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Abstract. Sugarcane is an important source of food, biofuel, and farmer income in many countries. At the
same time, sugarcane is implicated in many social and environmental challenges, including water scarcity and
nutrient pollution. Currently, few of the top sugar-producing countries generate reliable maps of where sugar-
cane is cultivated. To fill this gap, we introduce a dataset of detailed sugarcane maps for the top 13 producing
countries in the world, comprising nearly 90 % of global production. Maps were generated for the 2019–2022
period by combining data from Global Ecosystem Dynamics Investigation (GEDI) and Sentinel-2 (S2). GEDI
data were used to provide training data on where tall and short crops were growing each month, while S2 fea-
tures were used to map tall crops for all cropland pixels each month. Sugarcane was then identified by leveraging
the fact that, among all non-tree species grown in cropland areas, sugarcane is typically tall for the largest frac-
tion of time. Comparisons with field data, pre-existing maps, and official government statistics all indicated
high precision and high recall of our maps. Agreement with field data at the pixel level exceeded 80 % in most
countries, and subnational sugarcane areas from our maps were consistent with government statistics. Excep-
tions appeared mainly due to problems in underlying cropland masks or due to under-reporting of sugarcane
area by governments. The final maps should be useful in studying the various impacts of sugarcane cultiva-
tion and producing maps of related outcomes such as sugarcane yields. The dataset is available on Zenodo at
https://doi.org/10.5281/zenodo.10871164 (Di Tommaso et al., 2024a).

1 Introduction

Sugarcane cultivation represents an important economic ac-
tivity in many regions of the world, and it serves as a sub-
stantial source of food, beverage, and biofuel production.
Roughly one-quarter of all ethanol production worldwide
comes from sugarcane (OECD and FAO, 2023), with many
countries aiming to rapidly increase sugar ethanol production
to meet energy independence and climate mitigation goals.
For example, the Organisation for Economic Co-operation
and Development (OECD) and the Food and Agricultural Or-

ganization (FAO) project that ethanol demand over the next
decade will increase by 37 % in Brazil and 107 % in India
(OECD and FAO, 2023), both countries where sugarcane is
the primary feedstock. Moreover, millions of livelihoods are
derived from sugarcane production and processing activities,
with some estimates putting the total number of livelihoods
dependent on sugarcane as high as 100 million (Jenkins et al.,
2015).

Despite its contribution to food and energy security and
economic growth, sugarcane cultivation has also been asso-
ciated with myriad challenges, including but not limited to
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large consumption of available freshwater and fertile crop-
land (Lee et al., 2020), pollution of soils and ecosystems with
nutrients and other chemical runoff (Allan et al., 2017), and
exploitative labor conditions (El Chami et al., 2020). In ad-
dition, sugarcane receives a disproportionate amount of pol-
icy support in many countries through mechanisms such as
market price support, ethanol mandates, and assistance to
sugar mills. According to recent OECD estimates, sugar sub-
sidies represent more than 20 % of farm receipts globally,
higher than any other food commodity (OECD, 2023). In
some countries, this share is much higher, such as Mexico
(37 %), the United States (48 %), Indonesia (55 %), and the
Philippines (62 %) (OECD, 2023).

Despite the prominent role of sugarcane in many
economies and the key support from government, few coun-
tries provide timely information on the status and dynam-
ics of sugar cultivation. Such information could be helpful in
studying the full effects of sugar cultivation on the health of
both humans and the environment, thus informing public pol-
icy. Better data could also help aid sugar producers in their
attempts to optimize productivity and profits, e.g., by helping
to better understand factors that determine yield variation.

In an effort to fill the significant data gaps relating to sug-
arcane cultivation, we present here an approach and dataset
that uses satellite remote sensing to map precise locations of
sugarcane canopies around the world. Remote sensing has
long been used to map areas of individual crops, with sev-
eral countries producing annual, publicly available maps of
crop types based on satellite data, such as the Cropland Data
Layer (CDL) in the United States (Boryan et al., 2011) and
the Annual Crop Inventory in Canada (Agriculture and Agri-
Food Canada, 2024). Yet these maps have historically re-
quired ground data to calibrate the satellite models each year,
which precludes their use in countries without a concerted
government effort to maintain ground data collection.

Rather than rely on ground data, our approach relies on
two features of sugarcane that together make it a unique crop
throughout most of the regions where it is grown – it is much
taller than most crops (often exceeding 3 m in height) and
grows across multiple years. In recent work (Di Tommaso
et al., 2021, 2023), we demonstrated the ability of lidar mea-
surements acquired by Global Ecosystem Dynamics Investi-
gation (GEDI) (Dubayah et al., 2020) to identify tall canopies
within agricultural landscapes. Here we extend that work to
map tall crops in each month over a 4-year period, and we
then identify sugarcane fields as those that are tall for a suffi-
ciently large fraction of the study period. We find that this ap-
proach is able to map sugarcane with impressive detail across
a wide number of countries, using both government statis-
tics and independent maps in some countries to evaluate our
product.

2 Datasets

The datasets utilized in this study include the following:

1. Global Ecosystem Dynamics Investigation and Sentinel-
2 sensors. Data from the Global Ecosystem Dynamics
Investigation (GEDI) and Sentinel-2 (S2) satellite sen-
sors were employed for data acquisition. Pre-processing
steps were taken to prepare these datasets for analysis.

2. Land cover products. Various land cover products were
employed to delineate the cropped areas within the
study area.

3. Calibration and validation datasets. Specific datasets
were utilized for the calibration and validation of the
sugarcane maps generated in this study.

2.1 GEDI data

GEDI, a sensor mounted on the International Space Sta-
tion (ISS), captures lidar waveforms within the latitudinal
range of 51.6° N to 51.6° S to analyze the Earth’s surface
in three dimensions. It is the first spaceborne lidar instru-
ment specifically designed for assessing vegetation structure
(Dubayah et al., 2020). Equipped with three lasers emitting
near-infrared light at 1064 nm wavelength, GEDI features
two full-power lasers along with a third laser with its light
divided into two beams, generating a total of four beams.
Through across-track optical dithering, each beam creates
eight ground tracks (comprising four full-power tracks and
four cover tracks) spaced 600 m apart on the ground. The
shots produced have an average footprint diameter of 25 m
and are separated by 60 m along track.

For this study, we used the GEDI dataset level 2A (L2A)
and level 2B (L2B) from April 2019 to December 2022,
available in GEE data catalog.

The level-2 data offer insights into the vertical canopy
distribution derived from waveform returns at the footprint
level. Our primary dataset was GEDI’s L2A Geolocated El-
evation and Height Metrics product, primarily comprising
relative height (RH) metrics. These RH metrics collectively
characterize the waveform data acquired by GEDI, providing
information about the height at which a specific percentage
of energy is returned relative to the ground. RH values are
reported at 1 % intervals, resulting in a total of 101 metrics.
Additionally, we used the L2B dataset to extract the GEDI
view angle at each shot location, specifically using the “local
beam elevation” property. This information was used to filter
out GEDI shots with a view angle below 1.51 rad, approxi-
mately 86.5°, to avoid classification errors, as recommended
in Di Tommaso et al. (2023).

The GEDI L2A dataset
(LARSE/GEDI/GEDI02_A_002_MONTHLY) and L2B
dataset (LARSE/GEDI/GEDI02_B_002_MONTHLY)
represent a rasterized version of the original GEDI products,
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where each GEDI shot footprint is depicted by a 25 m pixel
(Healey et al., 2020). This rasterization process, however,
may introduce an additional geolocation error beyond the
initial GEDI shot error. The raster images are structured as
monthly composites of individual orbits conducted during
the respective month (refer to Fig. 1). Within these raster
images, RH values, along with quality flags and metadata,
are preserved as raster bands.

2.2 Sentinel-2

We employed the S2 surface reflectance harmonized col-
lection, which is readily available in the Google Earth En-
gine (GEE) platform. Clouds were filtered out using the
S2 Cloud Probability dataset provided by Sentinel Hub in
GEE, setting the maximum cloud threshold to 65 %. Utiliz-
ing this dataset, we generated yearly (January to December)
time series for each pixel. These time series were then uti-
lized to compute harmonic features, with an order of n= 3
and ω = 1, for a combination of bands including NIR (near-
Infrared), SWIR1 (shortwave infrared 1), SWIR2 (shortwave
infrared 2), RDED4 (red edge band 4), and GCVI (Green
Chlorophyll Vegetation Index) (Gitelson et al., 2005). This
approach, proven successful in previous studies, has demon-
strated efficacy in tasks related to crop type classification.
GCVI is computed as

GCVI= NIR/Green− 1. (1)

For each spectral band or vegetation index f (t), the harmonic
regression takes the form

f (t)= c+
n∑
k=1

[ak cos(2πωkt)+ bk sin(2πωkt)] (2)

where ak represents cosine coefficients, bk represents sine
coefficients, and c is the intercept term. The independent
variable t represents the time an image is taken within a
year expressed as a fraction between 0 and 1. The number
of harmonic terms n and the periodicity of the harmonic ba-
sis controlled by ω are hyperparameters of the regression.
This resulted in seven features per band, for a total of 35
coefficients. These estimated values represent the S2-based
harmonic features used in the subsequent classification pro-
cess.

2.3 Crop mask

Despite the abundance of global and regional cropland maps,
considerable uncertainties and discrepancies persist regard-
ing both the total area and spatial distribution. To iden-
tify cropped areas comprehensively, we conducted an anal-
ysis encompassing all global land cover products detailed in
Kerner et al. (2024). Through visual inspection and subse-
quent examination of the datasets outlined later, we observed
that relying solely on a single product often resulted in the

underestimation of cropland area in certain regions, while
another product exhibited similar limitations elsewhere. Rec-
ognizing the inherent risk of inaccurate crop masks leading
to either overestimation or underestimation, we opted to en-
sure a more robust global coverage by integrating informa-
tion from three distinct global land cover products. We de-
fined a pixel as cropland if any of the three maps classified
it as such. This approach, involving the combination of these
datasets, enabled us to enhance the completeness of cropland
areas worldwide.

The three global products are the following: the Euro-
pean Space Agency (ESA) WorldCover 2020 (Zanaga et al.,
2021), ESRI 2020 global land use land cover (Karra et al.,
2021), and the GLAD 2019 global cropland maps (Potapov
et al., 2022).

A visual example of the three crop masks is provided for
Brazil in Fig. 2.

The ESA and ESRI 2020 products provide a global land
cover map for 2020 at 10 m resolution, the former based
on Sentinel-1 and Sentinel-2 data and the latter based on
Sentinel-2 alone. Maps are available in the Google Earth
Engine (GEE) (Gorelick et al., 2017) official and commu-
nity data catalogs, respectively (Roy et al., 2024). The 2019
GLAD map provides binary cropland classifications at 30 m.
Classification is performed using bagged decision trees with
features extracted from time series of Landsat analysis ready
data (ARD).

Divergences exist among these land cover and land use
products regarding the categorization of croplands, partic-
ularly concerning the inclusion of tree crops. ESA World-
Cover encountered issues such as underestimation of crop-
land areas in Brazil and Africa, particularly in fragmented
regions with mixed land covers. Contrarily, the WorldCover
2020 product identified more tree cover, representing or-
chards, compared to other ESRI products.

ESA’s definition of cropland encompasses land that is
covered with annual crops sowed and harvested at least
once within 12 months after the sowing date. This crop-
land typically produces an herbaceous cover and may in-
clude some tree or woody vegetation but excludes perennial
woody crops. ESRI defines croplands as human-planted ce-
reals, grasses, and crops not at tree height, including rice pad-
dies and irrigated agriculture, while GLAD excludes peren-
nial woody crops and permanent pastures from its definition,
focusing on herbaceous crops for human consumption, for-
age, and biofuel.

2.4 Calibration and validation datasets

Below we describe the datasets used for calibrating and val-
idating the sugarcane maps. The data pertain to the main
sugarcane-producing countries according to the Food and
Agriculture Organization (FAO) (Food and Agriculture Or-
ganization’s Statistical Database (FAOSTAT), 2024), as pre-
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Figure 1. GEDI shots over São Paulo, the main sugarcane-producing state in Brazil. Top panels show GEDI coverage in three different
months (March, June, and September) over the 4 years of data. Shots represented by a 25 m pixel are color-coded according to the short/tall
classification by the GEDI model. Gaps in GEDI shot orbits may be attributed to quality issues. For instance, in June 2020, a significant
portion of shots experienced low view angles and were subsequently filtered out, resulting in sparser GEDI coverage during this period, as
illustrated in the top middle panel. Additionally, in this region, there appears to be a higher proportion of shots classified as tall around the
beginning of the year compared to later months. The bottom middle panel shows a zoomed-in view at field level (© Google Earth Engine).
GCVI S2 time series from 2019 to 2022 over sugarcane (on the left) and non-sugarcane fields (on the right), with the year 2020 highlighted
in gray shading. GEDI accurately identifies tall fields that are growing sugarcane in March (A, B, C) and short fields that are not growing
sugarcane in 2020 (D, E, F).

sented in Table 1. Within each section, the countries are in
decreasing order of sugarcane production.

The list includes field-level labels, raster datasets, and
government-reported sugarcane area data at administrative
levels 2 or 3. The specific sources for these datasets may
vary depending on the region and the year of data collec-
tion. A summary of all data available by region is provided
in Table 2.

2.4.1 Point-level data

The WorldCereal “sv_croptype_validations” dataset (Lesiv
et al., 2023) includes observations of crop types in 2021 and
2022 at global scale along with their coordinates. This dataset
was compiled and released by WorldCereal through a metic-
ulous process involving expert manual labeling. Utilizing an
IIASA (International Institute for Applied Systems Analy-
sis) tool known as “Street Imagery validation” (accessible at
https://svweb.cloud.geo-wiki.org/, last access: March 2024),
contributors were able to examine street-level images, in-
cluding those from platforms like Google Street View and
Mapillary, and accurately identify crop types. It is important
to note that this dataset is entirely distinct and separate from

existing maps and reference datasets, providing an indepen-
dent source of valuable information for agricultural analysis.
The dataset contains labels for various crop types, including
sugarcane, for several countries of interest. In Brazil, sugar-
cane is the most prevalent crop label, accounting for 1600
labels, followed by maize (∼ 910) and soybean (∼ 550). In
Mexico, crop labels alongside sugarcane (∼ 50 labels) in-
clude maize (∼ 40). Australia’s crop distribution includes
wheat (∼ 120 labels) and sugarcane (∼ 20). Meanwhile, in
the Philippines, rice (∼ 80 labels) is prevalent alongside sug-
arcane (∼ 70).

Other countries represented in the WorldCereal dataset
with a smaller number of samples include China, Colombia,
India, Pakistan, South Africa, and Thailand.

In India, we accessed crop type labels crowdsourced from
farmers via Plantix, a free Android application developed
by Progressive Environmental and Agricultural Technologies
(PEAT). The Plantix app is used by farmers who upload pho-
tos of their crops to seek assistance in diagnosing and treat-
ing crop diseases. As part of the disease diagnosis process,
PEAT uses a convolutional neural network to assign crop la-
bels based on the submitted photos. We used labels for the
years 2020 and 2021 in the Indian states of Maharashtra and
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Table 1. Main sugarcane-producing countries according to Food and Agriculture Organization’s Statistical Database (FAOSTAT) (2024).

Rank Country Production Production Area harvested Area harvested
(×106 t) (%) (×106 ha) (%)

1 Brazil 724 37.7 9.9 37.8
2 India 439 22.9 5.2 19.8
3 China 103 5.4 1.3 5
4 Thailand 92 4.8 1.5 5.8
5 Pakistan 87 4.6 1.3 5.1
6 Mexico 55 2.9 0.8 3.1
7 Colombia 35 1.8 0.4 1.4
8 Indonesia 32 1.7 0.5 1.9
9 USA 31 1.6 0.4 1.4
10 Australia 28 1.5 0.3 1.3
11 Guatemala 26 1.4 0.2 0.9
12 Philippines 23 1.2 0.4 1.5
13 South Africa 17 0.9 0.3 1

Rest of the world 224 11.7 3.6 13.9

Table 2. Summary of all available datasets by country and data type. The datasets used for calibrating our method are marked with an
asterisk. Note that GSV represents Google Street View, and the WorldCereal dataset refers to the years 2021–2022.

Country Raster Field points Government statistics

Brazil (binary) 2018–2019 WorldCereal* 2022
India Plantix 2020–2021*, WorldCereal 2019–2020
China (binary) 2019–2020* WorldCereal 2022
Thailand GSV points 2022*, WorldCereal 2022
Pakistan WorldCereal 2021–2022
Mexico WorldCereal* 2022
Colombia WorldCereal 2019
Indonesia 2021
USA CDL 2019–2022* 2018
Australia WorldCereal* 2020–2021
Guatemala 2003
Philippines WorldCereal* 2021
South Africa SANLC 2020* SANLC points 2020, WorldCereal 2017

Uttar Pradesh (UP), where the accuracy of Plantix crop type
labels exceeds 90 % for most major crops. Data have been
cleaned to remove location inaccuracy (keeping only submis-
sions with GPS accuracy better than 10 m), as suggested by
previous work by Wang et al. (2020). Additionally, to miti-
gate any bias, Plantix labels were sampled to match the pro-
portion of government-reported crop areas by crop, as certain
labels, such as those for vegetables, were more prevalent due
to their susceptibility to diseases.

In Thailand, we accessed crop type labels obtained with
Google Street View (GSV) (Laguarta et al., 2023) for the
year 2022. These labels were generated by combining deep
learning and street view imagery over Thailand, requiring
minimal manual labeling. Labels include sugarcane, cassava,
maize, rice, and an “other” crop class. To ensure the labels
were representative of the landscape, they were sampled in
alignment with government-reported crop areas.

In South Africa, independent reference points, used for
validating the South African National Land Cover 2020
(SANLC 2020) map, are provided by the Department of
Forestry, Fisheries and the Environment (South Africa –
DFFE, 2023).

2.4.2 Raster data

In Brazil and China, sugarcane masks at 30 m resolution were
recently published by Zheng et al. (2022a) and Zheng et al.
(2022b). These maps were generated using a time-weighted
dynamic time warping method. In Brazil, maps are available
for 14 states for 2016–2019, with a reported overall accuracy
for the year 2018 of 91 %, and user’s and producer’s accura-
cies reaching 94 % and 87 %, respectively. In China, maps are
available for 2016–2020 for four southern provinces, which
map over 95 % of the sugarcane cultivation areas in China:
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Figure 2. An example of difference in crop masks in Brazil
(© Google Earth Engine). Dotted ovals highlight areas of disagree-
ment between maps. The ESA crop mask exhibits omissions in
cropland detection in northeastern Brazil, whereas ESRI and GLAD
capture more cropland in this region. ESRI tends to map cropland
too much (often including orchards), while GLAD exhibits a more
conservative approach, albeit missing some cropland in areas where
both ESA and ESRI map it.

Guangxi (64 %), Yunnan (18 %), Guangdong (12 %), and
Hainan (1 %) provinces. The reported overall accuracy for
the year 2019 is 92.7 %, with reported user’s and producer’s
accuracies of 85.6 % and 86.7 %.

The Cropland Data Layer (CDL) (Boryan et al., 2011)
produced by the United States Department of Agriculture
(USDA) provides yearly crop type maps across the conter-
minous USA at 30 m spatial resolution. Maps are based on
Landsat and other satellite imagery using training data from
the Farm Service Agency (FSA). Sugarcane plantations in
the contiguous United States are primarily concentrated in
three states: Florida, Louisiana, and Texas. Accuracy of CDL
on FSA labels are available in the CDL metadata, with preci-
sion and recall for sugarcane in 2019–2022 exceeding 72 %,
94 %, and 93 % in Texas, Florida, and Louisiana, respec-
tively.

The South African National Land Cover 2020 (SANLC
2020) – recently published by the Department of Forestry,
Fisheries and the Environment (South Africa – DFFE, 2023)

– was generated at a 20 m resolution utilizing S2 imagery.
The overall accuracy of this land cover classification is
85.5 %. The accuracy for the sugarcane classes surpasses
95 % for user’s accuracy and 82 % for producer’s accuracy.

2.4.3 Government statistics

The Brazilian Institute of Geography and Statistics (IBGE)
(Instituto Brasileiro de Geografia e Estatística, 2023) offers
comprehensive data on various agricultural metrics, includ-
ing the planted and harvested areas, production volumes, and
average yields, on an annual basis for agricultural commodi-
ties. In our research, we utilized the municipality-level (ad-
min 2) data for sugarcane planted and harvested areas for the
latest available year, 2022.

In India, the Ministry Of Agriculture & Farmers Wel-
fare releases crop production statistics (Indian Department
of Agriculture, 2023) at the district level (admin level 2). For
our analysis, we incorporated district-level crop area statis-
tics for the most recent available year, which is the 2019–
2020 growing season.

In China, the statistical yearbooks serve as annual publi-
cations providing comprehensive insights into the economic
and social development of each province. These publica-
tions encompass data from the previous year, offering statis-
tics at both the provincial level and the local levels of cities
(level 2). For our analysis, we obtained sugarcane sown
area data from the statistical yearbook for the 2022 growing
season for the four sugarcane producing provinces: Guang-
dong (Guangdong Provincial Bureau of Statistics, 2024),
Guangxi (Statistics Bureau of Guangxi Zhuang Autonomous
Region, 2024), Yunnan (Yunnan Provincial Bureau of Statis-
tics, 2024), and Hainan (Hainan Provincial Bureau of Statis-
tics, 2024).

The agricultural statistics of Thailand for the year 2022, in-
cluding data on sugarcane harvested area, were sourced from
the relevant government authority at province level (admin 1)
(Office of Agricultural Economics, 2024).

The district-wise statistics on crop area and production for
the growing season 2021–2022 in Pakistan were obtained
from the government of Pakistan at district level (admin 3)
(Ministry of National Food Security and Research, 2023).
Due to uncertainties regarding district borders over time, the
data were processed and aggregated at admin level 2 to en-
sure consistency and accuracy in the analysis.

The annual agricultural statistics provided by the Govern-
ment of Mexico (Agri-Food And Fisheries Information Ser-
vice, 2024) encompass a wide range of information, includ-
ing data on planted area, harvested area, damaged area, av-
erage rural prices, volume, and value of production for both
cyclical and perennial crops, categorized by water modality.
These reports cover all 32 federal entities of the country, with
detailed breakdowns at the national, state, district, and mu-
nicipal levels (admin 2). For our analysis, we specifically ex-
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tracted sugarcane area data at the municipality level for the
year 2022.

The Colombian National Agricultural and Livestock Sur-
vey conducted in 2019 (National Administrative Statistics
Department, 2024) provides data on sugarcane planted area,
production, and yield by region (admin 1) for the year 2019.

Statistics Indonesia (Badan Pusat Statistik (BPS), 2024)
serves as the official statistical agency of the Indonesian
government, tasked with collecting, processing, analyzing,
and disseminating statistical data and information through-
out the nation. It provides comprehensive statistics on plan-
tation area by province (admin 1), which offers insights into
the distribution of agricultural land across different regions
of Indonesia. Specifically, the dataset comprises the area of
annual crops such as oil palm, coconut, rubber, coffee, co-
coa, and tea, representing the planted area at the end of the
year. Additionally, the dataset includes information on sea-
sonal crops like tobacco and sugarcane, with data reported
as the monthly cumulative harvested area. The most recent
report refers to the year 2021.

In the United States, county-level (admin 2) statistics on
sugarcane area are available from the United States Depart-
ment of Agriculture’s National Agricultural Statistics Ser-
vice (NASS) (USDA Natlional Agricultural Statistics Ser-
vice, 2024). We accessed the most recent data for counties
in the key sugarcane-producing states of Florida, Louisiana,
and Texas for the year 2018 using the NASS Quick Stats
database.

Statistics on the production of agricultural commodities,
encompassing cereal and broadacre crops, fruit and vegeta-
bles, and livestock on Australian farms, are provided by
the Australian government (Australian Bureau of Statistics,
2024). These statistics are made available on a yearly basis,
with the most recent data available for the 2020–2021 grow-
ing season (at statistical areas level 2).

In Guatemala, data on sugarcane production by depart-
ment (admin 1) for the agricultural year 2002/2003 was ob-
tained from the IV National Agricultural Census (Guatemala
Nationl Institue of Statistics, 2024). Sugarcane accounted for
28.4 % of the total area cultivated with permanent and semi-
permanent crops. The department of Escuintla recorded the
highest sugarcane production for the census year, comprising
87.7 % of the total production.

The Philippine Statistics Authority (PSA) (Philippine
Statistics Authority, 2024) releases annual provincial statis-
tics on agriculture and fisheries. These statistics include the
total area of sugarcane and the percent distribution of sug-
arcane production by region. Although direct access to sug-
arcane area by region is not available, an approximation can
be made by assuming that the percentage of production falls
within the same range as the percentage of area by region.
The most recent year for which data are available is 2021.

The statistics department of South Africa (Statistics De-
partment – South Africa, 2024) conducts the Census of Com-
mercial Agriculture (CoCA 2017), which publishes results

at the municipal level (admin 3). The primary objective of
this survey is to gather financial, production, employment,
and related information pertaining to the commercial agri-
culture industry in South Africa. It is important to note that
CoCA 2017 only covers enterprises registered for value-
added tax (VAT). Consequently, the census does not include
smallholder farming. Instead, it utilizes VAT records as a
sampling frame, thereby excluding entities that are non-VAT
registered. It is noteworthy that commercial farmers account
for 80 % of the country’s agricultural value.

3 Methods

3.1 Sugarcane phenology

Sugarcane is primarily grown in tropical and subtropical re-
gions of the world. It is a tall semi-perennial crop, with a
growth cycle lasting typically between 12 and 18 months be-
fore it is ready for harvesting. The specific duration of this
cycle varies depending on factors like the sugarcane variety,
local climate, and geographical conditions in each region.
After the first harvest, sugarcane can regrow from the same
root systems for multiple years (ratoon crops), resulting in
subsequent yield losses due to a reduction in stalk popula-
tion. To ensure sustainable yields and maintain soil fertility,
sugarcane areas are often rotated with other crops to aid in
nitrogen fixation for subsequent sugarcane growth seasons.
Cultivation practices also involve planting different sugar-
cane varieties within the same plantations to minimize sus-
ceptibility to diseases. Figure 1 provides a visual example of
sugarcane time series in Brazil and rotation with soybean.

3.2 Area of interest

We initiated our study by focusing on the main sugarcane-
producing countries listed in Table 1.

We established a 2°× 2° grid overlaying these countries.
To reduce computation, grid cells were selected based on two
criteria: a cropland coverage exceeding 1 %, determined us-
ing the European Space Agency (ESA) crop mask dataset,
and a sugarcane area greater than 0, derived from the Spatial
Production Allocation Model (SPAM) (International Food
Policy Research Institute, 2019). These selected grid cells
represent the regions where we aimed to predict sugarcane
presence.

3.3 GEDI data processing

All GEDI shots from April 2019 to December 2022 over
cropland pixels, passing over these 2°× 2° grid cells, were
classified as either short, tall, or tree by a GEDI model trained
according to Di Tommaso et al. (2023). This model is trained
on high-accuracy crop type labels from three regions. The tall
class is represented by maize samples, and the short class is
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a mix of mostly soybean, rice, and spring barley labels. Each
classification was accompanied by a confidence value.

Prior to further analysis, the predicted shots underwent
a filtering process to retain only high-quality data. Initially,
shots were filtered based on the quality and degrade flags pro-
vided as properties in the GEDI dataset. Additionally, predic-
tions with confidence scores lower than 0.8 were discarded.
A crucial step involved filtering out shots with low view an-
gles and those over high-slope terrain, defined as areas with
slopes exceeding 5°, as both factors can impact the accuracy
of GEDI model predictions. View angle information was re-
trieved from the L2B dataset, enabling the exclusion of low-
view-angle shots.

Furthermore, we opted to exclude shots identified as be-
longing to the tree class by the GEDI model. This decision
was motivated by the likelihood that such shots may encom-
pass a mixture of crops and trees within the GEDI footprint,
which, at a diameter of 25 m, surpasses the size of the 10 m
S2 pixel by over four times.

Figure 1 shows the spatial coverage of GEDI over time and
the changing proportion of tall and short labels over crop-
land.

3.4 S2 model training and classification

Utilizing the GEDI predictions as binary labels, we trained
separate local S2 models for each grid cell and for each
month of the year. We opted for a random forest model for its
well-documented advantages, including high accuracy, com-
putational efficiency, and smooth integration into large-scale
applications within GEE. The S2 models were trained using
S2 harmonic coefficients as features and the GEDI predic-
tions as labels. For each grid cell, we aggregated GEDI la-
bels for each month across different years and extracted the
corresponding S2 features for the same year as the GEDI la-
bel. Subsequently, we constructed pooled models for each
month and generated predictions for 4 years, utilizing fea-
tures specific to each year. This process yielded 48 monthly
predictions for each grid cell, where each 10 m by 10 m pixel
within the crop mask was classified as either short or tall.
Most of the grid cells have more than 9400 GEDI training
labels used for training the S2 model, with the 5th percentile
and 95th percentile of the number of training labels being
768 and 69 000 samples, respectively.

In order to reduce spatial artifacts that may arise during
the process of mosaicking adjacent cells, we implemented a
strategy where we generated predictions for pixels within a
0.2° buffer around each cell. This buffer ensured that neigh-
boring cells had overlapping coverage. Subsequently, on a
monthly basis, we performed the mosaicking process, select-
ing for the overlapping regions the predictions from the cell
with the higher GEDI–S2 kappa score. This ensured that the
final mosaic maintained the highest possible accuracy, en-
abling a smoother transition between adjacent regions.

3.5 Calibration and/or sugarcane identification

To distinguish sugarcane from other tall crops, such as maize,
we computed the frequency of tall predictions for each pixel
across the 48 monthly predictions. Pixels were classified as
sugarcane if the frequency of tall predictions exceeded a cer-
tain threshold, based on the principle that sugarcane remains
tall for longer periods of time compared to annual crops like
maize. However, using a single threshold across all countries
is suboptimal, as the appropriate threshold depends on the
mix of crops alongside sugarcane, the phenological charac-
teristics of both sugarcane and other crops, and local agricul-
tural management practices.

The selection of the threshold was guided by a calibration
approach based on available in situ data. To determine the
threshold in countries where we had large number of labels
of sugarcane and different crop type classes, we used point-
level calibration and relied on the threshold that produced the
highest kappa score.

Kappa score=
Po−Pe

1−Pe
(3)

where

– Po is the proportion of observed agreement, i.e., the ac-
curacy achieved by the model, and

– Pe is the proportion of agreements expected by chance.

This methodology was applied in Brazil, India, Thailand, and
South Africa, where we had many (> 600) ground samples,
as well as in China and the USA, where point labels were
unavailable but crop type maps developed through a combi-
nation of ground and satellite data were accessible. In these
cases, samples were obtained by random sampling of the ref-
erence crop maps.

In other countries with a limited availability of sugarcane
labels (n < 200), we extracted at each location of a sugar-
cane label the number of tall months in our map, and then
we calculated the 10th percentile of this value across all such
locations. This threshold therefore ensures that 90 % of the
reference sugarcane labels would be classified as sugarcane.
In countries where ground labels were lacking, we set the
threshold equal to that of a nearby country, based on the as-
sumption that the characteristics of the sugarcane were most
similar in nearby locations.

3.6 Validation

To validate our sugarcane maps, we compared them against a
combination of available point samples, raster maps of crop
type, and reported sugarcane area of government statistics.
Because of the nature of sugarcane, a semi-perennial crop,
we are mapping stable sugarcane area in the 4-year period.
Although we do not expect perfect agreement against gov-
ernment reported planted or harvested area for a single year,
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Figure 3. Identification of the threshold for classifying pixels as
sugarcane based on the kappa score for countries with abundant in
situ crop type labels. The x axis shows the number of months (out of
a total of 48) where a tall crop was present, and the y axis shows the
kappa score for a model that classifies as sugarcane all pixels with at
least this many months with tall crops. Dots represent the maximum
kappa score value and the chosen threshold for each country. In
India, 7- and 8-month thresholds were tied, and we opted to use a
threshold of 8 to be conservative and to prioritize higher precision
in our map, avoiding the inclusion of other crops.

a comparison with government data still provides a useful
assessment of how well our maps capture broad spatial pat-
terns.

4 Results

We first present the outcomes of the calibration strategy,
outlining the optimal threshold for sugarcane identification
based on available data specific to each country. For valida-
tion purposes, we compare the results against field points and
rasters and assess the sugarcane area against government-
reported data. These evaluations are conducted for each
country using the selected threshold and employing a com-
bined ESA and GLAD crop mask. We find that combining
these two maps helps cover the majority of cropland in most
regions while avoiding the mapping of orchards that are of-
ten included in the ESRI crop mask. It is worth noting that
even though validation results are provided for the cropland
area mapped in the ESA and GLAD masks, a sugarcane map
is produced for the area covered by the ESRI crop mask as
well, and it is made available in our dataset. Further details
about the data release are provided in the “Data availability”
section.

4.1 Calibration

For calibration, we employed various strategies due to the
absence of in situ labels across all countries of interest. Re-
sults of the calibration for countries with abundant ground
samples are illustrated in Fig. 3.

China, Thailand, and South Africa exhibit low sensitivity
to the chosen threshold. In Thailand, the threshold is opti-
mized to avoid mostly confusion with cassava, a shrubby
perennial that is usually 2–3 m in height. In South Africa,

Table 3. Summary of the thresholds used for calibrating the sug-
arcane maps. The threshold is expressed as the number of months
over a 48-month period. Diverse metrics and data sources have been
adopted across different countries as a result of disparities of in situ
data availability.

Rank Country Data Source Metric Threshold

1 Brazil WorldCereal kappa score 16
2 India Plantix points kappa score 8
3 China Raster kappa score 16
4 Thailand GSV points kappa score 12
5 Pakistan NA 8
6 Mexico WorldCereal 10th perc. 14
7 Colombia NA 14
8 Indonesia NA 12
9 USA CDL kappa score 9
10 Australia WorldCereal 10th perc. 11
11 Guatemala NA 14
12 Philippines WorldCereal 10th perc. 8
13 South Africa SANLC points kappa score 14

Rows marked with “NA” denote the absence of available data, and a threshold from a
neighboring country was adopted. Specifically, Pakistan employed the same threshold as
India, Colombia as Mexico, Indonesia as Thailand, and Guatemala as Mexico. Thresholds
range from as low as 8 months in India, Pakistan, and the Philippines to as high as
16 months in Brazil and China. These disparities reflect differences in sugarcane phenology,
management practices, and co-cultivation with other crops (tall or short). SANLC stands for
the South African National Land Cover, and “perc.” represents percentile.

most of the point samples are sugarcane, followed by small-
scale and commercial annual crops. The optimal threshold
helps to avoid confusion with commercial irrigated annual
crops.

The threshold selection is critical in Brazil, mostly to avoid
confusion with maize, another tall crop ranging from 1.2–4 m
in height.

India and the USA exhibit moderate sensitivity and lower
optimal thresholds, perhaps due to shorter sugarcane pheno-
logical cycles and the absence of other crops that appear tall
in sugarcane-growing areas. In India, the calibration curve
appears very flat between 7 and 8 months. To err on the side
of caution and avoid including other crops in our sugarcane
map, we chose to set the threshold at 8 months. In the USA,
the threshold serves to avoid confusion with maize, which is
present but not as common as in Brazil.

In regions where insufficient labels were available for crop
types other than sugarcane to compute a reliable kappa score,
such as Mexico, Australia, and the Philippines, we adopted
the 10th percentile approach. Conversely, in regions where
no data were accessible, we determined the threshold based
on the neighboring country. This last strategy was applied
in Pakistan, Colombia, Indonesia, and Guatemala. Results of
the chosen calibration method and threshold for all the coun-
tries are summarized in Table 3.

Some regions may experience subnational variation in
sugarcane cultivation practices. For instance, in India, where
we have a substantial number of Plantix samples, we ob-
served some differences between the states of Maharashtra
and Uttar Pradesh. While the overall threshold for India is
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8 months, the optimal thresholds are 9 months for Maharash-
tra and 7 months for Uttar Pradesh. Unfortunately, in the cur-
rent study, we lack the quantity of data necessary to conduct
such detailed analysis at a subnational scale for all countries.

4.2 Sugarcane maps

The sugarcane maps for the main producing countries, ob-
tained by applying the calibration threshold previously iden-
tified across the 48 monthly predictions, are shown in Fig. 4.

These maps exhibit high quality, with no significant im-
prints from scene borders or major artifacts, despite using
separate S2 models for each grid cell. This indicates that
the models from adjacent grid cells are robust. Additionally,
the buffering and subsequent monthly mosaicking processes
contribute to creating an even smoother and more cohesive
map.

4.3 Validation

4.3.1 Validation against field points

We provide a summary of point-level validation results for
the sugarcane maps by country based on field-level data in
Fig. 5.

Performance metrics vary across countries, with F1 scores
for sugarcane exceeding 0.8 for most countries. Notably,
Brazil, Mexico, Australia, the Philippines, and South Africa
exhibit strong performance, with F1 scores higher than 0.9.
However, exceptions are observed in certain regions.

In Thailand, utilizing GSV samples yields an F1 score for
sugarcane of 0.57, with precision and recall scores of 0.53
and 0.62, respectively. The predominant confusion is ob-
served with the cassava class. This is not surprising, given
their coexistence in similar geographic regions and that cas-
sava plants can grow over 2 m. It is also common for farm-
ers to alternate between cassava and sugarcane cultivation
in their fields. In contrast, performance in Thailand using
WorldCereal data appears to be better, but it is essential to
note that cassava is not included in this dataset. WorldCereal
crop classes in Thailand include rice, sugarcane, and maize.
Additionally, the number of WorldCereal samples (75) is
substantially limited compared to GSV samples (∼ 19 000).

In India, contrasting results are observed between differ-
ent datasets. For instance, using Plantix labels yields an F1
score of 0.67 for sugarcane, with precision and recall at 0.65
and 0.69, respectively. Notably, performance in Maharash-
tra (MH) lags behind Uttar Pradesh (UP), with F1 scores of
0.56 and 0.7, respectively. The lower performance of MH is
mostly due to low precision (0.5), caused by misclassifica-
tion of maize as sugarcane. Conversely, utilizing WorldCe-
real data in India results in an F1 score of 0.82 for sugarcane,
with precision and recall metrics of 1 and 0.69, respectively.
This is explained by fewer maize labels, with labels for the
other class including mostly rice and wheat. It is worth not-

ing in this case as well the limited number of WorldCereal
samples (115) in this region compared to Plantix (∼ 37 000).

Similarly, Pakistan, using WorldCereal labels, exhibits an
F1 score of 0.6, primarily attributed to a low recall (0.43).

4.3.2 Validation against raster datasets

We offer a visual comparison between reference maps and
predicted sugarcane maps for regions where crop type maps
are available, depicted in Fig. 6.

In cases where multiple years of sugarcane maps were
accessible but did not correspond to the same years as our
study, as in the cases of Brazil and China, we utilized the
two most recent years. Sugarcane was classified as present in
a pixel if it appeared as sugarcane at any point during these
years, accounting for potential crop rotation. For the USA,
where the Cropland Data Layer (CDL) is available annually
from 2019 to 2022, we considered a pixel as sugarcane if it
is classified as sugarcane for at least 2 years out of the 4.

To evaluate a measure of agreement between maps, we
randomly sampled 10 000 cropland points for each state/ad-
min level 1 covered by the raster maps and reported F1 scores
in Fig. 6. These metrics pertain to the entire mapped raster
area, not just the portion depicted in the zoomed-in view in
the figure. Across different regions, F1 scores for sugarcane
varied, ranging from 0.47 in China to 0.84 in the USA.

In Brazil, the raster encompasses 13 states, with a rela-
tively lower F1 score of 0.6 for sugarcane. This discrepancy
is reflected in the precision of 0.55 and recall of 0.66. How-
ever, in São Paulo state, the F1 score improves to 0.74, char-
acterized by higher precision (0.82) and recall (0.67).

In China, the overall F1 score of 0.47 is derived from data
spanning all four provinces. Notably, in Guangxi, the pri-
mary sugarcane-producing region, the F1 score increases to
0.64, with the same precision and recall (both 0.64).

In the USA, precision and recall values stand at 0.85
and 0.82, respectively, indicating strong agreement between
maps.

Conversely, in South Africa, precision and recall are
slightly lower at 0.73 and 0.84, respectively, with a portion
of labels for commercial annual crops misclassified as sugar-
cane.

4.3.3 Validation against government statistics

To evaluate the accuracy of our sugarcane maps, we con-
ducted a comparison with government reported statistics on
sugarcane area. We present the results in Fig. 7 at the finest
available scale provided by the governments. The only ex-
ception is Pakistan, where we group the data at level 2 due to
uncertainties/changes of level-3 administrative division bor-
ders over time. Only administrative regions fully covered by
our sugarcane maps are included in these results. We find
overall good agreement with government statistics for the
main sugarcane-producing areas. Many countries (6) exhibit
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Figure 4. Sugarcane maps for top 13 producing countries (© Google Earth Engine). For visualization, the original 10 m maps were resampled
at 10 km resolution and show the sugarcane area in hectares for each 10 km× 10 km pixel (1000 ha). The area that we did not process – due to
lack of cropland or sugarcane – is colored in gray. For China, Indonesia, USA, and Australia, the highlighted gray area in the inset indicates
the regions for which zoom-in views are provided.

Figure 5. Results of point-level validation. The numbers of samples labeled as non-sugarcane and sugarcane are reported in parentheses.
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Figure 6. Comparison between our sugarcane maps and reference rasters. Maps show zoom-in views of key sugarcane-producing regions in
Brazil, China, USA, and South Africa (© Google Earth Engine). The reported metrics pertain to the entire region covered by the reference
maps, not just the illustrated portions. The absence of sugarcane in certain predicted maps for select regions can be attributed in part to the
crop mask selection (ESA+GLAD), which omits certain cropped areas (e.g., South Africa).

an R2 of 0.85 or higher (Brazil: 0.92, Pakistan: 0.85, USA:
0.99, Australia: 0.9, Guatemala: 0.97, Philippines: 0.85).

Some exceptions occur in regions where inaccurate crop
masks lead to overprediction of sugarcane area. Specifically,
in Yunnan, China, many orchard areas are included in the
crop mask, and because these are tall for the entire year, they
tend to get classified as sugarcane by our model. Moreover,
regions predominantly characterized by (irrigated) maize
cultivation, as evident in Sinaloa, Mexico, also tend to be
misclassified as sugarcane by our model, presumably be-
cause they are growing maize every year of the study period.
Outside of these problematic regions, the model agrees well
with official statistics in each country. The R2 increases from
0.73 to 0.96 when removing Yunnan in China and from 0.46
to 0.78 when removing Sinaloa in Mexico.

Moving to the assessment of main sugarcane-producing
states within each country, São Paulo emerges as the main
contributor to Brazil’s sugarcane landscape, accounting for
over half of the planted area. Here, our analysis demon-
strates robust agreement between predicted and government-
reported sugarcane areas, with an R2 value of 0.94 and a
slope of 0.88, based on 630 administrative units.

In India, Uttar Pradesh (UP) stands as the primary sugar-
cane producer, followed by Maharashtra and Karnataka, the
three states together contribute to approximately 80 % of the
nation’s sugarcane production. Notably, UP exhibits strong
agreement with government-reported data, with an R2 value
of 0.95 and a slope of 1.26. Conversely, while Maharash-
tra and Karnataka also demonstrate a good agreement, with
R2 values of 0.79 and 0.96, respectively, the regression line
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slopes for both states is close to 2 (2.2), suggesting that the
predicted sugarcane area is more than twice the reported area.

In China, Guangxi has the highest cultivation land and pro-
duction of sugarcane, accounting for more than 60 % of the
total national area. We observe strong agreement with the
government-reported area, with an R2 value of 0.97 and a
slope of 1. It is possible that in India, as in China, a source of
our overprediction of sugarcane area is the underlying crop
masks, which might include land uses other than arable crops
such as permanent tree crops or bamboo.

In Colombia, agricultural statistics are reported at ad-
ministrative level 1, known as departments. Our map pro-
vides full coverage solely for the Caldas department, a minor
sugarcane-producing region, with an estimated area 3 times
smaller that the reported area. It is worth noting that the pri-
mary sugarcane-producing areas, Valle de Cauca and Cauca,
are only partially covered by our maps. Despite this, we ob-
serve substantial agreement between the mapped areas and
the government-reported sugarcane area.

In Indonesia, statistical data on sugarcane production
are available at the provincial level (admin 1). However,
only West Java (Jawa Barat), a minor sugarcane-producing
province, is fully covered by our sugarcane map, while the
main sugarcane-producing provinces, such as Lampung and
South Sumatra (Sumatra Selatan), have partial coverage. De-
spite this limitation, our analysis reveals agreement between
the reported sugarcane area and the mapped areas in these
provinces.

In the USA, Florida and Louisiana are the main producers,
with R2 of 1 and 0.9, respectively. In Australia, Queensland
serves as the primary producer state, demonstrating an R2

value of 0.91.
Regarding South Africa, the available government statis-

tics pertain exclusively to commercial farmers, whereas our
analysis includes all sugarcane fields, encompassing both
commercial and smallholder operations. Despite this dispar-
ity, we report the agreement because commercial farmers
contribute to over 80 % of the total sugarcane production in
the country. The lower R2 value may be attributed to the type
of reported statistics as well as potential crop mask issues.

5 Discussion

5.1 Agreement with field data and raster

Synthesizing lessons from point and raster data, we find
that GEDI and S2-based sugarcane mapping presents chal-
lenges, particularly in regions where tall crops like cassava
and maize, especially irrigated maize, coexist with sugar-
cane. We also observe discrepancies in performance between
point and raster data.

In Brazil, we observed lower performance in raster maps
(F1 score of 0.6) compared to WorldCereal point data (F1
score of 0.9). This discrepancy could be attributed to the con-
struction of reference rasters, wherein sugarcane is defined as

the union of the two most recent years, along with differences
in the years considered. In Guangxi, China, we observed sim-
ilarly low performance (F1 score of 0.64) when comparing
our maps to modeled raster data, despite high agreement with
government statistics, which also indicates potential errors in
the construction of the raster reference maps.

In South Africa, it is worth noting that performance against
the SANLC field points surpasses that of the South Africa
SANLC 2020 map. For field points, the F1 score for sugar-
cane is 0.9, with a precision of 0.97 and a recall of 0.84. In
contrast, the map exhibits an F1 score of 0.78, with precision
and recall values of 0.73 and 0.83, respectively. In the USA,
where we have high confidence in the CDL maps and refer-
ence map years align with our mapping period, we observe
good agreement with CDL sugarcane data. However, it is es-
sential to emphasize that reference maps may not be equally
reliable, potentially leading to discrepancies in performance
evaluation.

5.2 Agreement with government statistics

The comparisons with government statistics are complicated
by several factors, including the unknown accuracy of official
numbers and the fact that they do not necessarily intend to
reflect all of cropland area planted with sugarcane. Govern-
ment data often reflect sugarcane harvested area for a single
year, while our mapping captures total, stable sugarcane area
over a 4-year period. We therefore would expect our num-
bers to be slightly higher than government numbers, even if
both datasets were perfectly accurate. Despite this disparity,
we generally observe favorable agreement in most regions.

In India, particularly in Maharashtra and Karnataka, de-
viations from the 1 : 1 line are evident, with slope values
of 2.3 and 2.2, respectively. Notably, in Maharashtra, the
mapped area (2 702 144 ha) exceeds the government-reported
area (822 407 ha) by over 230 %. However, Plantix data in
Maharashtra, which was adjusted for bias in class represen-
tation as described in Sect. 2.4.1, revealed a low user’s ac-
curacy (50 %). This is a warning that the commission error
associated with the sugarcane class was problematic.

To address this, we employed an error-adjusted estimator
of area proposed by Olofsson et al. (2013) to correct the esti-
mated sugarcane area and provide confidence intervals. Tak-
ing into account the presence of false positives, consisting of
955 instances among 1911 sugarcane labels, and false nega-
tives, comprising 529 instances among 13 384 non-sugarcane
labels, alongside a proportion of area mapped as sugarcane
equal to 0.15, our analysis yielded a revised estimate of sug-
arcane area of 1 953 625 ha. This revised estimate notably
surpasses the reported area by approximately 140 %.

The resulting confidence interval, computed using the
method suggested by Olofsson et al. (2013), suggests that
the sugarcane area estimate could range from 1 873 290 to
2 033 960 ha at a 95 % confidence level. Despite the wide
confidence interval, it is still well above the government-
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Figure 7. Comparison of the sugarcane area in our maps with government statistical data. In the top left corner, the results using all data
points are reported. For some countries, in the bottom right the results when removing problematic regions are reported.

reported area, and the gap is too large to be explained by
the difference between total and harvested area. We therefore
suggest that the official numbers in Maharashtra are signifi-
cantly underestimating the actual sugarcane area. This con-
clusion is similar to that reached in a previous study in the
Upper Bhima basin within Maharashtra, which concluded
that actual sugarcane area may be twice as large as what is
indicated in government statistics (Lee et al., 2022).

5.3 Future improvements

A number of future directions could improve the accuracy
of our maps. A key dependency in our approach is the use
of existing crop maps that delineate arable cropland from
other land uses, including permanent tree crops and peren-
nial woody crops like bamboo. Yet we observed in several
regions, most notably in southern China, that the crop mask
often included areas with orchards. Because orchards are tall
throughout the year, removing them from the crop mask is an
important need for further improvement. Likewise, in some

regions the crop masks we utilized miss some areas that ap-
pear in other sugarcane reference maps (e.g., in South Africa;
see Fig. 6). By improving the accuracy of the crop mask,
more precise sugarcane maps can be generated, providing
more reliable information for agricultural planning and man-
agement. Implementing subnational thresholds could further
refine the accuracy of our estimations, considering the local-
ized variations in sugarcane cultivation practices. Integration
of other sensor data, such as Sentinel-1, as well as other ap-
proaches to summarizing time series than the harmonic re-
gressions used here, could enhance model performance.

In future iterations, extending the grid to encompass more
geographical areas could provide a broader perspective on
sugarcane dynamics. Additionally, another interesting direc-
tion for future research would be to extend our maps back
in time. This would allow us to examine changes over time,
observe the impact of climate change on sugarcane planta-
tions in various regions, and provide valuable insights into
temporal trends.
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6 Data availability

The final output of our study comprises the frequency of tall
mappings for each 10 by 10 m pixel in the combined crop
mask (union of ESA, ESRI, and GLAD), alongside the sug-
arcane maps for each country obtained ny applying the cal-
ibration threshold and the crop masks used. Results were
provided for each region using the calibration threshold and
masking maps using the union of the ESA and GLAD crop
masks. However, with the dataset provided, users have the
flexibility to use a region-specific crop mask and their own
region-specific thresholds if they possess additional insight
or calibration data, allowing for customization of the sugar-
cane mapping process.

The dataset can be accessed on Google Earth En-
gine at https://code.earthengine.google.com/?asset=
projects/lobell-lab/gedi_sugarcane/maps/imgColl_10m_
ESAESRIGLAD (Di Tommaso et al., 2024b). Users need
a GEE account (Gorelick et al., 2017) to access the dataset
using that URL. Additionally, users can find the dataset
on Zenodo at https://doi.org/10.5281/zenodo.10871164
(Di Tommaso et al., 2024a). In the Zenodo repository, users
will also find a link to a GEE script for visualizing and
masking the sugarcane maps by country.

7 Conclusions

In this study, we have introduced a dataset of sugarcane maps
for the top 13 producing countries, covering nearly 90 % of
global production, leveraging satellite remote sensing data
from GEDI and Sentinel-2 for the years 2019–2022.

Sugarcane cultivation stands as a vital economic activ-
ity globally, contributing significantly to food and biofuel
production. With a quarter of the world’s ethanol produc-
tion sourced from sugarcane, countries like Brazil and India
are positioned to substantially increase their ethanol output.
However, alongside its economic benefits, sugarcane cultiva-
tion presents numerous social and environmental challenges,
including water scarcity, soil pollution, and labor exploita-
tion. Despite its pivotal role in economies worldwide, reli-
able information on sugarcane cultivation remains scarce.

Our methodology overcomes limitations of traditional
ground-based data collection, offering a scalable approach to
mapping sugarcane canopies globally. Through comparisons
with field data, pre-existing maps, and government statis-
tics, we have demonstrated the accuracy and reliability of our
maps.

However, challenges persist, particularly in regions where
tall crops like cassava and maize coexist with sugarcane. Ad-
ditionally, our approach’s dependency on existing crop maps
to delineate arable cropland from other land uses presents an-
other hurdle. These challenges underscore the necessity for
ongoing refinement of our mapping techniques.

The final maps should be useful in studying the socio-
economic and environmental impacts of sugarcane cultiva-

tion and producing maps of related outcomes such as sugar-
cane yields.
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