Articles | Volume 15, issue 12
https://doi.org/10.5194/essd-15-5739-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/essd-15-5739-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Extension of a high temporal resolution sea level time series at Socoa (Saint-Jean-de-Luz, France) back to 1875
Md Jamal Uddin Khan
CORRESPONDING AUTHOR
LIttoral ENvironnement et Sociétés – UMR 7266, ULR/CNRS, La Rochelle, 17000, France
Inge Van Den Beld
Service hydrographique et océanographique de la marine (Shom), Brest, 29200, France
Guy Wöppelmann
LIttoral ENvironnement et Sociétés – UMR 7266, ULR/CNRS, La Rochelle, 17000, France
Laurent Testut
LIttoral ENvironnement et Sociétés – UMR 7266, ULR/CNRS, La Rochelle, 17000, France
Alexa Latapy
Service hydrographique et océanographique de la marine (Shom), Brest, 29200, France
Nicolas Pouvreau
Service hydrographique et océanographique de la marine (Shom), Brest, 29200, France
Related authors
Md Jamal Uddin Khan, Fabien Durand, Kerry Emanuel, Yann Krien, Laurent Testut, and A. K. M. Saiful Islam
Nat. Hazards Earth Syst. Sci., 22, 2359–2379, https://doi.org/10.5194/nhess-22-2359-2022, https://doi.org/10.5194/nhess-22-2359-2022, 2022
Short summary
Short summary
Cyclonic storm surges constitute a major threat to lives and properties along the vast coastline of the Bengal delta. From a combination of cyclone and storm surge modelling, we present a robust probabilistic estimate of the storm surge flooding hazard under the current climate. The estimated extreme water levels vary regionally, and the inland flooding is strongly controlled by the embankments. More than 1/10 of the coastal population is currently exposed to 50-year return period flooding.
Aurélia Bernard, Nathalie Long, Mélanie Becker, Jamal Khan, and Sylvie Fanchette
Nat. Hazards Earth Syst. Sci., 22, 729–751, https://doi.org/10.5194/nhess-22-729-2022, https://doi.org/10.5194/nhess-22-729-2022, 2022
Short summary
Short summary
This article reviews current scientific literature in order to define vulnerability in the context of coastal Bangladesh facing cyclonic flooding. A new metric, called the socio-spatial vulnerability index, is defined as a function of both the probability of the cyclonic flood hazard and the sensitivity of delta inhabitants. The main result shows that three very densely populated districts, located in the Ganges delta tidal floodplain, are highly vulnerable to cyclonic flooding.
Md. Jamal Uddin Khan, Fabien Durand, Xavier Bertin, Laurent Testut, Yann Krien, A. K. M. Saiful Islam, Marc Pezerat, and Sazzad Hossain
Nat. Hazards Earth Syst. Sci., 21, 2523–2541, https://doi.org/10.5194/nhess-21-2523-2021, https://doi.org/10.5194/nhess-21-2523-2021, 2021
Short summary
Short summary
The Bay of Bengal is well known for some of the deadliest cyclones in history. At the same time, storm surge forecasting in this region is physically involved and computationally costly. Here we show a proof of concept of a real-time, computationally efficient, and physically consistent forecasting system with an application to the recent Supercyclone Amphan. While challenges remain, our study paves the path forward to the improvement of the quality of localized forecast and disaster management.
Marie-Françoise Lalancette, Guy Wöppelmann, Sylvain Lucas, Roger Bayer, Jean-Daniel Bernard, Jean-Paul Boy, Nicolas Florsch, Jacques Hinderer, Nicolas Le Moigne, Muriel Llubes, Bernard Luck, and Didier Rouxel
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-211, https://doi.org/10.5194/essd-2025-211, 2025
Revised manuscript accepted for ESSD
Short summary
Short summary
This study presents 25 years of carefully processed gravity measurements from western France, offering a unique dataset to support investigations of long-term land motion and sea level change. The data are consistent with satellite-based observations and are made available for use in future geophysical and climate-related research.
Clémence Chupin, Valérie Ballu, Laurent Testut, Yann-Treden Tranchant, and Jérôme Aucan
Ocean Sci., 19, 1277–1314, https://doi.org/10.5194/os-19-1277-2023, https://doi.org/10.5194/os-19-1277-2023, 2023
Short summary
Short summary
Reducing uncertainties in coastal sea level trend estimates requires a better understanding of altimeter measurements and local sea level dynamics. Using long-term sea level time series from the Nouméa tide gauge (New Caledonia) and in situ data collected as part of the GEOCEAN-NC campaign, this study presents a method inspired from Cal/Val studies to re-analyse about 20 years of altimetry observations and re-address the question of sea level evolution in the lagoon.
Médéric Gravelle, Guy Wöppelmann, Kevin Gobron, Zuheir Altamimi, Mikaël Guichard, Thomas Herring, and Paul Rebischung
Earth Syst. Sci. Data, 15, 497–509, https://doi.org/10.5194/essd-15-497-2023, https://doi.org/10.5194/essd-15-497-2023, 2023
Short summary
Short summary
We produced a reanalysis of GNSS data near tide gauges worldwide within the International GNSS Service. It implements advances in data modelling and corrections, extending the record length by about 7 years. A 28 % reduction in station velocity uncertainties is achieved over the previous solution. These estimates of vertical land motion at the coast supplement data from satellite altimetry or tide gauges for an improved understanding of sea level changes and their impacts along coastal areas.
Md Jamal Uddin Khan, Fabien Durand, Kerry Emanuel, Yann Krien, Laurent Testut, and A. K. M. Saiful Islam
Nat. Hazards Earth Syst. Sci., 22, 2359–2379, https://doi.org/10.5194/nhess-22-2359-2022, https://doi.org/10.5194/nhess-22-2359-2022, 2022
Short summary
Short summary
Cyclonic storm surges constitute a major threat to lives and properties along the vast coastline of the Bengal delta. From a combination of cyclone and storm surge modelling, we present a robust probabilistic estimate of the storm surge flooding hazard under the current climate. The estimated extreme water levels vary regionally, and the inland flooding is strongly controlled by the embankments. More than 1/10 of the coastal population is currently exposed to 50-year return period flooding.
Begoña Pérez Gómez, Ivica Vilibić, Jadranka Šepić, Iva Međugorac, Matjaž Ličer, Laurent Testut, Claire Fraboul, Marta Marcos, Hassen Abdellaoui, Enrique Álvarez Fanjul, Darko Barbalić, Benjamín Casas, Antonio Castaño-Tierno, Srđan Čupić, Aldo Drago, María Angeles Fraile, Daniele A. Galliano, Adam Gauci, Branislav Gloginja, Víctor Martín Guijarro, Maja Jeromel, Marcos Larrad Revuelto, Ayah Lazar, Ibrahim Haktan Keskin, Igor Medvedev, Abdelkader Menassri, Mohamed Aïssa Meslem, Hrvoje Mihanović, Sara Morucci, Dragos Niculescu, José Manuel Quijano de Benito, Josep Pascual, Atanas Palazov, Marco Picone, Fabio Raicich, Mohamed Said, Jordi Salat, Erdinc Sezen, Mehmet Simav, Georgios Sylaios, Elena Tel, Joaquín Tintoré, Klodian Zaimi, and George Zodiatis
Ocean Sci., 18, 997–1053, https://doi.org/10.5194/os-18-997-2022, https://doi.org/10.5194/os-18-997-2022, 2022
Short summary
Short summary
This description and mapping of coastal sea level monitoring networks in the Mediterranean and Black seas reveals the existence of 240 presently operational tide gauges. Information is provided about the type of sensor, time sampling, data availability, and ancillary measurements. An assessment of the fit-for-purpose status of the network is also included, along with recommendations to mitigate existing bottlenecks and improve the network, in a context of sea level rise and increasing extremes.
Aurélia Bernard, Nathalie Long, Mélanie Becker, Jamal Khan, and Sylvie Fanchette
Nat. Hazards Earth Syst. Sci., 22, 729–751, https://doi.org/10.5194/nhess-22-729-2022, https://doi.org/10.5194/nhess-22-729-2022, 2022
Short summary
Short summary
This article reviews current scientific literature in order to define vulnerability in the context of coastal Bangladesh facing cyclonic flooding. A new metric, called the socio-spatial vulnerability index, is defined as a function of both the probability of the cyclonic flood hazard and the sensitivity of delta inhabitants. The main result shows that three very densely populated districts, located in the Ganges delta tidal floodplain, are highly vulnerable to cyclonic flooding.
Davide Zanchettin, Sara Bruni, Fabio Raicich, Piero Lionello, Fanny Adloff, Alexey Androsov, Fabrizio Antonioli, Vincenzo Artale, Eugenio Carminati, Christian Ferrarin, Vera Fofonova, Robert J. Nicholls, Sara Rubinetti, Angelo Rubino, Gianmaria Sannino, Giorgio Spada, Rémi Thiéblemont, Michael Tsimplis, Georg Umgiesser, Stefano Vignudelli, Guy Wöppelmann, and Susanna Zerbini
Nat. Hazards Earth Syst. Sci., 21, 2643–2678, https://doi.org/10.5194/nhess-21-2643-2021, https://doi.org/10.5194/nhess-21-2643-2021, 2021
Short summary
Short summary
Relative sea level in Venice rose by about 2.5 mm/year in the past 150 years due to the combined effect of subsidence and mean sea-level rise. We estimate the likely range of mean sea-level rise in Venice by 2100 due to climate changes to be between about 10 and 110 cm, with an improbable yet possible high-end scenario of about 170 cm. Projections of subsidence are not available, but historical evidence demonstrates that they can increase the hazard posed by climatically induced sea-level rise.
Md. Jamal Uddin Khan, Fabien Durand, Xavier Bertin, Laurent Testut, Yann Krien, A. K. M. Saiful Islam, Marc Pezerat, and Sazzad Hossain
Nat. Hazards Earth Syst. Sci., 21, 2523–2541, https://doi.org/10.5194/nhess-21-2523-2021, https://doi.org/10.5194/nhess-21-2523-2021, 2021
Short summary
Short summary
The Bay of Bengal is well known for some of the deadliest cyclones in history. At the same time, storm surge forecasting in this region is physically involved and computationally costly. Here we show a proof of concept of a real-time, computationally efficient, and physically consistent forecasting system with an application to the recent Supercyclone Amphan. While challenges remain, our study paves the path forward to the improvement of the quality of localized forecast and disaster management.
Lucia Pineau-Guillou, Pascal Lazure, and Guy Wöppelmann
Ocean Sci., 17, 17–34, https://doi.org/10.5194/os-17-17-2021, https://doi.org/10.5194/os-17-17-2021, 2021
Short summary
Short summary
We investigated the long-term changes of the principal tidal component M2 along North Atlantic coasts, from 1846 to 2018. We analysed 18 tide gauges. We found that M2 variations are consistent at all the stations in the North-East Atlantic, whereas some discrepancies appear in the North-West Atlantic. The similarity between the North Atlantic Oscillation and M2 variations in the North-East Atlantic suggests a possible influence of the large-scale atmospheric circulation on the tide.
Cited articles
Aarup, T., Wöppelmann, G., Woodworth, P. L., Hernandez, F., Vanhoorne, B., Schöne, T., and Thompson, P. R.: Comments on the article “Uncertainty and bias in electronic tide-gauge records: evidence from collocated sensors” by S. Pytharouli, S. Chaikalis, S. C. Stiros in Measurement (Vol. 125, September 2018), https://doi.org/10.1016/j.measurement.2018.12.007, 2019.
Arnoux, F., Abadie, S., Bertin, X., and Kojadinovic, I.: Coastal flooding event definition based on damages: Case study of Biarritz Grande Plage on the French Basque coast, Coastal Eng., 166, p. 103873, https://doi.org/10.1016/j.coastaleng.2021.103873, 2021.
Arns, A., Wahl, T., Wolff, C., Vafeidis, A. T., Haigh, I. D., Woodworth, P., Niehüser, S., and Jensen, J.: Non-linear interaction modulates global extreme sea levels, coastal flood exposure, and impacts, Nat. Commun., 11, 1–9, https://doi.org/10.1038/s41467-020-15752-5, 2020.
Bradshaw, E., Lesley, R., and Thorkild, A.: Sea Level Data Archaeology and the Global Sea Level Observing System (GLOSS), Geo. Res. J., 6, 9–16, https://doi.org/10.1016/j.grj.2015.02.005, 2015.
Brie: Report no. 158, Mission hydrographique de France et d'Algerie (MHCFA), Cherbourg, 1961.
Bureau des longitudes: Guide de données astronomiques pour l'observation du ciel: Annuaire du Bureau des longitudes, IMCEE and Bureau des longitudes, 56–58, ISBN 9782759805419, https://gallica.bnf.fr/ark:/12148/bpt6k9614055r (last access: 10 April 2022), 2011.
Calafat, F. M., Chambers, D. P., and Tsimplis M. N.: Mechanisms of Decadal Sea Level Variability in the Eastern North Atlantic and the Mediterranean Sea, J. Geophys. Res.-Oceans, 117, C09022, https://doi.org/10.1029/2012jc008285, 2012.
Chafik, L., Nilsen, J. E. Ø., Dangendorf, S., Reverdin, G., and Frederikse, T.: North Atlantic Ocean circulation and decadal sea level change during the altimetry era, Sci. Rep., 9, 1–9, https://doi.org/10.1038/s41598-018-37603-6, 2019.
Church, J. A. and White, N. J.: A 20th century acceleration in global sea-level rise. Geophys. Res. Lett., 33, L01602, https://doi.org/10.1029/2005GL024826, 2006.
Church, J. A., Clark, P. U., Cazenave, A., Gregory, J. M., Jevrejeva, S., Levermann, A., Merrifield, M. A., Milne, G. A., Nerem, R. S., Nunn, P. D., Payne, A. J., Pfeffer, W. T., Stammer, D., and Unnikrishnan, A. S.: Sea Level Change. In: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Stocker, T. F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S. K., Boschung, J., Nauels, A., Xia, Y., Bex, V., and Midgley, P. M., Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, https://www.ipcc.ch/site/assets/uploads/2018/02/WG1AR5_Chapter13_FINAL.pdf (last access: last access: 7 December 2023), 2013.
Codiga, D. L.: Unified Tidal Analysis and Prediction Using the UTide Matlab Functions, Technical Report 2011-01, Graduate School of Oceanography, University of Rhode Island, Narragansett, RI, 59 pp., ftp://www.po.gso.uri.edu/pub/downloads/codiga/pubs/2011Codiga-UTide-Report.pdf (last access: 26 January 2022), 2011.
Coles, S. G.: An introduction to statistical modelling of extreme values. Springer-Verlag, New York, https://doi.org/10.1007/978-1-4471-3675-0, 2001.
Dangendorf, S., Marcos, M., Wöppelmann, G., Conrad, C. P., Frederikse, T., and Riva, R.: Reassessment of 20th century global mean sea level rise. P. Natl. Acad. Sci. USA, 114, 5946–5951, https://doi.org/10.1073/pnas.1616007114, 2017.
Dodet, G., Bertin, X., Bouchette, F., Gravelle, M., Testut, L. and Wöppelmann, G.: Characterization of sea-level variations along the Metropolitan Coasts of France: waves, tides, storm surges and long-term changes, J. Coast. Res., 88 (SI), 10–24, https://doi.org/10.2112/SI88-003.1, 2019.
Ekman, M.: Climate Changes Detected Through the Worlds Longest Sea Level Series, Global Planet. Change, 9, 215–224, https://doi.org/10.1016/s0921-8181(99)00045-4, 1999.
Fox-Kemper, B., Hewitt, H. T., Xiao, C., Aðalgeirsdóttir, G., Drijfhout, S. S., Edwards, T. L., Golledge, N. R., Hemer, M., Kopp, R. E., Krinner, G., Mix, A., Notz, D., Nowicki, S., Nurhati, I. S., Ruiz, L., Sallée, J.-B., Slangen, A. B. A., and Yu, Y.: Ocean, Cryosphere and Sea Level Change, in: Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S. L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M. I., Huang, M., Leitzell, K., Lonnoy, E., Matthews, J. B. R., Maycock, T. K., Waterfield, T., Yelekçi, O., Yu, R., and Zhou, B., Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 1211–1362, https://doi.org/10.1017/9781009157896.011, 2021.
Gehrels, W. R. and Woodworth, P. L.: When did modern rates of sea-level rise start?, Global Planet. Change, 100, 263–277, https://doi.org/10.1016/j.gloplacha.2012.10.020 2013.
Gouriou, T., Míguez, B. M., and Wöppelmann, G.: Reconstruction of a two-century long sea level record for the Pertuis d'Antioche (France), Cont. Shelf Res., 61, 31–40, https://doi.org/10.1016/j.csr.2013.04.028, 2013.
Haigh, I. D., Pickering, M. D., Green, J. A. M., Arbic, B. K., Arns, A., Dangendorf, S., Hill, D., Horsburgh, K., Howard, T., Idier, D., Jay, D. A., Lee, S. B., Müller, M., Schindelegger, M., Talke, S. A., Wilmes, S.-B., and Woodworth, P. L.: The tides they are a-changin': A comprehensive review of past and future nonastronomical changes in tides, their driving mechanisms and future implications, Rev. Geophys., 57, e2018RG000636, https://doi.org/10.1029/2018RG000636, 2020.
Haigh, I. D., Marcos, M., Talke, S. A., Woodworth, P. L., Hunter, J. R., Hague, B. S., Arns, A., Bradshaw, E., and Thompson, P.: GESLA Version 3: A major update to the global higher-frequency sea-level dataset, Geophys. Data J., 10, 293–314, https://doi.org/10.1002/gdj3.174, 2022.
Hogarth, P., Hughes, C. W., Williams, S. D. P., and Wilson, C.: Improved and Extended Tide Gauge Records for the British Isles Leading to More Consistent Estimates of Sea Level Rise and Acceleration Since 1958, Prog. Oceanogr., 5, 102333, https://doi.org/10.1016/j.pocean.2020.102333, 2020.
Holgate, S. J., Matthews, A., Woodworth, P. L., Rickards, L. J., Tamisiea, M. E., Bradshaw, E., Foden, P. R., Gordon, K. M., Jevrejeva, S., and Pugh, J.: New data systems and products at the Permanent Service for Mean Sea Level. J. Coast. Res., 29, 493–504, https://doi.org/10.2112/JCOASTRES-D-12-00175.1, 2013.
Hughes, D. W., Yallop, B. D., and Hohenkerk, C. Y.: The equation of time, Mon. Not. R. Astron. Soc., 238, 1529–1535, https://doi.org/10.1093/mnras/238.4.1529, 1989.
Hunter, J., Coleman, R., and Pugh, D.: The Sea Level at Port Arthur, Tasmania, from 1841 to the Present, Geophys. Res. Lett., 4, 1401, https://doi.org/10.1029/2002gl016813, 2003.
IOC: Manual on sea level measurement and interpretation, Volume I – Basic Procedures, IOC Manuals and Guides, No. 14, UNESCO, Paris, 1985.
IOC: Manual on sea level measurement and interpretation, Volume V – Radar Gauges, IOC Manuals and Guides, No. 14, UNESCO, Paris, 235 pp., https://unesdoc.unesco.org/ark:/48223/pf0000246981 (last access: 8 December 2023), 2016.
IOC: Quality control of in situ sea level observations: a review and progress towards automated quality control, IOC Manuals and Guides, No. 83, UNESCO, Paris, https://unesdoc.unesco.org/ark:/48223/pf0000373566 (last access: 30 May 2023), 2020.
Jevrejeva, S., Moore, J. C., Grinsted, A., and Woodworth, P. L.: Recent global sea level acceleration started over 200 years ago?, Geophys. Res. Lett., 35, L08715, https://doi.org/10.1029/2008GL033611, 2008.
Khan, M. J. U., Van Den Beld, I., Wöppelmann, G., Testut, L., Latapy, A., and Pouvreau, N.,: Sea level data archaeology at Socoa (Saint Jean-de-Luz, France) [data set], Zenodo, https://doi.org/10.5281/zenodo.7438469, 2022.
Latapy, A., Ferret, Y., Testut, L., Talke, S., Aarup, T., Pons, F., Jan, G., Bradshaw, E., and Pouvreau, N.: Data rescue process in the context of sea level reconstructions: An overview of the methodology, lessons learned, up-to-date best practices and recommendations, Geosci. Data J., 00, 1– 30, https://doi.org/10.1002/gdj3.179, 2022.
Letetrel, C., Marcos, M., Míguez, B. M., and Wöppelmann, G.: Sea Level Extremes in Marseille (NW Mediterranean) During 1885–2008, Cont. Shelf Res., 7, 1267–1274, https://doi.org/10.1016/j.csr.2010.04.003, 2010.
Marcos, M. and Woodworth, P. L.: Spatio-temporal changes in extreme sea levels along the coasts of the North Atlantic and the Gulf of Mexico, J. Geophys. Res.-Oceans, 122, 7031–7048, https://doi.org/10.1002/2017JC013065, 2017.
Marcos, M., Puyol, B., Wöppelmann, G., Herrero, C., and García-Fernández, M. J.: The Long Sea Level Record at Cadiz (Southern Spain) from 1880 to 2009, J. Geophys. Res., 12, C12003, https://doi.org/10.1029/2011jc007558, 2011.
Marcos, M., Calafat, F. M., Berihuete, Á., and Dangendorf, S.: Long-term variations in global sea level extremes, J. Geophys. Res.-Oceans, 120, 8115–8134, 2015.
Marcos, M., Puyol, B., Amores, Gómez, B. P., Fraile, M., and Talke, S. A.: Historical Tide Gauge Sea-Level Observations in Alicante and Santander (Spain) Since the Century, Geosci. Data J., 8, 144–153, https://doi.org/10.1002/gdj3.112, 2021.
Martín Míguez, B., Le Roy, R., and Wöppelmann, G.: The use of radar tide gauges to measure variations in sea level along the French coast, J. Coast. Res., 24, 61–68, https://doi.org/10.2112/06-0787.1, 2008.
Menéndez, M. and Woodworth, P. L.: Changes in extreme high water levels based on a quasi-global tide-gauge dataset, J. Geophys. Res., 115, C10011, https://doi.org/10.1029/2009JC005997, 2010.
Muis, S., Verlaan, M., Winsemius, H. C., Aerts, J. C., and Ward, P. J.: A global reanalysis of storm surges and extreme sea levels, Nat. Commun., 7, 1–12, https://doi.org/10.1038/ncomms11969, 2016.
Müller, M.: Equation of time-problem in astronomy, ACTA PHYSICA POLONICA SERIES A, 88, S-49, Vancouver, 1995.
Oppenheimer, M., Glavovic, B. C., Hinkel, J., van de Wal, R., Magnan, A. K., Abd-Elgawad, A., Cai, R., CifuentesJara, M., DeConto, R. M., Ghosh, T., Hay, J., Isla, F., Marzeion, B., Meyssignac, B., and Sebesvari, Z.: Sea Level Rise and Implications for Low-Lying Islands, Coasts and Communities, in: IPCC Special Report on the Ocean and Cryosphere in a Changing Climate, edited by: Pörtner, H.-O., Roberts, D. C., Masson-Delmotte, V., Zhai, P., Tignor, M., Poloczanska, E., Mintenbeck, K., Alegriìa, A., Nicolai, M., Okem, A., Petzold, J., Rama, B., Weyer, N. M., 321–445, https://doi.org/10.1017/9781009157964.006, 2019.
Pan, H. and Lv, X.: Is there a quasi 60-year oscillation in global tides?, Cont. Shelf Res., 222, 104433, https://doi.org/10.1016/j.csr.2021.104433, 2021.
Piccioni, G., Dettmering, D., Bosch, W., and Seitz, F.: TICON: TIdal CONstants based on GESLA sea-level records from globally located tide gauges, Geosci. Data J., 6, 97–104, https://doi.org/10.1002/gdj3.72, 2019.
Pineau-Guillou, L., Lazure, P., and Wöppelmann, G.: Large-scale changes of the semidiurnal tide along North Atlantic coasts from 1846 to 2018, Ocean Sci., 17, 17–34, 2021.
Poirier, E., Gravelle, M., and Wöppelmann, G.: Contrôles du marégraphe de Socoa (Saint Jean-de-Luz) – Missions du 10-12 mai 2017 et du 23–24 août 2017, SONEL Rapport Nr. 001/17, https://www.sonel.org/SoTaBord/ged/Poirier-2017-controles_du_maregraphe_de_soc.pdf (last access: 7 December 2023), 2017.
Pouvreau, N.: Trois Cents Ans de Mesures Marégraphiques En France: outils, Méthodes Et Tendances Des Composantes Du Niveau de La Mer Au Port de Brest, PhDThesis, Université de La Rochelle, https://theses.hal.science/tel-00353660 (last access: 7 December 2023), 2008.
Pouvreau, N., Miguez, B. M., Simon, B., and Wöppelmann, G.: Evolution of the semi-diurnal tidal constituent M2 at Brest from 1846 to 2005, Comptes Rendus Geosci., 11, 802–808, https://doi.org/10.1016/j.crte.2006.07.003, 2006.
Poulle, Y.: La France à l'heure allemande, in: Charter School Library, Vol. 157, 493–502, https://doi.org/10.3406/bec.1999.450989, 1999.
Pugh, D. and Woodworth, P.: Sea-Level Science: Understanding Tides, Surges, Tsunamis and Mean Sea-Level Changes, Cambridge University Press, 407 pp., ISBN 9781107028197, 2014.
Ray, R. D. and Talke, S. A.: Nineteenth-century tides in the Gulf of Maine and implications for secular trends, J. Geophys. Res.-Oceans, 124, 7046–7067, https://doi.org/10.1029/2019JC015277, 2019.
Roubertou, A.: The Brillié Tide-Gauge, The International Hydrographic Review, Reproduced from the “Bulletin d 'information du Comite Central d 'Oceanographie et d'Etude des Cotes (C.O.E.C.), 7th year, No. 6, Paris, June 1955”, https://journals.lib.unb.ca/index.php/ihr/article/download/26743/1882519503 (last access: 7 December 2023), 1955.
Roubertou, A.: Rapport no. 272. Mission Hydrographique de Dragage (MHD), Bordeaux, 1963.
SHOM: Références altimétriques maritimes (RAM), Shom, Brest, France, https://diffusion.shom.fr/pro/references-altimetriques-maritimes-ram.html (last access: 25 March 2022), 2020.
SHOM: Tide gauge SAINT-JEAN-DE-LUZ_SOCOA, SHOM [data set], https://doi.org/10.17183/REFMAR#95, 2023.
Sturges, W. and Douglas, B. C.: Wind effects on estimates of sea level rise, J. Geophys. Res.-Oceans, 116, C06008, https://doi.org/10.1029/2010JC006492, 2011.
Tadesse, M., Wahl, T., and Cid, A.: Data-driven modeling of global storm surges, Front. Mar. Sci., 7, p.260, https://doi.org/10.3389/fmars.2020.00260, 2020.
Talke, S. A. and Jay, D. A.: Archival Water-Level Measurements: Recovering Historical Data to Help Design for the Future, Civil and Environmental Engineering Faculty Publications and Presentations, 412, http://archives.pdx.edu/ds/psu/21294 (last access: 30 June 2023), 2017.
Talke, S. A., Orton, P., and Jay, D. A.: Increasing storm tides in New York harbor, 1844–2013, Geophys. Res. Lett., 41, 3149–3155, https://doi.org/10.1002/2014GL059574, 2014.
Talke, S. A., Kemp, A. C., and Woodruff, J.: Relative sea level, tides, and extreme water levels in Boston Harbor from 1825 to 2018, J. Geophys. Res.-Oceans, 123, 3895–3914, https://doi.org/10.1029/2017JC013645, 2018.
Testut, L., Miguez, B. M., Wöppelmann, G., Tiphaneau, P., Pouvreau, N., and Karpytchev., M.: Sea Level at Saint Paul Island, Southern Indian Ocean, from 1874 to the Present, J. Geophys. Res., 12, C12028, https://doi.org/10.1029/2010jc006404, 2010.
Tiphaneau, P., Breilh, J.-F., and Wöppelmann, G.:Contrôle des performances du marégraphe radar BM70A de Socoa (Saint Jean-de-Luz), Report No. 002/07, May, Centre littoral de Geophysique – Université de la Rochelle, La Rochelle, https://www.sonel.org/SoTaBord/ged/Tiphaneau-2007-controle_des_performances_du_m.pdf (last access: 26 January 2022), 2007.
Ullmann, A., Pons, F., and Moron, V.: Tool kit helps digitize tide gauge records, EOS Trans. AGU, 86, 342–342, https://doi.org/10.1029/2005EO380004, 2011.
UNESCO/IOC: Workshop on Sea Level Data Archaeology, Paris, France, 10–12 March 2020. Paris, UNESCO, IOC Workshop Reports, 287, 39 pp., English, (IOC/2020/WR/287), https://unesdoc.unesco.org/ark:/48223/pf0000373327 (last access: 26 January 2022), 2020.
Wahl, T. and Chambers, D. P.: Evidence for multidecadal variability in US extreme sea level records, J. Geophys. Res.-Oceans, 120, 1527–1544, https://doi.org/10.1002/2014JC010443, 2015.
Woodworth, P. L.: High Waters at Liverpool Since 1768: the UKs Longest Sea Level Record, Geophys. Res. Lett., 6, 1589–1592, https://doi.org/10.1029/1999gl900323, 1999.
Woodworth, P. L.: Some comments on the long sea level records from the northern Mediterranean, J. Coast. Res., 19, 212–217, 2003.
Woodworth, P. L.: A survey of recent changes in the main components of the ocean tide, Cont. Shelf Res., 30, 1680–1691, https://doi.org/10.1016/j.csr.2010.07.002, 2010.
Woodworth, P. L., Pugh, D. T., and Bingley, R. M.: Long term and recent changes in sea level in the Falkland Islands, J. Geophys. Res., 115, C09025, https://doi.org/10.1029/2010JC006113, 2010a.
Woodworth, P. L., Pouvreau, N., and Wöppelmann, G.: The gyre-scale circulation of the North Atlantic and sea level at Brest, Ocean Sci., 6, 185–190, https://doi.org/10.5194/os-6-185-2010, 2010b.
Woodworth, P. L., Hunter, J. R., Marcos, M., Caldwell, P., Menéndez, M., and Haigh, I.: Towards a global higher-frequency sea level dataset. Geosci. Data J., 3, 50–59, https://doi.org/10.1002/gdj3.42, 2016.
Wöppelmann, G., Pouvreau, N., and Simon, B.: Brest Sea Level Record: a Time Series Construction Back to the Early Eighteenth Century, Ocean Dynam., 3, 487–497, https://doi.org/10.1007/s10236-005-0044-z, 2006a.
Wöppelmann, G., Zerbini, S., and Marcos, M.: Tide gauges and Geodesy: a secular synergy illustrated by three present-day case studies, C. R. Geoscience, 338, 980–991, https://doi.org/10.1016/j.crte.2006.07.006, 2006b.
Wöppelmann, G., Pouvreau, N., Coulomb, A., Simon, B., and Woodworth, P. L.: Tide gauge datum continuity at Brest since 1711: France's longest sea-level record, Geophys. Res. Lett., 35, L22605, https://doi.org/10.1029/2008GL035783, 2008.
Wöppelmann, G., Marcos, M., Coulomb, A., Míguez, B. M., Bonnetain, P., Boucher, C., Gravelle, M., Simon, B., and Tiphaneau, P.: Rescue of the Historical Sea Level Record of Marseille (France) from 1885 to 1988 and Its Extension Back to 1849–1851, J. Geodesy, 6, 869–885, https://doi.org/10.1007/s00190-014-0728-6, 2014.
Short summary
Established in the southwest of France in 1875, the Socoa tide gauge is part of the national sea level monitoring network in France. Through a data archaeology exercise, a large part of the records of this gauge in paper format have been rescued and digitized. The digitized data were processed and quality controlled to produce a uniform hourly sea level time series covering 1875 to the present day. This new dataset is important for climate research on sea level rise, tides, and storm surges.
Established in the southwest of France in 1875, the Socoa tide gauge is part of the national sea...
Altmetrics
Final-revised paper
Preprint