Articles | Volume 16, issue 1
https://doi.org/10.5194/essd-16-387-2024
https://doi.org/10.5194/essd-16-387-2024
Data description paper
 | 
17 Jan 2024
Data description paper |  | 17 Jan 2024

TRIMS LST: a daily 1 km all-weather land surface temperature dataset for China's landmass and surrounding areas (2000–2022)

Wenbin Tang, Ji Zhou, Jin Ma, Ziwei Wang, Lirong Ding, Xiaodong Zhang, and Xu Zhang

Data sets

Daily 1-km all-weather land surface temperature dataset for the Chinese landmass and its surrounding areas (TRIMS LST; 2000-2022) Ji Zhou, Xiaodong Zhang, Wenbin Tang, Lirong Ding, Jin Ma, and Xu Zhang https://doi.org/10.11888/Meteoro.tpdc.271252

Download
Short summary
This paper reported a daily 1 km all-weather land surface temperature (LST) dataset for Chinese land mass and surrounding areas – TRIMS LST. The results of a comprehensive evaluation show that TRIMS LST has the following special features: the longest time coverage in its class, high image quality, and good accuracy. TRIMS LST has already been released to the scientific community, and a series of its applications have been reported by the literature.
Altmetrics
Final-revised paper
Preprint