osako, and Shuhei Yamamoto
Earth Syst. Sci. Data, 16, 3893–3911, https://doi.org/10.5194/essd-16-3893-2024,https://doi.org/10.5194/essd-16-3893-2024, 2024
Short summary
A 100 m gridded population dataset of China's seventh census using ensemble learning and big geospatial data
Yuehong Chen, Congcong Xu, Yong Ge, Xiaoxiang Zhang, and Ya'nan Zhou
Earth Syst. Sci. Data, 16, 3705–3718, https://doi.org/10.5194/essd-16-3705-2024,https://doi.org/10.5194/essd-16-3705-2024, 2024
Short summary
Annual time-series 1 km maps of crop area and types in the conterminous US (CropAT-US): cropping diversity changes during 1850–2021
Shuchao Ye, Peiyu Cao, and Chaoqun Lu
Earth Syst. Sci. Data, 16, 3453–3470, https://doi.org/10.5194/essd-16-3453-2024,https://doi.org/10.5194/essd-16-3453-2024, 2024
Short summary
Enhancing High-Resolution Forest Stand Mean Height Mapping in China through an Individual Tree-Based Approach with Close-Range LiDAR Data
Yuling Chen, Haitao Yang, Zekun Yang, Qiuli Yang, Weiyan Liu, Guoran Huang, Yu Ren, Kai Cheng, Tianyu Xiang, Mengxi Chen, Danyang Lin, Zhiyong Qi, Jiachen Xu, Yixuan Zhang, Guangcai Xu, and Qinghua Guo
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-274,https://doi.org/10.5194/essd-2024-274, 2024
Revised manuscript accepted for ESSD
Short summary

Cited articles

Agriculture and Agri-Food Canada: Annual Crop Inventory, https://open.canada.ca/data/en/dataset/ba2645d5-4458-414d-b196-6303ac06c1c9, last access: 26 February 2024. a
Agri-Food And Fisheries Information Service: Mexico Statistical Yearbook of Agricultural Production, https://www.gob.mx/siap, last access: 8 February 2024. a
Allan, H. L., van de Merwe, J. P., Finlayson, K. A., O'Brien, J. W., Mueller, J. F., and Leusch, F. D. L.: Analysis of sugarcane herbicides in marine turtle nesting areas and assessment of risk using in vitro toxicity assays, Chemosphere, 185, 656–664, https://doi.org/10.1016/j.chemosphere.2017.07.029, 2017. a
Australian Bureau of Statistics: Agricultural Commodities, Australia, https://www.abs.gov.au, last access: 8 February 2024. a
Badan Pusat Statistik (BPS): Indonesia Plantation Area by Province 2021, https://www.bps.go.id/, last access: 15 February 2024. a
Download
Short summary
Sugarcane plays a vital role in food, biofuel, and farmer income globally, yet its cultivation faces numerous social and environmental challenges. Despite its significance, accurate mapping remains limited. Our study addresses this gap by introducing a novel 10 m global dataset of sugarcane maps spanning 2019–2022. Comparisons with field data, pre-existing maps, and official government statistics all indicate the high precision and high recall of our maps.
Altmetrics
Final-revised paper
Preprint