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Abstract. Land surface temperature (LST) is a key variable within Earth’s climate system and a necessary in-
put parameter required by numerous land–atmosphere models. It can be directly retrieved from satellite thermal
infrared (TIR) observations, which contain many invalid pixels mainly caused by cloud contamination. To inves-
tigate the spatial and temporal variations in LST in China, long-term, high-quality, and spatiotemporally contin-
uous LST datasets (i.e., all-weather LST) are urgently needed. Fusing satellite TIR LST and reanalysis datasets
is a viable route to obtain long time-series all-weather LSTs. Among satellite TIR LSTs, the MODIS LST is the
most commonly used, and a few corresponding all-weather LST products have been reported recently. However,
the publicly reported all-weather LSTs were not available during the temporal gaps of MODIS between 2000 and
2002. In this study, we generated a daily (four observations per day) 1 km all-weather LST dataset for China’s
landmass and surrounding areas, the Thermal and Reanalysis Integrating Moderate-resolution Spatial-seamless
(TRIMS) LST, which begins on the first day of the new millennium (1 January 2000). We used the enhanced
reanalysis and thermal infrared remote sensing merging (E-RTM) method to generate the TRIMS LST dataset
with the temporal gaps being filled, which had not been achieved by the original RTM method. Specifically, we
developed two novel approaches, i.e., the random-forest-based spatiotemporal merging (RFSTM) approach and
the time-sequential LST-based reconstruction (TSETR) approach, respectively, to produce Terra/MODIS-based
and Aqua/MODIS-based TRIMS LSTs during the temporal gaps. We also conducted a thorough evaluation of
the TRIMS LST. A comparison with the Global Land Data Assimilation System (GLDAS) and ERA5-Land LST
demonstrates that the TRIMS LST has similar spatial patterns but a higher image quality, more spatial details,
and no evident spatial discontinuities. The results outside the temporal gap show consistent comparisons of the
TRIMS LST with the MODIS LST and the Advanced Along-Track Scanning Radiometer (AATSR) LST, with a
mean bias deviation (MBD) of 0.09/0.37 K and a standard deviation of bias (SD) of 1.45/1.55 K. Validation based
on the in situ LST at 19 ground sites indicates that the TRIMS LST has a mean bias error (MBE) ranging from
−2.26 to 1.73 K and a root mean square error (RMSE) ranging from 0.80 to 3.68 K. There is no significant differ-
ence between the clear-sky and cloudy conditions. For the temporal gap, it is observed that RFSTM and TSETR
perform similarly to the original RTM method. Additionally, the differences between Aqua and Terra remain
stable throughout the temporal gap. The TRIMS LST has already been used by scientific communities in various
applications such as soil moisture downscaling, evapotranspiration estimation, and urban heat island modeling.
The TRIMS LST is freely and conveniently available at https://doi.org/10.11888/Meteoro.tpdc.271252 (Zhou
et al., 2021).
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1 Introduction

Land surface temperature (LST) is a key variable related to
the energy exchange at the interface between the land surface
and the atmosphere. It is a result of the thermal feedback of
various ground surfaces to incident solar radiation and atmo-
spheric downward radiation. Therefore, it is a necessary in-
put parameter required by numerous land–atmosphere mod-
els (Jiang and Liu, 2014; Z.-L. Li et al., 2013, 2023). LST has
been widely used in a variety of studies, such as surface evap-
otranspiration (ET) estimation (Anderson et al., 2011; Ma
et al., 2022), urban heat island (UHI) modeling (Alexander,
2020; Liao et al., 2022), drought monitoring (Zhang et al.,
2017), and ecological assessment (Sims et al., 2008).

In the past 4 decades, especially since the beginning of
the new millennium (i.e., 2000), China and its surround-
ing areas have experienced rapid economic development and
population growth accompanied by notable changes to the
natural environment (Yang and Huang, 2021). Meanwhile,
China has adopted a series of interventions to protect the
environment since the 1980s, such as the Grain for Green
Program (Wang et al., 2017), the Three-North Shelter Forest
Program (Zhai et al., 2023), and Red Lines of Cropland (a
policy to ensure that China’s arable land does not drop be-
low 120 million hectares). These interventions have played a
key role in changing land use or cover and regulating the cli-
mate (C. Chen et al., 2019). In addition, with the warming
climate, extreme weather and meteorological disasters oc-
cur frequently in China and its surrounding areas (Y. Chen
et al., 2019). LST is highly sensitive to land cover change,
heat waves, droughts, and vegetation information (Li et al.,
2023b; Su et al., 2023), making it an important indicator of
global climate change (Mildrexler et al., 2018; Peng et al.,
2014). Therefore, it is important to investigate the spatial and
temporal variations of LST for these areas, which requires
a long-term, high-quality, and spatiotemporally continuous
LST dataset.

LST can be obtained through in situ observations, model
simulations, and remote sensing retrievals. However, LST is
spatially and temporally heterogeneous and highly affected
by various factors such as land cover, soil type, topogra-
phy, and climatic and meteorological conditions (Liu et al.,
2006; Zhan et al., 2013). In situ observations based on spatial
“point measurement” are not able to obtain spatially contin-
uous LST, and the current model simulation suffers from the
coarse spatial resolution. In contrast, satellite remote sensing,
which has the advantages of better spatial continuity, larger
coverage, good ability for repeating observations, and much
higher spatial resolution, has become an important way of
obtaining LST for large areas (Z.-L. Li et al., 2013).

Satellite thermal infrared (TIR) remote sensing can di-
rectly obtain the regional and global LST efficiently. Se-
ries of satellite TIR LST products are currently available to

users. For example, the Moderate-resolution Imaging Spec-
troradiometer (MODIS) LST products are the most widely
used because of their global coverage, long time series (since
24 February 2000 for Terra and since 4 July 2002 for Aqua),
high quality, and good accuracy (Aguilar-Lome et al., 2019;
Sandeep et al., 2021; Wan, 2014). However, they generally
have significant spatial absences due to cloud contamination,
especially at low and middle latitudes in China (e.g., the Ti-
betan Plateau and southern China) (Duan et al., 2017), in-
creasing high uncertainties for their spatially continuous ap-
plications (Z.-L. Li et al., 2023). Meanwhile, there is a tem-
poral discontinuity (hereafter termed the temporal gap) in
Terra/Aqua MODIS during 2000–2002, further limiting their
long-time applications.

To fill these gaps, scholars have developed a variety of
methods to generate gapless LSTs (Jia et al., 2022a, 2023;
Zhang et al., 2022; Z.-L. Li et al., 2023; Quan et al., 2023).
These methods can generally be divided into three groups,
i.e., spatiotemporal interpolation, surface energy balance
(SEB), and multisource data fusion methods (Ding et al.,
2023; Z.-L. Li et al., 2023). The spatiotemporal interpolation
methods take advantage of the temporal and spatial varia-
tion patterns in the LST to get gapless LST data (Ding et al.,
2023). For example, Zhang et al. (2022) proposed a spa-
tiotemporal fitting framework to generate a 1 km spatial res-
olution dataset from 2003 to 2020 over global land, which is
the only seamless LST dataset, to the best of our knowledge,
on Google Earth Engine for free applications. Nevertheless,
the results using the spatiotemporal interpolation methods
may contain some uncertainties under cloudy-sky conditions
(Martins et al., 2019). The SEB-based methods are a group
of physical methods that can recover LST under cloudy con-
ditions, considering longwave radiation and solar radiation
to be influences on the LST (Jin and Dickinson, 2000). For
example, Martins et al. (2019) used the SEB-based method
to successfully fill the missing LST, based on land surface
parameters from the European Satellite Application Facility
on Land Surface Analysis (LSA-SAF), to generate the all-
weather LST product (MSG All-Sky Land Surface Temper-
ature, MLST-AS). In addition, a general approach that incor-
porates the clear-sky LST into the SEB model has recently
been developed, based on the MODIS and Visible Infrared
Imaging Radiometer (VIIRS) data, to estimate the LSTs in
cloud-contaminated regions (Jia et al., 2021).

Multisource data fusion methods mainly integrate TIR
LST with satellite passive microwave (PMW) observation
or reanalysis data to generate seamless all-weather LST and
have been widely used. PMW data can be used for estimat-
ing all-weather LST retrievals because they are less affected
by the atmosphere and clouds (Holmes et al., 2009; Zhou
et al., 2017). However, there are limitations to obtaining all-
weather LST from PMW observations. First, the spatial res-
olution of PMW data differs significantly from TIR, such as
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the Advanced Microwave Scanning Radiometer 2 (AMSR2)
with ∼ 10 km spatial resolution. Second, the spatial cover-
age of the PMW data is incomplete because there are or-
bital gaps. Third, the temperature retrieved from PMW ob-
servations contains information from the subsurface, which
differs from the TIR LST that exclusively represents skin
temperature (Zhou et al., 2017). Compared with the PMW
data, reanalysis data can provide spatially continuous LST
and related surface parameters; thus, they can act as an alter-
native basis to obtain the all-weather LST (Long et al., 2020;
Ding et al., 2022). One typical method is the reanalysis and
thermal infrared remote sensing merging (RTM) method pro-
posed by Zhang et al. (2021) for integrating the Global Land
Data Assimilation System (GLDAS) and the Aqua/MODIS
LST for the Tibetan Plateau. The theoretical foundation of
the RTM method lies in the temporal component decomposi-
tion model of LST (Zhan et al., 2014; X. Zhang et al., 2019).
Upon comparison with the independent TIR LST and valida-
tion of in situ LST, significant agreement between RTM LST
and TIR LST was observed, demonstrating the effectiveness
of the RTM method under all-weather conditions. The RTM
method fully utilizes reanalysis data and TIR data to produce
prospective, high-resolution, and reliable LST records on re-
gional, continental, and global scales for the long term.

Various all-weather LST datasets using the aforemen-
tioned three typical methods have been released in recent
years (Duan et al., 2017; Hong et al., 2022b; Jia et al., 2022b;
B. Li et al., 2021; Metz et al., 2017b; Muñoz-Sabater et al.,
2021; Yao et al., 2023; Yu et al., 2022). However, all-weather
LST datasets with both high temporal resolution (four obser-
vations per day or higher) and high spatial resolution (1 km or
higher) since 2000 for China’s landmass and the surrounding
areas are still lacking.

In this study, we proposed the enhanced RTM (E-RTM)
method to produce a daily (four observations per day) 1 km
all-weather LST dataset for China’s landmass and its sur-
rounding areas (19–55◦ N, 72–135◦ E), which was named
Thermal and Reanalysis Integrating Moderate-resolution
Spatial-seamless LST (TRIMS LST), a successor to the work
of Zhang et al. (2021). The E-RTM method includes three
modules (Sect. 3). First, the original RTM method was used
to produce the TRIMS LST from day of the year (DOY) 55
of 2000 (DOY 185 of 2002) to DOY 365 of 2022. Then,
Terra/MODIS-based and Aqua/MODIS-based TRIMS LSTs
during the temporal gaps were produced based on the phys-
ical properties of the LST time component decomposition
model. Finally, the accuracy of the TRIMS LST was evalu-
ated based on observations from in situ sites.

2 Datasets

2.1 Satellite data and reanalysis data

In this study, the main satellite data we used were the
1 km daily MODIS LST and emissivity product (MOD11A1:

February 2000 to December 2022; MYD11A1: July 2002 to
December 2022) in version 6.1, which was produced based
on the generalized split-window algorithm and has good ac-
curacy for homogeneous surfaces (Wan, 2014). This prod-
uct was used as basis data to produce the TRIMS LST.
The other MODIS datasets we used include (1) the 1 km
16 d Normalized Difference Vegetation Index (NDVI) prod-
uct (MOD13A2: February 2000 to December 2022), (2) the
500 m daily Normalized Difference Snow Index (NDSI)
product (MOD10A1F: February 2000 to December 2022)
(https://modis-snow-ice.gsfc.nasa.gov/, last access: 8 Jan-
uary 2024), and (3) the 500 m daily MODIS land sur-
face albedo product (MCD43A3: February 2000 to Decem-
ber 2022) in version 6.1. All of the above products ex-
cept MOD10A1F are available at EARTHDATA (https://
earthdata.nasa.gov/, last access: 8 January 2024). To gen-
erate and evaluate the all-weather LST, we also collected
(1) the 90 m Shuttle Radar Topography Mission Digital El-
evation Model data (SRTM DEM; http://srtm.csi.cgiar.org,
last access: 8 January 2024), (2) the global 1 km daily
Maximum Value Composite Synthesis of the Satellite Pour
l’Observation de la Terre (SPOT) VEGETATION (VGT)
images (VGT-S1) (January 2000 to February 2000) (https:
//spot-vegetation.com/en, last access: 8 January 2024) (Toté
et al., 2017), (3) the 0.05◦ 8 d Global Land Surface Satellite
(GLASS) Albedo product (January 2000 to February 2000)
(http://www.glass.umd.edu/Albedo/MIX/, last access: 8 Jan-
uary 2024) (Feng et al., 2016), (4) the 30 m yearly China
Land Cover Dataset (2000–2015) from Zenodo (CLCD,
https://doi.org/10.5281/zenodo.4417810) (Yang and Huang,
2021), and (5) the 1 km daily ENVISAT/Advanced Along-
Track Scanning Radiometer (AATSR) LST product (July
2004–April 2012) (https://climate.esa.int/, last access: 8 Jan-
uary 2024).

The main reanalysis data we used in this study were the
GLDAS data provided by the Goddard Earth Sciences Data
and Information Services Center (GES DISC) (Rodell et al.,
2004). GLDAS utilizes an analysis increment, which is ob-
tained through the optimal interpolator using the observed-
minus-forecast value for the skin temperature calculated
by GLDAS. This analysis increment, along with the bias-
correction term, is subsequently provided to the land sur-
face model code for energy budget considerations. The bias
correction ensures that the modeled state is continually ad-
justed towards the observed values, thereby improving the
accuracy of the skin temperature calculations on an incre-
mental, semi-daily, or daily basis (Radakovich et al., 2001).
The accuracy of GLDAS LST has been demonstrated by var-
ious studies with mean bias error (MBE) ranging from−4.27
to 8.65 K and root mean square error (RMSE) ranging from
3.0 to 6.02 K (Zhang et al., 2021; Xiao et al., 2023). Specif-
ically, the 0.25◦ 3 h LST from the GLDAS NOAH model
between January 2000 and December 2022 was used as an-
other input of the RTM method. In addition, we also collected
the 0.1◦ hourly ERA5-Land LST datasets (Muñoz-Sabater
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et al., 2021), and its LST will be compared with the gener-
ated TRIMS LST.

2.2 Ground measurements

Table 1 shows 19 ground sites that recorded longwave radi-
ation data for different periods. According to the geograph-
ical locations and land cover types provided in Table 1, it
is clear that they are distributed in different climate zones.
This indicates that they encompass a wide range of land sur-
face and climatic situations for sufficient validation of the
TRIMS LST. The measurement device at the selected ground
station includes a longwave radiometer and four-component
radiometers, including CNR1, CNR4, and CG4 (Kipp & Zo-
nen, Netherlands; https://www.kippzonen.com/, last access:
8 January 2024). According to the specifications of these ra-
diometers, the uncertainties in the daily total for longwave
radiation measurements are 3 %–10 % (Wang et al., 2020).
With the measured incoming and outgoing longwave radia-
tion, the LST of the land cover type within the field of view
(FOV) of the radiometer can be calculated through the radia-
tive transfer equation in the form of the Stefan–Boltzmann
law (Ma et al., 2023, 2021). Considering the uncertainties
in the longwave radiation measurement, the uncertainties in
the calculated in situ LST are approximately 0.6–1.20 K (Xu
et al., 2013; Yang et al., 2020; Ma et al., 2021).

Spatial representativeness of ground sites has different de-
grees of influence on the validation of TIR-based LST us-
ing in situ LST. In this study, to quantify the spatial rep-
resentativeness, we calculated the standard deviation (SD)
of 33× 33 Landsat LST within MODIS pixels contain-
ing ground sites. Specifically, the Landsat LST is the 30 m
Landsat-7 ETM+ Collection 2 Level-2 LST provided by
the United States Geological Survey (U.S. Geological Sur-
vey, 2021). For the 19 sites, the SD ranged from 0.64 to
1.53 K, indicating good to acceptable representativeness of
these sites for the validation of a 1 km LST (Zhang et al.,
2021; Duan et al., 2019). Abnormal measurements, caused
by short-term disturbances such as instantaneous shadow
from small clouds and birds, were excluded from the ground-
measured longwave radiation through a quality check. This
quality check involved removing the outgoing or incoming
longwave radiation that deviated by more than 3σ (standard
deviations) from its respective 1 h averages (Göttsche et al.,
2016).

3 Methodology

The TRIMS LST was generated through the E-RTM method,
consisting of the three modules depicted in Fig. 2. Mod-
ule I runs the original RTM method (Zhang et al., 2021) to
merge MOD11A1 (MYD11A1) and the GLDAS LST, pro-
ducing daily all-weather LST at the Terra (Aqua) satellite
overpass time from DOY 55 of 2000 (DOY 185 of 2002)
to DOY 365 of 2022. Module II employs a random-forest-

based spatiotemporal merging (RFSTM) approach to extend
the beginning date of the MOD11A1 LST-based all-weather
LST to 1 January 2000. Finally, Module III utilizes a time-
sequential LST-based reconstruction (TSETR) approach to
extend the beginning date of the MYD11A1 LST-based all-
weather LST to 1 January 2000.

3.1 Module I: the RTM method

Details of the RTM method can be found in Zhang et al.
(2021). For the convenience of the readers, a brief descrip-
tion of the RTM is provided here. In the temporal dimension,
the time series of the LST can be expressed as

LST(td, tavg, tins)= LFC(td, tavg)+HFC(td, tavg, tins)

+HFCcld(td, tins), (1)

where td is the day of the year (DOY); tins is the overpass time
of a satellite TIR sensor (i.e., MODIS) and tavg is the aver-
age observation time calculated from tins; LFC is the low-
frequency component that represents the intra-annual varia-
tion component of the LST under ideal clear-sky conditions;
HFC is the high-frequency component, which represents the
sum of the diurnal LST variation and the weather variation
component (WTC) under ideal clear-sky conditions; HFCcld
is a correction term representing the impact on LST triggered
by cloud contamination under cloudy conditions; and HFCcld
is equal to zero under clear-sky conditions.

In the RTM method, LFC, HFC, and HFCcld in Eq. (1)
are first determined from the MODIS LST and the GLDAS
LST. Then, the optimized models are determined for the
three components according to their characteristics, and their
quality is improved by inputting their descriptors. Finally,
three optimized components are integrated to generate the
all-weather LST.

3.2 Module II: the RFSTM approach

The RFSTM approach was developed to predict the all-
weather LST during the period of DOY 1–54 2000, during
which the Terra MODIS LST was not available. It is based
on the fact that (i) the LST of a pixel in the temporal dimen-
sion is strongly affected by the meteorological conditions as
well as the underlying surface and that (ii) the LST of many
pixels at a certain time are closely related to their underly-
ing surfaces (Ma et al., 2021). Therefore, RFSTM has two
stages, i.e., the temporal stage and the spatial stage.

At the temporal stage, the daily LST (LSTT) of a pixel Q
in a certain period is modeled as

LSTT = fT(XT),
XT = [PT,1PT,2. . .PT,m]

T

=


pT,1(td,1) pT,1(td,2) . . . pT,1(td,n)
pT,2(td,1) pT,2(td,2) . . . pT,2(td,n)
. . . . . . . . .

pT,m(td,1) pT,m(td,2) . . . pT,m(td,n)

 , (2)
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Figure 1. The study area and the selected 19 ground sites. A, B, C, D, E, and F are subareas exhibiting a single land cover type with no
change in T1 and T2 (1 January 2000 to 3 January 2005).

where the subscript T denotes the temporal stage, the func-
tion fT expresses the mapping in temporal dimensions from
the descriptors to LST, XT denotes the matrix including the
LST descriptors’ time series (PT,i , i = 1,2, . . .,m), and n
is the number of days within the temporal gap of the Terra
MODIS LST.

We used the mapping function fT to predict the 1 km all-
weather LST, since the MODIS LST is not available as a
reference for reconstruction and it is impossible to identify
the different weather conditions (e.g., clear-sky and cloudy
conditions). However, the relationship between LST and its
descriptors cannot be analytically expressed currently. For-
tunately, machine learning has been reported as effective in
enhancing the spatial resolution of remote sensing images.
Specifically, the random forest (RF) algorithm has shown
good performance in mapping the correlation between LST
with finer resolution and its descriptors with coarser res-
olution (Xiao et al., 2023; B. Li et al., 2021; Xu et al.,
2021; Zhao and Duan, 2020; Yoo et al., 2020). Therefore,
the RF algorithm was employed here to realize fT. The tem-
poral descriptors of LST include the net longwave radiation,
downwelling longwave radiation, soil moisture or tempera-
ture profile (e.g., surface, 0–10 cm, and 10–40 cm in GLDAS
NOAH model-based data), canopy surface water, snow depth
water equivalent, surface skin temperature, wind speed, and
air temperature. The training period for fT with RF was set
as DOY 55 of 2000 to DOY 55 of 2005, and the prediction

period for LSTT was from DOY 1 of 2000 to DOY 55 of
2000.

Considering that LST varies in both spatial and tempo-
ral dimensions, the spatial descriptors of LST should also be
considered. In the spatial stage, the LST (LSTS) at td in the
prediction period is expressed as

LSTS = fS[NS,1(td)NS,2(td). . .NS,k(td)], (3)

where the subscript S denotes the spatial stage, the func-
tion fS expresses the mapping in spatial dimensions from
the descriptors to LST, k is the number of spatial descriptors
of LST, and NS denotes the 1 km spatial descriptor of LST
(NS,i , i = 1,2, . . .,k).

The spatial descriptors of LST include the DEM, latitude,
and albedo. The selected descriptors in the spatial stage are
all from the ancillary data with a 1 km resolution. Albedo
serves as a descriptor that informs about land surface, includ-
ing factors such as vegetation growth, surface or subsurface
moisture distribution, and land surface cover type. We used
GLASS albedo data as a substitution in the prediction step to
fill the temporal gaps in MODIS LST because these tempo-
ral gaps are also effective in other MODIS products (includ-
ing the MODIS albedo). Specifically, the GLASS albedo data
are the best substitution for MODIS albedo data that we can
find since they are strongly correlated with each other and
have close accuracies according to existing studies (He et al.,
2014; Wang et al., 2014; Chen et al., 2020; Lu et al., 2021).
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Figure 2. Flowchart of the E-RTM method. Note that the date in this figure is in the format of YYYY+DOY.

To involve all the spatiotemporal LST descriptors and
to guarantee the best performance of the output, the LSTs
(LSTT and LSTS) need to be merged to derive the final 1 km
LST (LSTM):

LSTM = fM(LSTT,LSTS), (4)

where fM denotes the RF-based mapping which indicates
the contributions to the LSTM from LSTT and LSTS, respec-
tively.

For a single 1 km pixel, the RF-based regression contri-
bution function is trained using LSTT (obtained by Eq. 2),
LSTS (obtained by Eq. 3), and TRIMS LST in the training
period. Then, fC is applied to estimate the 1 km all-weather
LST in the prediction period via Eq. (4).

3.3 Module III: the TSETR approach

The TSETR approach was developed to estimate the all-
weather LST during the period from DOY 1 of 2000 to DOY
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184 of 2002, during which the Aqua/MODIS LSTs were not
available (with a temporal gap of 915 d). Previous studies
have shown that it is possible to convert between the Terra/-
MODIS LST and the Aqua/MODIS LST, considering land
cover types, geolocations, and seasons (Coops et al., 2007).
Therefore, the Terra/MODIS LST from 2000 to 2002 could
be transformed into the Aqua/MODIS LST (Li et al., 2018).
Since the Terra/MODIS LST (MOD11A1) is available as a
reference in the temporal gap, we generated an all-weather
LST based on the TSETR approach, which is reconstruction
rather than prediction.

According to Eq. (1), the LST time series can be decom-
posed into LFC, HFC, and HFCcld under all-weather con-
ditions. Therefore, the TSETR approach has three stages. In
the first stage, we need to estimate the LFC during the tempo-
ral gap at the Aqua overpass time. In this case, the temporal
gap period was set as T1, and DOY 185 of 2002 to DOY 3
of 2005 were set as T2 (Fig. 3). According to the analytical
expression and physical meaning of LFC, there are no un-
derlying trends of change within the three annual parameters
(Tavg, A, and ω), except for the periodic variation in the LST,
which means that the LFC is cyclic-stationary over a short
period (Bechtel, 2015; Weng and Fu, 2014; Zhu et al., 2022).
Once the three annual parameters are determined, the LFC
can be calculated for a given day.

Therefore, in the TSETR approach, we assume that the
LFC differences (1LFC) between the Terra and Aqua over-
pass times in T1 and T2 are also cyclic-stationary. In T2, the
LFC values at the Terra/MODIS and Aqua/MODIS pixels are
determined separately. In T1, the LFC at the Aqua overpass
time of the pixel M can be expressed as

LFCM-Aqua-T1(td, tavg)

= LFCM-Terra-T1(td, tavg)
+1LFCM

(
t ′d, tavg

)
,

1LFCM(t ′d, tavg)
= LFCM-Aqua-T2(t ′d, tavg)
−LFCM-Terra-T2

(
t ′d, tavg

)
,

(5)

where td is a specific day in T1; t ′d is a specific
day corresponding to td in T2; LFCM-Aqua-T1(td, tavg) and
LFCM-Terra-T1(td, tavg), respectively, denote the LFC cor-
responding to the Aqua or Terra overpass time in T1;
and LFCM-Aqua-T2(t ′d, tavg) and LFCM-Terra-T2(t ′d, tavg), re-
spectively, denote the LFC corresponding to the Aqua or
Terra overpass time in T2.

HFC is estimated in the original RTM method using a non-
linear mapping established by multiple descriptors. In the
second stage of E-RTM, the HFC within T1 at the Aqua over-
pass time can be estimated by using its descriptors through
RF (Xu et al., 2021). With Modules I and II, we have ob-
tained the TRIMS-Terra LST in T1. However, it is unfeasible
to directly model an RF mapping based on the Terra/MODIS
LST and its corresponding descriptors in T1. An important

concern that needs to be addressed is the timing discrepancy
between Terra and Aqua observations, which results in dis-
tinct variations in the pattern of LST changes. When there
is no valid Aqua/MODIS LST available, we have made im-
provements to the procedure for calculating the HFC in the
original RTM method as follows:



HFCM-Aqua-T1(td, tins−Aqua−T1)

= HFCM-Terra-T1(td, tins-Terra-T1)
+1HFCM-Terra-Aqua-T1,

1HFCM-Terra-Aqua-T1(td, tins)
= fM-T2(gM,DEMM,NDVIM(td),slpM(td),
αM(td),vM(td),1LFCM,1DTCM),

1DTCM

=1DTCM−Aqua(td, tins, tavg)
−1DTCM-Terra(td, tins, tavg),

(6)

where 1LFC characterizes the systematic deviation of the
steady-state component; gM is the geospatial code (Yang
et al., 2022); DEMM, NDVIM, slpM, αM,1tM, and vM are the
DEM, NDVI, slope, albedo, difference between tins and tavg,
and atmospheric water vapor content, respectively; 1DTC
characterizes the warming effect of solar radiation; and the
weather effect can be characterized by the atmospheric wa-
ter vapor content. According to Zhang et al. (2021), the HFC
characterizes the change in LFC with 1DTC and WTC su-
perimposed under ideal clear-sky conditions. The detailed
calculation of 1DTC can be found in Zhang et al. (2019b).
fM-T2 is constructed as follows. Initially, the correlation

image of the target pixel M is determined within the T2 pe-
riod, and the following two conditions need to be satisfied
by the correlation image: (i) the mean bias deviation (MBD)
of the DTC estimated from its corresponding GLDAS LST
(10:00–14:00 and 21:00–03:00 local solar time) should be
lower than 1 K, and (ii) the difference in the average obser-
vation time between the GLDAS pixels should not exceed
0.5 h. Using the correlation image, the similar image fam-
ily S of the target pixel M is determined. Subsequently, in
the correlation image, using similar land cover type criteria,
the similar image family S of the target pixel M within the
GLDAS pixels is identified. S needs to meet the following
two conditions: (i) it should have the same land cover type
as M , and (ii) the R of the Terra/MODIS LST time series
corresponding to S and M needs to be greater than 0.8.

In the third stage, we need to estimate the HFCcld within
the temporal gap period at the Aqua overpass time. HFCcld is
essentially an atmospheric correction term, and it is obtained
from the GLDAS LST in the RTM method. According to
the parameterization scheme of the RTM method, the clear-
sky MODIS pixels and their corresponding GLDAS LST are
the necessary inputs for the estimation of HFCcld. It is not
possible to obtain HFCcld directly at this stage due to the
lack of Aqua/MODIS in T1.
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Figure 3. Schematic diagram for estimating LFC at the daytime Aqua overpass time in T1.

Inspired by the temporal component decomposition
(TCD) method (X. Zhang et al., 2019) and other methods in-
tegrating PMW and TIR LST (Parinussa et al., 2016; Zhang
et al., 2020a), the initial value of the 1 km HFCcld can be
expressed as

HFCcld-M-G-Auqa-T1(td, tins)= LSTM-G-Auqa-T1(td, tins)

−LFCM-Auqa-T1(td, tavg)
−HFCM-Auqa-T1(td, tins), (7)

where HFCcld-M-G-Aqua-T1 is the initial 1 km HFCcld of M,
and LSTM-G-Aqua-T1 is the initial 1 km LST of M under all-
weather conditions.

Based on the findings of Yao et al. (2023), we estab-
lished the method for acquiring the initial 1 km all-weather
LST. Initially, the GLDAS LST that corresponded to the
Aqua overpass time is corrected for systematic bias using the
cumulative distribution function matching (Xu and Cheng,
2021). In the T1 period, since Aqua/MODIS LST is unavail-
able, we employed MODIS LST from 2003 to 2022 to guar-
antee an adequately large sample size of MODIS LST. We
then downscaled the GLDAS LST to 1 km through the fol-
lowing two steps.

i. Calculating the LST differences between the MODIS
and GLDAS:

1LSTM-G-Auqa-T1(td, tins)

= LSTG-Auqa-T1(td, tins)
−LSTM-Auqa-T1(td, tins),

LSTM-Auqa-T1(td, tins)
= LFCM-Auqa-T1(td, tins)
+HFCM-Auqa-T1(td, tins),

(8)

where LSTG-Aqua-T1 is GLDAS LST, LSTM-Aqua-T1 is
the ideal MODIS clear-sky LST, and LSTM-G-Aqua-T1 is
an LST difference image. One pixel in GLDAS LST
corresponds to 625 (25× 25) pixels in MODIS LST.
The LST differences are calculated as GLDAS LST mi-
nus the 625-pixel average MODIS LST. The LST dif-
ference image was then directly resampled to 1 km.

ii. Downscaling of GLDAS LST:

LSTM-G-Auqa-T1(td, tins)

=1LSTM-G-Auqa-T1(td, tins)
+LSTM-Auqa-T1(td, tins), (9)

where LSTM-G-Aqua-T1 is the initial 1 km downscaled
GLDAS LST. The heterogeneity of the underlying land
surface within a 0.25◦ grid is reflected by MODIS
LST, and the downscaled GLDAS LST also exhibits
the same characteristic. This is based on the hypoth-
esis that the spatial variations in MODIS LST are the
same as those of GLDAS LST. However, LSTM-G-Aqua
and HFCcld-M-G-Aqua-T1 in the results of Eq. (9) may still
contain systematic errors due to inadequate downscal-
ing (Eq. 8). Therefore, a convolutional implementation
of a sliding window was used here to reduce the system-
atic error contained in HFCcld-M-G-Aqua-T1 (Chen et al.,
2011; Wu et al., 2015; X. Zhang et al., 2019).

The schematic diagram of the convolutional implementa-
tion of the sliding window is shown in Fig. 4. To fully reduce
the systematic bias, the size of the sliding window should
be slightly larger than a GLDAS pixel (26 km× 26 km). Ac-
cording to Zhang et al. (2019b, 2021), HFCcld after opti-
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Figure 4. Schematic of the HFCcld convolutional optimization.

mization of M (i.e., HFCcld after eliminating the system-
atic errors) can be obtained by convolving the HFCcld of the
surrounding similar pixels by combining geological factors
(e.g., land cover type, spatial distance, and topography). This
method is based on the interrelationship of different LSTs:
neighboring HFCcld are correlated in a limited spatial do-
main. Previous studies have shown that the approaches analo-
gous to the convolutional implementation of sliding windows
have a good ability to improve both the accuracy and the im-
age quality of the merged LST (Ding et al., 2022; Long et al.,
2020; X. Zhang et al., 2019). Similar pixels (termed S) need
to meet the following criteria: (i) they should be within the
same sliding window as the target pixel, and (ii) their land
cover type should not differ from the target pixel. Therefore,
the target pixel itself is also a reference pixel. Eventually, the
HFCcld of the target pixel can be expressed as

HFCcld-M-Aqua-T1(td, tins)=
n∑
i=1

HFCcld-Si (td, tins) ·wSi , (10)

where n is the number of similar pixels; HFCcld-S denotes
HFCcld-M-Aqua-T1 of the similar pixels; and ws is the contri-
bution of similar pixels to M , which can be expressed as

wSi =DSi ·HSi ·NSi

/(∑
n

DSi ·HSi ·NSi

)
,

DSi = (1/dSi )
/∑n

i=11/dSi ,

dSi =
√

(xSn − xM)2+ (ySn − yM)2,

HSi =
∣∣DEMSi −DEMM

∣∣ ,
NSi =

∣∣NDVISi −NDVIM
∣∣ ,

(11)

where DS, HS, and NS are the differences between the sim-
ilar pixels and M in terms of the spatial distance, DEM, and
NDVI, respectively.

3.4 Implementation of E-RTM

A detailed description of the implementation process of the
RTM method is provided by Zhang et al. (2021), and it is
only briefly described in this section. Here, the implementa-
tion of Modules II and III is explained in detail.

Stage I: data preprocessing and spatiotemporal matching

In this stage, the data are preprocessed with spatiotemporal
matching. First, valid MODIS LSTs are selected with the fol-
lowing two standards: (i) the quality control of the pixel was
flagged as “good”, and (ii) the view angle of the pixel was
lower than 60◦. Second, the selected temporal descriptors
from GLDAS data were temporally interpolated using the
cubic spline function to observe the time of MODIS LST for
temporal matching. Third, the observation times for cloudy
pixels and temporal gaps were recovered using a 16 d revisit-
ing period. Fourth, the 90 m DEM, 500 m albedo, and 500 m
NDSI were upscaled to 1 km to match the MODIS LST.
Fifth, the GLDAS water vapor was extended to 1 km by cubic
convolution interpolation. During the temporal gap (DOY 1–
54 in 2000), SPOT VGT served as the NDVI, GLASS albedo
was extended to a 1 km resolution using cubic convolution
interpolation, and the NDSI was determined by taking the
average of the corresponding days in 2001 and 2002. The
16 d 1 km NDVI is temporally interpolated to daily resolu-
tion. The daily missing albedo caused by the cloud is filled
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Figure 5. Implementation flow of the RTM method.

up through Statistics-based Temporal Filter (N. F. Liu et al.,
2013). In addition, all the data are spatially matched.

Stage II: implementation of the RTM

i. For the target MODIS pixel, its annual-scale LST time
series are extracted and fitted to obtain the LFC compo-
nent.

ii. The HFC components of all comparable pixels are esti-
mated.

iii. To create a mapping model of the HFC components
and the corresponding spatial descriptors, a machine-
learning approach is implemented.

iv. The trained mapping model is utilized to determine the
HFC under clear-sky conditions.

v. Bias-correct the GLDAS LST to match that of the
MODIS LST.

vi. Calculate the HFCcld present in the GLDAS LST.

vii. Estimate the HFCcld of the target pixel.

viii. Achieve the estimation of LST under clear-sky condi-
tions (LFC+HFC).

ix. Implement the estimation of LST under cloudy condi-
tions (LFC+HFC+HFCcld).

x. Repeat the above steps for every pixel of MODIS LST
to achieve the fusion of TIR LST and GLDAS LST.

Stage III: implementation of the RFSTM

i. For a single 1 km pixel, train the RF regression rela-
tionship (i.e., fT) between TRIMS-Terra LST and the
temporal descriptors from GLDAS data via Eq. (2). The
RF parameters were set as follows: n estimators= 85,
maximum depth= 18, maximum features= 3, and min-
imum leaf samples= 1. In the temporal stage of RF-
STM, all-weather samples from 2000 to 2005 were
compiled. Two-thirds of the samples are used for model
training, and the rest are for model validation (Breiman,
2001).

ii. For a specific day (td), use the 1 km NDVI (So-
brino et al., 2004) and NDSI to classify the study
area into several subareas, including thick vegetation
(NDVI > 0.5), sparse vegetation (0.2≤NDVI≤ 0.5),
barren land areas (NDVI < 0.2), snow ice areas
(NDSI > 0.1) (H. Zhang et al., 2019), and water
(NDVI< 0). Then, for each subarea, the spatial descrip-
tors of LST are input into fS via Eq. (3). The RF param-
eters were set as follows: n estimators= 420, maximum
depth= 43, maximum features= 9, and minimum leaf
samples= 1. Note that fS with RF is trained with the
1 km LST and spatial descriptors of a day, with the same
observation time as td and the smallest difference in the
number of days between td.

iii. For a single 1 km pixel, train the RF-based regression
contribution function (i.e., fM in Eq. 4) using LSTT,
LSTS, and TRIMS-Aqua LST under clear-sky condi-
tions. Then, estimate the 1 km TRIMS-Aqua LST dur-
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ing the period of DOY 1–54 in 2000 by applying fM to
clear-sky and cloudy conditions, respectively.

Stage IV: implementation of the TSETR

i. For a single Aqua/MODIS pixel M in T1, determine its
LFC in Eq. (5) using Aqua/MODIS LST (T2) and Ter-
ra/MODIS LST (T1 and T2).

ii. Train the RF measurement (fM-T2) between all of the
1HFC and its descriptors (see Sect. 3.3) of all sim-
ilar pixels. The RF measuring function tools are also
provided by the MATLAB platform. The RF parame-
ters were set as follows: n estimators= 100, maximum
depth= 20, maximum feature= 4, and minimum leaf
samples= 1. Determine the reconstructed HFC of M
through Eq. (6) by applying the descriptors of HFC in
M to fM-T2.

iii. Implement the bias correction for GLDAS LST of the
target GLDAS grid by using cumulative distribution
function matching. Then, downscale the GLDAS LST
to 1 km through Eqs. (8) and (9).

iv. Determine the initial 1 km HFCcld ofM through Eq. (7).
Finally, determine the HFCcld of M through Eqs. (10)
and (11).

3.5 Evaluation strategies

As can be seen from Fig. 2, TRIMS LST can be divided
into two parts according to the period of data coverage: data
within the temporal gap period and data outside the temporal
gap period. There are differences in the evaluation strategies
within the two periods due to the different availabilities of
validation data.

For outside the temporal gap period, the TRIMS LST was
compared with LSTs derived from two reanalysis datasets
(i.e., GLDAS and the independent ERA5-Land) and re-
trievals from two different satellite TIR sensors (i.e., MODIS
and the independent AATSR). In comparing different LSTs,
samples with time differences greater than 5 min were ex-
cluded (Freitas et al., 2010; Göttsche et al., 2016; Jiang and
Liu, 2014). The quantitative metrics used in the comparison
analyses include the MBD, the SD of the bias, and the co-
efficient of determination (R2). Then, the TRIMS LST was
validated under different weather conditions based on in situ
LST from the ground sites listed in Table 1. The three metrics
used are the MBE, RMSE, and R2.

During the temporal gap period, the TRIMS LST was
tested using three methods. Firstly, the results of the orig-
inal RTM method were cross-referenced and validated em-
pirically with RFSTM and TSETR. In 2003, RFSTM was
utilized to merge GLDAS LST and Terra/MODIS LST, re-
sulting in a 1 km all-weather LST. Additionally, the TSETR
method was employed to generate TRIMS-Aqua LST for the

periods of 2003–2005 and 2013–2015. For the actual data
generated for the period 2000–2002, specifically Aqua LST,
the similarity of the TRIMS LST time series was quantified
to examine the reliability of TRIMS LST during the Aqua/-
MODIS temporal gap. The time series angle (TSA), inspired
by the spectral angle that is widely used to measure the sim-
ilarity between spectral curves (Kruse et al., 1993), was used
to quantify the similarity of the TRIMS LST time series. The
TSA is defined as

θ = cos−1 LSTTRIMS-Aqua ·LSTTRIMS-Terra∥∥LSTTRIMS-Aqua
∥∥ · ‖LSTTRIMS-Terra‖

, (12)

where θ is the TSA (◦), and LSTTRIMS−Aqua and
LSTTRIMS−Terra are time series of TRIMS-Aqua and TRIMS-
Terra LSTs, respectively. From this formula, we know that a
smaller TSA denotes higher similarity.

Based on the CLCD described in Sect. 2.1, six sub-
areas with a single land cover type and no land cover
change in T1 and T2 (1 January 2000 to 3 January
2005) were selected to extract the corresponding TRIMS-
Terra and TRIMS-Aqua LST time series. These six sub-
areas (Fig. 1) were recorded as A (82.30–83.16◦ N,
39.63–40.03◦ E; barren land), B (124.73–125.17◦ N, 51.51–
51.95◦ E; forest), C (111.84–112.30◦ N, 42.47–42.85◦ E;
grassland), D (100.78–101.53◦ N, 39.92–40.44◦ E; barren
land), E (98.14–98.61◦ N, 33.92–34.25◦ E; grassland), and
F (91.73–92.22◦ N, 31.7–32.01◦ E; grassland). Then, the
TSA was calculated to quantify the similarity between the
TRIMS-Terra and TRIMS-Aqua LST time series.

Finally, we evaluated the percentage of valid pixels in
TRIMS LST and MODIS LST to prove the continuity of
TRIMS LST during the temporal gaps. Furthermore, we an-
alyzed the fluctuations in LST during the connectivity pe-
riod (February and March 2000 for Terra, June and July 2002
for Aqua) to demonstrate the uninterrupted TRIMS LST se-
quence at the conclusion of the filled duration.

4 Results and discussion

4.1 Comparison of the TRIMS LST with reanalysis data

With the E-RTM method, TRIMS LST products from 1 Jan-
uary 2000 to 31 December 2022 were generated. The spatial
resolution was 1 km. The temporal resolution was four obser-
vations per day, which is the same as with Terra/MODIS and
Aqua/MODIS. Figure 6 shows the daytime TRIMS-Aqua
LST on DOYs 1, 91, 181, and 271 as examples.

Figure 6 shows that the TRIMS-Aqua LST has a similar
spatial pattern to the GLDAS LST since the latter is an input
for the former. Good agreement in the spatial pattern in dif-
ferent seasons can also be observed between TRIMS-Aqua
LST and the independent ERA5-Land LST. A careful obser-
vation of Fig. 6 demonstrates that the TRIMS LST is spatially
seamless, and its spatial patterns are as expected. Southern
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Figure 6. Spatial patterns of the daytime TRIMS-Aqua LST, GLDAS LST, and ERA5-Land LST on 4 selected days in 2000.

China as well as Southeast Asia and the southern Asian sub-
continent at low latitudes are warm in all the seasons because
of additional absorbed solar radiation. The Tibetan Plateau,
with a much higher elevation and regions at high latitudes, is
much cooler than other regions. In winter (DOY 1), summer
(DOY 181), and fall (DOY 271), northwestern China, where
the dominant land cover type is barren land, is much warmer
than other regions. Further comparison indicates that TRIMS
LST is generally slightly warmer than the GLDAS LST and
the ERA5-Land LST. For example, on DOY 1 of 2000, the
LST is generally below 278 K on the eastern Tibetan Plateau,
while the GLDAS LST and the ERA5-Land LST are ap-
proximately 3–5 K lower. In the generation scheme of the
TRIMS LST, the MODIS LST, which is generally warmer
than the LST provided by reanalysis data, is an important in-
put as well as a reference to “calibrate” the GLDAS LST.
This induces the “merged” TRIMS LST to be warmer than
the GLDAS LST as well as the ERA5-Land LST.

To further examine the image quality of the TRIMS-Aqua
LST, Fig. 7 shows the daytime TRIMS-Aqua LST, GLDAS
LST, and ERA5-Land LST of the subarea shown in Fig. 6 at
the Aqua overpass time in 2000. Compared with the GLDAS

LST and the ERA5-Land LST, the TRIMS LST offers more
spatial details because of its much higher spatial resolu-
tion. Thus, one can see clear terrain-induced temperature
variations. Furthermore, Fig. 7 shows that no evident spa-
tial discontinuities exist in the TRIMS LST, indicating that
the E-RTM method performs satisfactorily in addressing the
spatial-scale mismatch between the MODIS LST and the
GLDAS LST (Zhang et al., 2021).

4.2 Comparison of the TRIMS LST with satellite TIR
LST products

The daily TRIMS LST was compared with the independent
ENVISAT/AATSR LST (from 2004 to 2012) and the Ter-
ra/Aqua MODIS LST (from 2000 to 2021 for Terra and from
2002 to 2021 for Aqua). Note that the AATSR and MODIS
only have clear-sky LST. The density plots are shown in
Fig. 8. To facilitate the data processing and presentation,
1 %/1 ‰ matched TRIMS-AATSR–MODIS pairs were ran-
domly extracted. Figure 8 indicates good consistency be-
tween the TRIMS LST and AATSR/MODIS LST. Compared
with AATSR, the overall MBD or SD values of TRIMS were
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Figure 7. The daytime TRIMS-Aqua LST, GLDAS LST, and ERA5-Land LST of the subarea (shown in Fig. 6) in 2000.

0.37/1.55 and −0.44/1.22 K for daytime and nighttime, re-
spectively; compared with MODIS, the overall MBD or SD
values were 0.09/1.45 and −0.03/1.17 K for daytime and
nighttime, respectively. Figure 8 also shows that better agree-
ments exist during nighttime because of lower thermal het-
erogeneity.

To further examine the deviation of the TRIMS LST from
the AATSR/MODIS LST, the MBD and SD values were
calculated for each day. Figure 9 shows the corresponding
histograms. For AATSR, the daily daytime MBD and SD
were mainly concentrated in the ranges of 0–0.60 and 1.05–
1.15 K, respectively; the daily nighttime MBD and SD were
mainly concentrated in the ranges of −0.40 to 1.0 and 0.75
to 1.15 K, respectively. The positive deviation and negative
deviation were consistent with those in Fig. 9a and b. For the
MODIS case, the daytime MBD was concentrated between

−0.6 and 1.0 K, and the SD was concentrated between 1.0
and 2.50 K; the nighttime MBD was concentrated between
−0.6 and 0.3 K, and the SD was concentrated between 0.9
and 1.50 K (Fig. 10). As shown above, it should be concluded
that the daily differences between the long-term TRIMS LST
and AATSR/MODIS LST remain stable.

4.3 Validation against in situ LST outside the temporal
gap

The TRIMS LST was quantitatively validated against the in
situ LST. Anomalies arising from transient environmental
factors were removed based on 3σ filtering (Göttsche et al.,
2016; Yang et al., 2020). It should be noted that the results
for all the sites can be found in Tables B1 and B2. The 19
ground sites were divided into four groups according to loca-
tions and land cover types (Group I: ARO, D105, DSL, EBA,
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Figure 8. Density plots between the TRIMS LST and the AATSR/MODIS LST.

Table 2. R2, MBE, and RMSE of the daytime validation for different groups.

Group Land cover type Condition Amount TRIMS LST MODIS LST

MBE (K) RMSE (K) R2 MBE (K) RMSE (K) R2

I Grassland Clear-sky 5370 0.26 2.15 0.95 0.61 2.37 0.95
Cloudy 6972 0.41 2.18 0.96 – – –

II Desert or barren land Clear-sky 5930 0.46 2.30 0.98 0.79 2.53 0.98
Cloudy 5698 0.43 2.26 0.98 – – –

III Cropland Clear-sky 5738 0.02 2.11 0.97 −0.21 2.52 0.95
Cloudy 7570 0.04 2.11 0.97 – – –

IV Forest Clear-sky 3170 0.55 2.46 0.97 0.72 2.38 0.98
Cloudy 3655 0.68 2.27 0.98 – – –

and MQU; Group II: DET, GAZ, GOB, HZZ, and SSW;
Group III: DAM, DXI, GUT, HLA, and TYU; Group IV:
CBS, DHS, QYZ, and SDQ). Tables 2 and 3 show the val-
idation results of TRIMS LST against the in situ LST under

different sky conditions. In addition, the validation results of
the clear-sky MODIS LST are provided for comparison.

Under clear-sky conditions, the TRIMS LST had an accu-
racy close to that of the MODIS LST as shown in Tables 2
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Figure 9. Histograms of the MBD and SD to compare the TRIMS LST and the AATSR LST.

Table 3. R2, MBE, and RMSE of the nighttime validation for different groups.

Group Land cover type Condition Amount TRIMS LST MODIS LST

MBE (K) RMSE (K) R2 MBE (K) RMSE (K) R2

I Grassland Clear-sky 8175 −0.70 1.65 0.98 −0.99 1.69 0.98
Cloudy 5254 −0.13 1.64 0.97 – – –

II Desert or barren land Clear-sky 6095 −0.64 1.43 0.99 −0.67 1.53 0.99
Cloudy 5244 −1.17 1.85 0.99 – – –

III Cropland Clear-sky 5314 −0.83 1.76 0.98 −0.75 1.60 0.98
Cloudy 7243 −0.60 1.74 0.98 – – –

IV Forest Clear-sky 2800 −0.98 1.92 0.98 −0.97 2.09 0.98
Cloudy 3332 −0.94 1.90 0.99 – – –

and 3. The MBE of the TRIMS LST ranged from −0.98 to
0.68 K, and the RMSE was 1.43 to 2.46 K. The RMSE of the
TRIMS LST under clear-sky conditions is lower than that
of the MODIS LST, except for Group IV. The RMSEs of
the MODIS LST were reduced by 0.22 K (Group I), 0.23 K
(Group II), and 0.41 K (Group III), respectively. The night-
time results were generally better than the daytime results,
with an average RMSE of 1.74 K. The R2 of the TRIMS LST

for the four groups of sites was higher than 0.95 under clear-
sky conditions, indicating that the TRIMS LST is in good
agreement with the in situ LST. The improved accuracy of
the TRIMS LST may be due to the reduction in the system-
atic bias of the original MODIS LST in the E-RTM method
by extracting the LFC and HFC (Ding et al., 2022).

Under cloudy conditions, the accuracy of TRIMS LST is
slightly lower compared to clear-sky conditions, resulting in
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Figure 10. Histograms of the MBD and SD to compare the TRIMS LST and the MODIS LST.

a 0.35 K increase in the overall RMSE. For TRIMS LST un-
der cloudy conditions, the accuracy is marginally below that
under clear-sky conditions, and the overall RMSE increased
by 0.35 K. For the four groups of sites, the MBE values of
TRIMS LST were −0.13 K (Group I), −1.17 K (Group II),
−0.60 K (Group III), and−0.94 K (Group IV), revealing that
the TRIMS LST is underestimated under cloudy conditions.
According to the parameterization scheme of the E-RTM
method, the accuracy of the estimated HFCcld under cloudy
conditions is affected by the GLDAS LST, which has a neg-
ative deviation from the MODIS LST as shown in Sect. 4.1.
In contrast, although the GLDAS LST is bias-corrected, un-
certainty may still exist, which is ultimately detrimental to
the accurate recovery of the LST for the cloud-contaminated
region. Overall, the validation results indicate that TRIMS
LST has good accuracy under cloudy conditions as well as
under clear-sky conditions.

For ground sites in Group III with a dominant land cover
type of desert or barren land, the nighttime validation shows
that the TRIMS-Aqua LST is systematically underestimated,
with an MBE of−1.17 to−0.64 K. After checking the calcu-
lated SD, we believe that the spatial-scale mismatch between
the ground site and the pixel is not the main reason for the
systematic underestimation. Further examination shows that

the clear-sky MODIS LST is significantly underestimated:
the MBEs of Aqua/MODIS LST are −1.88, −1.03, −1.33,
and −0.60 K for GOB, HZZ, SSW, and GAZ, respectively.
Such a cold bias in arid and semiarid regions has also been
reported by Li et al. (2019) for the MYD11 LST product.
The above results indicate that the accuracy of TRIMS LST
is largely dependent on the used MODIS LST.

Reanalysis LST was also validated against in situ LST
(Fig. 11). GLDAS LST is generally underestimated com-
pared to in situ LST, with an MBE of −0.29 K and an
RMSE of 5.86 K. Under clear-sky and cloudy conditions, the
GLDAS LST exhibits MBE values of 0.03 and −0.62 K, re-
spectively. On the other hand, ERA5-Land LST is overesti-
mated compared with in situ LST, with an MBE of 1.60 K
and an RMSE of 6.37 K. This indicates that the accuracy of
the ERA5-Land LST is lower than that of the GLDAS LST.
Notably, this discrepancy is more pronounced under clear-
sky conditions. The results of the comparison with MODIS
LST are shown in Fig. 12. GLDAS LST is underestimated
relative to MODIS LST with a small deviation, while ERA5-
Land LST is overestimated relative to MODIS LST with a
large deviation.
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Figure 11. Density plots between the reanalysis LST and in situ LST.

Figure 12. Histograms of the MBD to compare reanalysis LST and MODIS LST.
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Table 4. MBE and RMSE from validation results of TRIMS-Terra LST with the in situ LST.

Site Condition TRIMS-Terra LST (RTM) TRIMS-Terra LST (RFSTM)

Daytime Nighttime Daytime Nighttime

MBE (K) RMSE (K) MBE (K) RMSE (K) MBE (K) RMSE (K) MBE (K) RMSE (K)

D105 All 1.63 3.15 −1.05 1.94 1.75 3.30 −1.55 2.20
Clear-sky 1.78 2.17 −1.17 2.04 1.85 3.34 −2.37 2.66
Cloudy 1.54 3.25 −0.88 1.78 1.04 3.44 −0.40 1.29

GAZ All 0.93 2.61 −0.78 1.76 1.26 3.10 −1.95 2.26
Clear-sky 0.79 2.51 −0.68 1.70 0.94 2.72 −1.26 2.10
Cloudy 1.11 3.71 −0.94 1.85 1.61 4.20 −1.47 2.35

Table 5. MBE and RMSE from validation results of TRIMS-Aqua LST with the in situ LST.

Site Condition TRIMS-Aqua LST (RTM) TRIMS-Aqua LST (TSETR)

Daytime Nighttime Daytime Nighttime

MBE (K) RMSE (K) MBE (K) RMSE (K) MBE (K) RMSE (K) MBE (K) RMSE (K)

ARO All −0.53 2.14 0.58 1.77 −0.75 2.38 0.64 2.17
Clear-sky −0.47 2.11 0.52 1.74 −0.63 2.35 0.75 2.25
Cloudy −0.57 2.16 0.70 1.81 −0.87 2.34 0.88 1.85

DAM All −0.24 2.06 0.55 1.81 −0.38 2.47 0.60 1.84
Clear-sky −0.28 2.03 0.52 1.81 −0.45 2.61 0.53 2.03
Cloudy −0.23 2.09 0.56 1.82 −0.30 2.73 0.76 2.32

D105 All 0.80 2.67 −1.01 1.77 1.11 2.31 −1.15 1.88
Clear-sky 1.55 3.05 −0.94 1.71 1.87 3.22 −1.37 1.86
Cloudy 0.59 2.54 −1.09 1.85 0.45 1.96 −0.63 1.22

GAZ All −0.74 2.73 −0.67 1.51 −0.93 3.01 −1.08 2.09
Clear-sky −0.60 2.61 −0.65 1.48 −0.98 2.74 −0.68 1.83
Cloudy −0.93 2.89 −0.73 1.60 −1.05 3.29 −0.94 2.24

GOB All −0.34 2.60 0.21 1.87 −0.62 2.77 0.47 2.15
Clear-sky 1.88 2.41 1.64 1.93 1.77 2.76 1.66 2.04
Cloudy −2.31 2.75 −1.51 1.79 −2.63 2.84 −1.79 2.45

SDQ All −0.27 2.41 0.93 1.78 −0.59 2.75 1.23 2.40
Clear-sky −0.18 2.37 0.97 1.80 −0.19 2.09 1.26 2.19
Cloudy −0.39 2.46 0.87 1.74 −0.81 2.88 1.17 2.37

4.4 Validation of TRIMS-Aqua LST and TRIMS-Terra
LST during the temporal gap

During the T1 period, there are no independent in situ LST
measurements available. Observations of D105 and GAZ be-
gan on DOY 275 (2 October) of 2002. To investigate the
generalization ability of the RFSTM in the temporal dimen-
sion, the method is implemented as follows. For 2003, the
GLDAS LST and Terra/MODIS LST are also merged to gen-
erate 1 km TRIMS-Terra LST. This study utilized the TSETR
method to reconstruct the TRIMS-Aqua LST over 915 d. To
ensure a comprehensive analysis, TRIMS-Aqua LST for the
years 2003 (DOY 1)–2005 (DOY 185) and 2013 (DOY 1)–
2015 (DOY 185) were generated using the TSETR method.

This allowed for the inclusion of a significant number of in-
dependent ground sites for validation purposes.

Table 4 shows the results of the comparison between the
TRIMS-Terra LST generated by the RFSTM-based method
and the TRIMS-Terra LST generated by the RTM-based
method. The TRIMS-Terra LST generated by the RTM
method and the TRIMS-Terra LST generated by the RFSTM
method have similar accuracies for the sites. The MBEs dif-
fer by no more than 0.50 K, and the RMSEs differ by no more
than 1.20 K. However, the RFSTM method is slightly less
accurate than the TRIMS-Terra LST generated by the RTM
method. It is important to note that the RFSTM method is
only used in this study to generate data for 54 d, which has a
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Figure 13. TRIMS-Terra and TRIMS-Aqua LSTs from 1 January 2000 to 3 January 2005, together with statistics of the time series similarity.

Figure 14. Percentage of valid pixels in MODIS LST and TRIMS LST in 2000 (a) and 2002 (b).
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Figure 15. MBD and SD for daytime MODIS LST compared to nighttime MODIS LST.

relatively smaller impact on the overall accuracy of TRIMS
LST.

Combining the results of Tables 4 and 5, it can be ob-
served that the TRIMS-Aqua LST generated by the TSETR
method and the TRIMS-Aqua LST generated by the RTM
method exhibit similar accuracies at the sites. The differences
in MBE and RMSE between these two methods are not sig-
nificant, with the MBE differing by no more than 0.40 K and
the RMSE differing by no more than 0.70 K. These findings
demonstrate that the TSETR method maintains high accu-
racy and stability when generating data over longer periods.
Based on this, it can be concluded that the TRIMS-Aqua LST
in the T1 period reconstructed using the TSETR method is
reasonably accurate.

Tables 4 and 5 demonstrate the reliability of RFSTM and
TSETR. Figure 13 further shows the quantification results of
the similarity between the TRIMS-Aqua LST and TRIMS-
Terra LST time series during the temporal gaps. Overall, the
trends in the time series of TRIMS-Terra and TRIMS-Aqua
LST are very consistent, and they generally have a high de-
gree of similarity. The daytime time series shows that the
TRIMS-Aqua LST is generally higher than the TRIMS-Terra
LST, while the opposite is observed for the nighttime. In par-
ticular, for subareas E and F, the TRIMS-Aqua LST shows a
significant systematic deviation from the TRIMS-Terra LST
during nighttime. The distribution of the curves in Fig. 13
reveals that the daytime LST time series had more large fluc-
tuations, while the nighttime variation is more subdued. The
TSA is lower at nighttime than at daytime, indicating that
the time series similarity between the TRIMS-Aqua LST
and the TRIMS-Terra LST is higher at nighttime. In addi-
tion, the TRIMS-Terra and TRIMS-Aqua LSTs are slightly
more similar in T1 than in T2 among these six regions. This
situation is as expected since the TRIMS-Aqua LST in T1
is derived from a mapping created by the data at the Terra
overpass time. The differences in the TSA between T1 and
T2 ranged from 0.0080 to 0.0710. The mean differences are

0.0465 (daytime) and 0.0433 (nighttime). The above results
indicate that the similarity of the LST time series of T1 and
T2 is relatively close. This finding demonstrates that the dif-
ference between TRIMS LST at the Aqua and Terra overpass
times is stable in T1.

Meanwhile, we determined the percentage of valid pixels
in TRIMS LST and MODIS LST, respectively (Fig. 14). The
findings reveal that TRIMS LST is spatiotemporally continu-
ous during the temporal gaps. The percentage of valid pixels
in MODIS LST ranges from approximately 10 % to 70 %,
exhibiting substantial seasonal fluctuations. The rise in wa-
ter vapor, heightened convection, and increased cloud cover
during summers could account for the reduced number of ef-
fective pixels. This condition also clarifies why, under most
circumstances, fewer valid pixels are evident throughout the
daytime than at nighttime. By comparison, the number of
valid pixels in TRIMS LST changes moderately over time.
Approximately 1 ‰ pixels were left unoccupied for a few
days, likely due to the unavailability of reference groups and
corresponding pixels within the search window during the
determination of HFCcld for these pixels. However, the per-
centage of valid pixels almost reached 100 % following the
combination of the RFSTM and TSETR approaches. This
phenomenon is a quantitative demonstration of the success
of the E-RTM method in recovering unspecified LSTs dur-
ing the temporal gaps.

Finally, our analysis focused on examining the temporal
variations in LST during the connectivity period (February
and March 2000 for Terra, June and July 2002 for Aqua). The
outcomes reveal that there is no interruption in the sequence
at the conclusion of the filled duration (Fig. 15).

During the connectivity period, we calculated MBD and
SD for daytime MODIS LST compared to nighttime MODIS
LST. The MBD and SD for MODIS LST exhibited large fluc-
tuations between dates, whereas the MBD and SD of TRIMS
LST showed smoother overall trends with less fluctuation be-
tween dates. This is attributed to the consideration of the LFC
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as the primary base element in the E-RTM method, particu-
larly during the temporal gap when valid MODIS LST data
are lacking. The trends in MBD and SD for TRIMS LST and
MODIS LST are generally consistent outside of the temporal
gaps. Specifically, between 24 February and 31 March 2000,
MBD and SD demonstrated a general upward trend, while
between 3 and 31 July 2002, they showed an overall down-
ward trend. Importantly, the trend of MBD and SD changes
before and after the connecting dates is continuous without
abrupt changes or breaks, as depicted in Fig. 15, indicating
uninterrupted LST time series during the temporal gaps.

4.5 Advantages of the TRIMS LST

Recently, several all-weather LST datasets have been re-
leased by the scientific community (see Appendix C). An all-
weather LST product series with a temporal resolution from
15 min (Martins et al., 2019) to monthly (Metz et al., 2017b;
Zhao et al., 2020a; Hong et al., 2022b; Yao et al., 2023),
a spatial resolution from 1 km to 0.5◦, and a spatial cover-
age from a specific region (Qinghai–Tibetan Plateau, China,
Asia, Europe, and Africa) to the globe has been preliminar-
ily formed. All-weather LST products based on MODIS LST
interpolation (Zhang et al., 2022) or fusion with other multi-
source data (Xu and Cheng, 2021; Zhang and Cheng, 2020;
Q. Zhang et al., 2020; Zhang et al., 2021; Yu et al., 2022)
dominate the field. TRIMS LST similarly belongs to this
group. Overall, the uniqueness or advantages of the TRIMS
LST are in three main areas.

First, the TRIMS LST demonstrates comparable or better
accuracy than existing publicly released all-weather or spa-
tially seamless LST datasets. A thorough comparison with
satellite TIR LST products has indicated the effectiveness of
TRIMS LST, with MBD ranging from −1.5 to 1 K and SD
ranging from 1 to 3 K, thus confirming its accuracy and con-
sistency (Figs. 8, 9, and 10). Furthermore, in situ LST eval-
uations show an MBE ranging from −1.64 to 2.88 K and an
RMSE ranging from 1.82 to 3.48 K (Tables 2 and 3). Interest-
ingly, no significant difference is observed between clear-sky
and cloudy conditions, indicating the robustness of TRIMS
LST across various situations. Furthermore, the RTM tech-
nique was utilized at four top-quality stations and the nearby
region (11× 11 km): Evora, Gobabeb, KIT-Forest, and Lake
Constance (Meng et al., 2023). The TRIMS LST has per-
formed favorably in validating results across different land
cover types, including barren land, savannas, and forests,
with an RMSE range of 1.90 to 3.10 K. Additionally, over
the water site, TRIMS LST has an RMSE of 1.60 K. Thus,
based on the results of this study, TRIMS LST can be con-
sidered a reliable source of LST.

Second, the method employed in this study effectively
overcomes the issue of boundary effects in reconstructing
the all-weather process due to the large differences in spa-
tial resolution between different data sources (Zhang et al.,
2021; Quan et al., 2023). This is achieved through the uti-

lization of the E-RTM method, which is based on a tem-
poral decomposition model of LST. With this model, the
LFC and HFC components can be directly determined from
high-resolution MODIS and ancillary remote sensing data
(Eq. 1). Consequently, only spatial downscaling of HFCcld is
required, eliminating the need for direct downscaling of the
GLDAS LST. This method reduces the possibility of insuffi-
cient spatial downscaling. Additionally, the E-RTM method
considers the relationship between LSTs of neighboring pix-
els, resulting in decreased errors during spatial downscaling
(Fig. 4).

Third, TRIMS LST offers advantages in effectively re-
covering LST information and preserving temporal integrity
under cloudy conditions. With a spatial resolution of 1 km,
TRIMS LST covers both daytime and nighttime LST from
2000 to 2022, which is comparable in spatiotemporal resolu-
tion to other published seamless LST datasets (Appendix C).
The TRIMS LST dataset will be made publicly available on
an annual basis, contingent on the availability of pertinent
input data for the model. The E-RTM method effectively
recovers temperature information under clouds, ensuring a
clear physical meaning, high accuracy, and image quality of
TRIMS LST. Moreover, TRIMS LST extends the all-weather
LST coverage of the MODIS temporal gap. This enhances
the completeness of long-time-series LST datasets, creating
a unique and valuable collection.

4.6 Literature-reported applications of the TRIMS LST

The TRIMS LST has already been utilized by the scientific
community in various applications (Fig. 16). A literature sur-
vey indicates that there have been 36 related papers published
by journals (as of 26 October 2023), including leading jour-
nals such as Remote Sensing of Environment, Agricultural
Water Management, and Science of the Total Environment.
Typical applications include the estimation of soil moisture
and surface evapotranspiration as well as the modeling of ur-
ban heat islands and urban thermal environments. A few typ-
ical applications are listed below.

Satellite TIR LSTs are important input data for obtaining
SM estimates with high resolution and high spatial coverage.
However, most satellite TIR LST products can only be used
under clear-sky conditions. The availability of all-sky LST
products provides an important opportunity to obtain SMs
with spatial seamlessness. Zhang et al. (2023) combined the
use of ERA5-Land and TRIMS LST for the fine-scale assess-
ment of soil moisture in China. They used the model based
on 0.1◦ ERA5-Land and SM data for 1 km TRIMS LST and
finally obtained a daily 1 km SM dataset with satisfactory ac-
curacy. Benefiting from the effective recovery of LST under
cloudy conditions, this SM dataset has quasi-full spatial cov-
erage. In addition, Hu et al. (2022) used the TRIMS LST as
input data to construct a soil moisture downscaling model for
the Tibetan Plateau. The TRIMS LST was found to success-
fully overcome the challenges of satellite TIR remote sens-
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Figure 16. Statistics of applications based on TRIMS LST (AT:
air temperature; CC: climate change; ET: evapotranspiration; FS:
frozen soil; IHS: industrial heat source; others: active layer thick-
ness, lake area, land desertification, and LST downscaling; PP: plant
phenology; SFT: soil freeze–thaw; SM: soil moisture; TIREP: ther-
mal infrared earthquake prediction; UHI: urban heat island; UTE:
urban thermal environment).

ing detection due to temporal or spatial gaps and false detec-
tions due to clouds and topography. Based on the downscaled
soil moisture, they further published the daily 0.05◦× 0.05◦

land surface soil moisture dataset of the Qilian mountain area
(northern and northwestern Tibetan Plateau) from 2019 to
2021 (SMHiRes, V2) (Hu et al., 2022; Qu et al., 2021; Chai
et al., 2021, 2022a, b).

LST can also be used to investigate the soil freeze–thaw
cycles. Li et al. (2023) used the TRIMS LST to obtain thaw-
ing degree days and freezing degree days to calculate the soil
thermal conductivity and to improve the output of the tem-
perature at the top of the permafrost model. Due to the char-
acteristics of TRIMS LST (high spatial and temporal resolu-
tion), the above two metrics can easily be obtained on a spa-
tial scale of 1 km. In addition, the TRIMS LST was also used
to evaluate the impact of the LST on the classification ac-
curacy of different remotely sensed or model-based freeze–
thaw datasets (Li et al., 2022).

Based on the TRIMS LST, K. Li et al. (2021) investigated
the spatial and temporal variations of surface UHI (SUHI)
intensity (SUHII). The positive performance of the TRIMS
LST in obtaining the LST under cloudy conditions enabled
the examination of the SUHII of 305 Chinese cities, espe-
cially the cities located in southern China, where clouds fre-
quently appear. Furthermore, Liao et al. (2022) quantified the
clear-sky bias of the SUHII by using the MODIS LST based
on the TRIMS LST. They emphasized the importance of in-
vestigating the SUHI phenomenon under cloudy conditions.

5 Data availability

TRIMS LST is available for free and easy access through
TPDC at https://doi.org/10.11888/Meteoro.tpdc.271252
(Zhou et al., 2021).

6 Conclusions

A long-term 1 km daily all-weather LST dataset is the basis
for supporting many applications related to land surface pro-
cesses and climate change. Although some all-weather LST
datasets have been released, especially in the last 2 years,
users still lack such data for the period of 2000–2002, dur-
ing which the MODIS LST is not available. In this study,
we report a daily 1 km all-weather LST dataset for China’s
landmass and surrounding areas – TRIMS LST. In contrast
to many all-weather LST products, the TRIMS LST begins
on the first day of the new millennium (i.e., 1 January 2000).

TRIMS LST is produced based on the E-RTM method.
The primary input resources are the Terra/Aqua MODIS
LST and GLDAS LST. The TRIMS LST was comprehen-
sively evaluated from four aspects, including comparison
with satellite and reanalysis LSTs, validation against the in
situ LST, and similarity quantification for the TRIMS-Terra
and TRIMS-Aqua LST time series. The results outside the
temporal gap period indicate that the TRIMS LST agrees
well with the original MODIS and GLDAS LST and the in-
dependent ERA5 and AATSR LST but with more spatial de-
tails and better spatiotemporal completeness. Validation of
TRIMS LST using the in situ LST at 19 ground sites shows
that the MBE was −2.26 to 1.73 K and the RMSE was 0.80
to 3.68 K, with slightly better accuracy than the MODIS LST
and no obvious difference under different weather condi-
tions. The results within the temporal gap period show that
RFSTM and TSETR have similar accuracy performance to
the original RTM method, with MBE differences not exceed-
ing 0.40 K and RMSE differences not exceeding 0.7 K. The
stability of the TRIMS LST differences for T1 at the Aqua
and Terra overpass times is also a side-effect of the excellent
quality.

The TRIMS LST has already been released to the scientific
community. A series of applications, such as soil moisture
estimation and downscaling, surface evapotranspiration esti-
mation, and UHI modeling, has been reported. The TRIMS
LST was found to successfully address the cloud contamina-
tion of satellite TIR LST with good accuracy, long time se-
ries, and spatiotemporal completeness. The TRIMS LST will
be continuously updated to satisfy the latest requirements of
users.
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Appendix A: List of abbreviations

Advanced Along-Track Scanning Radiometer AATSR
Advanced Microwave Scanning Radiometer 2 AMSR2
The Coordinated Energy and Water Cycle Observation Project (CEOP) and the Asia–Australia Mon-
soon Project (CAMP)

CEOP-CAMP

Chinese Ecosystem Research Network CERN
30 m yearly China land cover dataset (2000–2015) CLCD
Day of the year DOY
Enhanced reanalysis and thermal infrared remote sensing merging method E-RTM
Evapotranspiration ET
Field of view FOV
Goddard Earth Sciences Data and Information Services Center GES DISC
Global Land Data Assimilation System assimilation GLDAS
Global Land Surface Satellite GLASS
HaiHe Experiment in the Hai River Basin, China HHE
Heihe Watershed Allied Telemetry Experimental Research HiWATER
Land surface temperature LST
Mean bias deviation MBD
Mean bias error MBE
MSG All-Sky Land Surface Temperature MLST-AS
Moderate Resolution Imaging Spectroradiometer MODIS
Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences NIEER-CAS
Normalized Difference Snow Index NDSI
Normalized Difference Vegetation Index NDVI
Passive microwave PMW
Random-forest-based spatiotemporal merging approach RFSTM
Root mean square error RMSE
Soil moisture SM
Satellite Pour l’Observation de la Terre (SPOT) VEGETATION (VGT) SPOT VGT
Shuttle Radar Topography Mission digital elevation model SRTM DEM
Standard deviation SD
Surface UHI SUHI
Surface UHI intensity SUHII
Thermal infrared TIR
National Tibetan Plateau Data Center TPDC
Thermal and Reanalysis Integrating Moderate-resolution Spatial-seamless LST TRIMS LST
Time series angle TSA
Time-sequential LST-based reconstruction approach TSETR
Urban heat island UHI
Visible Infrared Imaging Radiometer VIIRS
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Appendix B: Validation results of the TRIMS LST and
the MODIS LST with the in situ LST

Table B1. MBE and RMSE from validation results of the daytime TRIMS LST and MODIS LST with in situ LST.

Site Condition Sample size TRIMS LST MODIS LST

MBE (K) RMSE (K) MBE (K) RMSE (K)

MOD MYD MOD MYD MOD MYD MOD MYD MOD MYD

ARO Clear-sky 1418 1029 0.43 0.48 2.30 1.87 0.74 0.57 2.95 2.38
Cloudy 1228 1541 0.33 0.61 2.04 1.95 – – – –

DAM Clear-sky 1363 1297 0.97 0.26 1.92 1.98 0.98 0.27 2.31 2.50
Cloudy 1432 1492 0.67 0.18 1.81 2.07 – – – –

DET Clear-sky 1191 1180 1.73 1.45 2.45 2.49 1.73 1.88 2.70 2.70
Cloudy 830 896 1.70 1.45 2.67 2.43 – – – –

DSL Clear-sky 1109 814 −0.01 −0.33 1.82 1.72 0.00 −0.32 2.38 2.28
Cloudy 1198 1144 −0.01 0.48 1.91 1.65 – – – –

EBA Clear-sky 410 289 0.63 0.59 2.06 1.90 0.65 0.53 2.38 2.31
Cloudy 472 580 0.74 0.61 2.01 1.80 – – – –

GOB Clear-sky 363 350 −0.58 −1.88 1.73 2.41 −0.61 −1.89 2.25 2.74
Cloudy 368 390 −0.96 −1.65 1.72 2.71 – – – –

HZZ Clear-sky 1046 975 1.06 −1.03 1.84 2.06 1.05 −1.04 2.40 3.14
Cloudy 1219 1354 0.59 −0.66 1.78 2.05 – – – –

SDQ Clear-sky 1507 1466 0.82 0.23 2.57 2.05 0.81 0.39 3.16 2.57
Cloudy 1147 1132 0.86 0.37 2.49 2.23 – – – –

SSW Clear-sky 191 174 −0.42 −1.33 2.09 2.08 −0.43 −1.35 3.10 2.51
Cloudy 194 203 −1.23 −1.77 2.36 2.45 – – – –

HLA Clear-sky 1121 946 −0.79 −0.85 2.30 2.18 −0.74 −0.71 2.76 2.60
Cloudy 1084 1159 −0.68 −0.75 2.68 1.81 – – – –

D105 Clear-sky 92 44 1.61 1.28 3.68 2.53 1.36 0.67 4.09 2.71
Cloudy 178 138 1.29 0.61 3.94 2.74 – – – –

GAZ Clear-sky 220 240 0.74 −0.60 2.12 2.17 0.47 −0.55 2.37 2.82
Cloudy 89 157 1.15 −0.85 2.11 1.96 – – – –

CBS Clear-sky 54 56 0.49 1.38 2.41 3.41 0.85 1.49 2.39 3.43
Cloudy 220 262 0.76 1.59 2.42 3.43 – – – –

DXI Clear-sky 246 226 0.83 0.30 2.13 1.79 0.80 0.28 2.33 2.00
Cloudy 547 562 0.81 0.54 2.19 1.79 – – – –

DHS Clear-sky 23 21 0.38 0.77 1.37 1.53 0.30 0.74 0.74 1.18
Cloudy 292 299 0.42 0.47 1.51 1.22 – – – –

MQU Clear-sky 101 64 0.15 −1.50 2.43 2.85 0.12 −1.47 3.05 3.13
Cloudy 77 117 0.05 −1.35 2.27 2.99 – – – –

GUT Clear-sky 69 63 −0.22 0.02 2.10 2.25 −0.29 −0.07 2.20 2.25
Cloudy 310 303 −0.28 0.60 1.83 2.22 – – – –

QYZ Clear-sky 26 19 0.95 1.01 3.00 3.17 0.73 0.90 2.35 2.14
Cloudy 139 177 0.71 0.91 2.71 3.35 – – – –

TYU Clear-sky 211 196 0.37 −0.88 2.56 2.14 0.31 −0.90 3.01 2.63
Cloudy 333 348 0.19 −0.58 2.63 2.03 – – – –
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Table B2. MBE and RMSE from validation results of the nighttime TRIMS LST and MODIS LST with the in situ LST.

Site Condition Sample size TRIMS LST MODIS LST

MBE (K) RMSE (K) MBE (K) RMSE (K)

MOD MYD MOD MYD MOD MYD MOD MYD MOD MYD

ARO Clear-sky 1617 1757 −0.72 −0.53 1.87 1.67 −0.70 −0.60 2.09 1.90
Cloudy 1196 1078 −0.68 −0.63 1.62 1.76 – – – –

DAM Clear-sky 853 973 −0.80 −0.58 2.14 1.70 −0.82 −0.81 2.23 1.87
Cloudy 1643 1673 −0.86 −0.52 1.98 1.64 – – – –

DET Clear-sky 1325 1476 −0.08 0.17 0.83 0.90 −0.08 0.16 0.86 0.97
Cloudy 679 630 0.42 −0.23 0.80 0.83 – – – –

DSL Clear-sky 1109 1646 −0.90 −0.84 1.82 1.50 −0.45 −0.42 1.92 1.78
Cloudy 1198 797 −1.13 0.44 1.91 1.24 – – – –

EBA Clear-sky 566 621 −0.61 −0.60 1.65 2.00 −0.58 −0.64 1.77 2.19
Cloudy 443 404 −0.55 −0.64 1.56 1.68 – – – –

GOB Clear-sky 467 381 −1.60 −1.65 2.05 1.93 −1.62 −1.65 1.96 1.96
Cloudy 376 321 −2.04 −1.51 2.26 1.79 – – – –

HZZ Clear-sky 772 944 −1.29 −0.94 1.86 1.46 −1.28 −0.93 2.03 1.65
Cloudy 1348 1296 −1.77 −1.36 2.32 1.86 – – – –

SDQ Clear-sky 1557 1286 −0.79 −0.94 2.61 2.33 −1.02 −0.93 2.68 2.44
Cloudy 1112 981 −1.06 −0.94 2.70 2.15 – – – –

SSW Clear-sky 172 164 −2.26 −1.87 2.53 2.11 −2.27 −1.86 2.59 2.15
Cloudy 195 190 −1.95 −1.79 2.29 2.00 – – – –

HLA Clear-sky 1042 1038 −0.82 −0.73 2.24 1.61 −0.85 −0.73 2.34 1.75
Cloudy 1066 989 −0.85 −0.87 2.24 1.55 – – – –

D105 Clear-sky 131 167 −1.07 −0.92 2.39 2.57 −1.05 −1.12 2.58 2.69
Cloudy 95 121 −1.05 −1.10 2.81 2.74 – – – –

GAZ Clear-sky 289 265 −0.63 −0.68 1.85 1.35 −0.68 −0.57 1.90 1.39
Cloudy 124 86 −0.75 −0.69 1.80 1.32 – – – –

CBS Clear-sky 95 98 −1.07 −0.55 2.81 2.21 −1.00 −0.50 2.79 2.26
Cloudy 190 208 −1.00 −0.33 3.31 2.37 – – – –

DXI Clear-sky 334 349 −1.10 −1.45 3.43 3.06 −1.65 −1.44 3.51 3.13
Cloudy 454 446 −1.15 −1.42 3.77 2.58 – – – –

DHS Clear-sky 53 53 −0.82 −0.74 1.97 2.31 −0.74 −0.89 1.83 2.22
Cloudy 264 262 −0.81 −0.89 2.35 2.30 – – – –

MQU Clear-sky 85 81 0.68 0.78 2.23 2.41 0.76 0.70 2.16 2.40
Cloudy 105 90 0.81 0.76 2.32 2.53 – – – –

GUT Clear-sky 122 126 −0.90 −0.76 2.14 1.80 −0.94 −0.78 2.19 1.81
Cloudy 237 230 −0.93 −0.70 2.49 1.78 – – – –

QYZ Clear-sky 32 28 −0.90 −0.91 3.00 2.09 −1.16 −0.80 2.62 1.88
Cloudy 145 175 −1.13 −0.88 3.49 2.37 – – – –

TYU Clear-sky 235 242 −1.12 −0.78 2.65 2.26 −0.94 −0.75 2.69 2.25
Cloudy 258 273 −1.13 −0.79 2.91 2.37 – – – –
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Appendix C

Table C1. Summary of publicly available all-weather, all-sky, and gap-free LST products.

Product Spatial
resolution

Temporal
resolution

Spatial
coverage

Temporal
coverage

Download links References

All-weather 1 km land surface temperature
products for China

1 km One obser-
vation per
day

China 2002–2011 http://www.geodata.cn/index.html (last
access: 8 January 2024)

Duan et al. (2017)

Global monthly reconstructed minimum,
average, and maximum LST data (2003–
2016)

5.6 km Monthly mean Global 2003–2016 https://doi.org/
10.5281/zenodo.1115666

Metz et al. (2017a)

Daily 1 km all-weather land surface temper-
ature dataset for western China V1

1 km Two observa-
tions per day

45.00–22◦ N,
65.00–108◦ E

2003–2018 https://data.tpdc.ac.cn (expired) X. Zhang et al.
(2019, 2020)

MSG Land Surface Temperature – All Sky
(MLST-AS) (LSA-005)

3–5 km 15 min Europe and
Africa

2020-Now https://landsaf.ipma.pt/en (last access:
8 January 2024)

Martins et al.
(2019)

The 1 km seamless land surface temperature
dataset of China (2002–2020)

1 km Two observa-
tions per day

China 2002–2020 https://data.tpdc.ac.cn (last access:
8 January 2024)

Xu and Cheng
(2021);
Zhang and Cheng
(2020);
Q. Zhang et al.
(2020)

A combined Terra and Aqua MODIS land
surface temperature and meteorological sta-
tion data product for China (2003–2017)

5.6 km Monthly mean China 2003–2017 https://data.tpdc.ac.cn (last access:
8 January 2024)

Zhao et al. (2020a)

Daily 1 km all-weather land surface tem-
perature dataset for western China (TRIMS
LST-TP; 2000–2022) V2

1 km Four observa-
tions per day

45.00–20◦ N,
72.00–104◦ E

2000–2022 https://data.tpdc.ac.cn (last access:
8 January 2024)

Zhang et al. (2021)

Daily 1 km all-weather land surface temper-
ature dataset for China’s landmass and its
surrounding areas
(TRIMS LST; 2000–2022)

1 km Four observa-
tions per day

19.00–55◦ N,
72.00–135◦ E

2000–2022 https://data.tpdc.ac.cn (last access:
8 January 2024)

Zhang et al. (2021)

Worldwide continuous gap-filled MODIS
land surface temperature dataset

1 km Two observa-
tions per day

Global 2002-Now https://shilosh.users.earthengine.app/
view/continuous-lst (last access:
8 January 2024)

Shiff et al. (2021)

Global daily 0.05◦ spatiotemporal continu-
ous land surface temperature dataset
(2002–2020)

0.05◦ Four observa-
tions per day

Global 2002–2020 https://data.tpdc.ac.cn (last access:
8 January 2024)

Yu et al. (2022)

A global seamless 1 km resolution daily
land surface temperature dataset (2003–
2020)

1 km Two observa-
tions per day

Global 2003–2020 https://doi.org/10.25380/iastate.c.
5078492 (last access: 8 January 2024)

Zhang et al. (2022)

Global spatiotemporally seamless Tdm
products ranging from 2003 to 2019
(GADTC products)

0.5◦ Daily mean Global 2003–2019 https://doi.org/
10.5281/zenodo.6287052

Hong et al. (2022a)

The 0.02◦ seamless hourly land surface
temperature dataset over East Asia (2016–
2021)

0.02◦ Hourly East Asia 2016–2021 http://data.tpdc.ac.cn/zh-
hans/data/06414391-abd4-4d28-a844-
bd036a0b8c55/ (last access: 8 Jan-
uary 2024)

Dong et al. (2022);
Zhou and Cheng
(2020)

The diurnal all-sky ABI LST product 2 km Hourly Contiguous USA
and
Mexico

2017–2021 http://glass.umd.edu/allsky_LST/ABI/
(last access: 8 January 2024)

Jia et al. (2022a)

Global hourly, 5 km, and all-sky land sur-
face temperature (GHA-LST)

5 km Hourly Global 2011–2021 https://doi.org/
10.5281/zenodo.6981704;
http://glass.umd.edu/allsky_LST/
GHA-LST (last access: 8 January 2024)

Jia et al. (2023)

Daily 1 km all-sky time-consistent land sur-
face temperature dataset over the Tibetan
Plateau
(2001–2018)

1 km Daily Qinghai–Tibetan
Plateau

2001–2018 https://data.tpdc.ac.cn/zh-
hans/data/3eb11507-6742-4f16-bda2-
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