Articles | Volume 15, issue 11
https://doi.org/10.5194/essd-15-5207-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/essd-15-5207-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Quality-controlled meteorological datasets from SIGMA automatic weather stations in northwest Greenland, 2012–2020
Motoshi Nishimura
CORRESPONDING AUTHOR
National Institute of Polar Research, Tokyo, Japan
Teruo Aoki
National Institute of Polar Research, Tokyo, Japan
Masashi Niwano
Meteorological Research Institute, Japan Meteorological Agency, Ibaraki, Japan
Sumito Matoba
Institute of Low Temperature Science, Hokkaido University, Hokkaido, Japan
Tomonori Tanikawa
Meteorological Research Institute, Japan Meteorological Agency, Ibaraki, Japan
Tetsuhide Yamasaki
Avangnaq Arctic Project, Osaka, Japan
Satoru Yamaguchi
Snow and Ice Research Center, National Research Institute for Earth Science and Disaster Resilience, Niigata, Japan
Koji Fujita
Graduate School of Environmental Studies, Nagoya University, Nagoya, Japan
Related authors
No articles found.
Kumiko Goto-Azuma, Remi Dallmayr, Yoshimi Ogawa-Tsukagawa, Nobuhiro Moteki, Tatsuhiro Mori, Sho Ohata, Yutaka Kondo, Makoto Koike, Motohiro Hirabayashi, Jun Ogata, Kyotaro Kitamura, Kenji Kawamura, Koji Fujita, Sumito Matoba, Naoko Nagatsuka, Akane Tsushima, Kaori Fukuda, and Teruo Aoki
Atmos. Chem. Phys., 24, 12985–13000, https://doi.org/10.5194/acp-24-12985-2024, https://doi.org/10.5194/acp-24-12985-2024, 2024
Short summary
Short summary
We developed a continuous flow analysis system to analyze an ice core from northwestern Greenland and coupled it with an improved refractory black carbon (rBC) measurement technique. This allowed accurate high-resolution analyses of size distributions and concentrations of rBC particles with diameters of 70 nm–4 μm for the past 350 years. Our results provide crucial insights into rBC's climatic effects. We also found previous ice core studies substantially underestimated rBC mass concentrations.
Ryo Inoue, Teruo Aoki, Shuji Fujita, Shun Tsutaki, Hideaki Motoyama, Fumio Nakazawa, and Kenji Kawamura
The Cryosphere, 18, 3513–3531, https://doi.org/10.5194/tc-18-3513-2024, https://doi.org/10.5194/tc-18-3513-2024, 2024
Short summary
Short summary
We measured the snow specific surface area (SSA) at ~2150 surfaces between the coast near Syowa Station and Dome Fuji, East Antarctica, in summer 2021–2022. The observed SSA shows no elevation dependence between 15 and 500 km from the coast and increases toward the dome area beyond the range. SSA varies depending on surface morphologies and meteorological events. The spatial variation of SSA can be explained by snow metamorphism, snowfall frequency, and wind-driven inhibition of snow deposition.
Orie Sasaki, Evan Stewart Miles, Francesca Pellicciotti, Akiko Sakai, and Koji Fujita
EGUsphere, https://doi.org/10.5194/egusphere-2024-2026, https://doi.org/10.5194/egusphere-2024-2026, 2024
Short summary
Short summary
This study proposes a new method to detect snowline altitude (SLA) using the Google Earth Engine platform with high-resolution satellite imagery, applicable anywhere in the world. Applying this method to five glaciated watersheds in the Himalayas reveals regional consistencies and differences in snow dynamics. We also investigate the primary controls of these dynamics by analyzing climatic factors and topographic characteristics.
Kumiko Goto-Azuma, Yoshimi Ogawa-Tsukagawa, Kaori Fukuda, Koji Fujita, Motohiro Hirabayashi, Remi Dallmayr, Jun Ogata, Nobuhiro Moteki, Tatsuhiro Mori, Sho Ohata, Yutaka Kondo, Makoto Koike, Sumito Matoba, and Teruo Aoki
EGUsphere, https://doi.org/10.5194/egusphere-2024-1498, https://doi.org/10.5194/egusphere-2024-1498, 2024
Short summary
Short summary
Monthly records spanning 350 years from a Greenland ice core reveal trends in black carbon (BC) concentrations and sizes. BC concentrations have risen since the late 19th century due to the inflow of anthropogenic BC, with these particles being larger than those from biomass burning (BB). High BB BC concentration peaks in summer originating from BB could reduce albedo. However, BB BC showed no upward trend until the early 2000s. Our findings are crucial for validating aerosol and climate models.
Ryo Inoue, Shuji Fujita, Kenji Kawamura, Ikumi Oyabu, Fumio Nakazawa, Hideaki Motoyama, and Teruo Aoki
The Cryosphere, 18, 425–449, https://doi.org/10.5194/tc-18-425-2024, https://doi.org/10.5194/tc-18-425-2024, 2024
Short summary
Short summary
We measured the density, microstructural anisotropy, and specific surface area (SSA) of six firn cores collected within 60 km of Dome Fuji, Antarctica. We found a lack of significant density increase, development of vertically elongated microstructures, and a rapid decrease in SSA in the top few meters due to the metamorphism driven by water vapor transport under a temperature gradient. We highlight the significant spatial variability in the properties, which depends on the accumulation rate.
Vigan Mensah, Koji Fujita, Stephen Howell, Miho Ikeda, Mizuki Komatsu, and Kay I. Ohshima
EGUsphere, https://doi.org/10.5194/egusphere-2023-2492, https://doi.org/10.5194/egusphere-2023-2492, 2023
Preprint archived
Short summary
Short summary
We estimated the volume of freshwater released by sea ice, glaciers, rivers, and precipitation into Baffin Bay and the Labrador Sea, and their changes over the past 70 years. We found that the freshwater volume has risen in Baffin Bay due to increased glacier melting, and dropped in the Labrador Sea because of the decline in sea ice production. We also infer that freshwater from the Arctic Ocean has been exported to our study region for the past 30 years, possibly as a result of global warming.
Yukihiko Onuma, Koji Fujita, Nozomu Takeuchi, Masashi Niwano, and Teruo Aoki
The Cryosphere, 17, 3309–3328, https://doi.org/10.5194/tc-17-3309-2023, https://doi.org/10.5194/tc-17-3309-2023, 2023
Short summary
Short summary
We established a novel model that simulates the temporal changes in cryoconite hole (CH) depth using heat budgets calculated independently at the ice surface and CH bottom based on hole shape geometry. The simulations suggest that CH depth is governed by the balance between the intensity of the diffuse component of downward shortwave radiation and the wind speed. The meteorological conditions may be important factors contributing to the recent ice surface darkening via the redistribution of CHs.
Naoko Nagatsuka, Kumiko Goto-Azuma, Koji Fujita, Yuki Komuro, Motohiro Hirabayashi, Jun Ogata, Kaori Fukuda, Yoshimi Ogawa-Tsukagawa, Kyotaro Kitamura, Ayaka Yonekura, Fumio Nakazawa, Yukihiko Onuma, Naoyuki Kurita, Sune Olander Rasmussen, Giulia Sinnl, Trevor James Popp, and Dorthe Dahl-Jensen
EGUsphere, https://doi.org/10.5194/egusphere-2023-1666, https://doi.org/10.5194/egusphere-2023-1666, 2023
Preprint archived
Short summary
Short summary
We present a new high-temporal-resolution record of mineral composition in a northeastern Greenland ice-core (EGRIP) over the past 100 years. The ice core dust composition and its variation differed significantly from a northwestern Greenland ice core, which is likely due to differences in the geological sources of the dust. Our results suggest that the EGRIP ice core dust was constantly supplied from Northern Eurasia, North America, and Asia with minor contribution from Greenland coast.
Ikumi Oyabu, Kenji Kawamura, Shuji Fujita, Ryo Inoue, Hideaki Motoyama, Kotaro Fukui, Motohiro Hirabayashi, Yu Hoshina, Naoyuki Kurita, Fumio Nakazawa, Hiroshi Ohno, Konosuke Sugiura, Toshitaka Suzuki, Shun Tsutaki, Ayako Abe-Ouchi, Masashi Niwano, Frédéric Parrenin, Fuyuki Saito, and Masakazu Yoshimori
Clim. Past, 19, 293–321, https://doi.org/10.5194/cp-19-293-2023, https://doi.org/10.5194/cp-19-293-2023, 2023
Short summary
Short summary
We reconstructed accumulation rate around Dome Fuji, Antarctica, over the last 5000 years from 15 shallow ice cores and seven snow pits. We found a long-term decreasing trend in the preindustrial period, which may be associated with secular surface cooling and sea ice expansion. Centennial-scale variations were also found, which may partly be related to combinations of volcanic, solar and greenhouse gas forcings. The most rapid and intense increases of accumulation rate occurred since 1850 CE.
Yota Sato, Koji Fujita, Hiroshi Inoue, Akiko Sakai, and Karma
The Cryosphere, 16, 2643–2654, https://doi.org/10.5194/tc-16-2643-2022, https://doi.org/10.5194/tc-16-2643-2022, 2022
Short summary
Short summary
We investigate fluctuations in Bhutanese lake-terminating glaciers focusing on the dynamics change before and after proglacial lake formation at Thorthormi Glacier (TG) based on photogrammetry, satellite, and GPS surveys. The thinning rate of TG became double compared to before proglacial lake formation, and the flow velocity has also sped up considerably. Those changes would be due to the reduction in longitudinal ice compression by the detachment of the glacier terminus from the end moraine.
Naoko Nagatsuka, Kumiko Goto-Azuma, Akane Tsushima, Koji Fujita, Sumito Matoba, Yukihiko Onuma, Remi Dallmayr, Moe Kadota, Motohiro Hirabayashi, Jun Ogata, Yoshimi Ogawa-Tsukagawa, Kyotaro Kitamura, Masahiro Minowa, Yuki Komuro, Hideaki Motoyama, and Teruo Aoki
Clim. Past, 17, 1341–1362, https://doi.org/10.5194/cp-17-1341-2021, https://doi.org/10.5194/cp-17-1341-2021, 2021
Short summary
Short summary
Here we present a first high-temporal-resolution record of mineral composition in a Greenland ice core (SIGMA-D) over the past 100 years using SEM–EDS analysis. Our results show that the ice core dust composition varied on multi-decadal scales, which was likely affected by local temperature changes. We suggest that the ice core dust was constantly supplied from distant sources (mainly northern Canada) as well as local ice-free areas in warm periods (1915 to 1949 and 2005 to 2013).
Xavier Fettweis, Stefan Hofer, Uta Krebs-Kanzow, Charles Amory, Teruo Aoki, Constantijn J. Berends, Andreas Born, Jason E. Box, Alison Delhasse, Koji Fujita, Paul Gierz, Heiko Goelzer, Edward Hanna, Akihiro Hashimoto, Philippe Huybrechts, Marie-Luise Kapsch, Michalea D. King, Christoph Kittel, Charlotte Lang, Peter L. Langen, Jan T. M. Lenaerts, Glen E. Liston, Gerrit Lohmann, Sebastian H. Mernild, Uwe Mikolajewicz, Kameswarrao Modali, Ruth H. Mottram, Masashi Niwano, Brice Noël, Jonathan C. Ryan, Amy Smith, Jan Streffing, Marco Tedesco, Willem Jan van de Berg, Michiel van den Broeke, Roderik S. W. van de Wal, Leo van Kampenhout, David Wilton, Bert Wouters, Florian Ziemen, and Tobias Zolles
The Cryosphere, 14, 3935–3958, https://doi.org/10.5194/tc-14-3935-2020, https://doi.org/10.5194/tc-14-3935-2020, 2020
Short summary
Short summary
We evaluated simulated Greenland Ice Sheet surface mass balance from 5 kinds of models. While the most complex (but expensive to compute) models remain the best, the faster/simpler models also compare reliably with observations and have biases of the same order as the regional models. Discrepancies in the trend over 2000–2012, however, suggest that large uncertainties remain in the modelled future SMB changes as they are highly impacted by the meltwater runoff biases over the current climate.
Baptiste Vandecrux, Ruth Mottram, Peter L. Langen, Robert S. Fausto, Martin Olesen, C. Max Stevens, Vincent Verjans, Amber Leeson, Stefan Ligtenberg, Peter Kuipers Munneke, Sergey Marchenko, Ward van Pelt, Colin R. Meyer, Sebastian B. Simonsen, Achim Heilig, Samira Samimi, Shawn Marshall, Horst Machguth, Michael MacFerrin, Masashi Niwano, Olivia Miller, Clifford I. Voss, and Jason E. Box
The Cryosphere, 14, 3785–3810, https://doi.org/10.5194/tc-14-3785-2020, https://doi.org/10.5194/tc-14-3785-2020, 2020
Short summary
Short summary
In the vast interior of the Greenland ice sheet, snow accumulates into a thick and porous layer called firn. Each summer, the firn retains part of the meltwater generated at the surface and buffers sea-level rise. In this study, we compare nine firn models traditionally used to quantify this retention at four sites and evaluate their performance against a set of in situ observations. We highlight limitations of certain model designs and give perspectives for future model development.
Yukihiko Onuma, Nozomu Takeuchi, Sota Tanaka, Naoko Nagatsuka, Masashi Niwano, and Teruo Aoki
The Cryosphere, 14, 2087–2101, https://doi.org/10.5194/tc-14-2087-2020, https://doi.org/10.5194/tc-14-2087-2020, 2020
Short summary
Short summary
Surface snow albedo is substantially reduced by organic impurities, such as microbes that live in the snow. We present the temporal changes of surface albedo, snow grain size, and inorganic and organic impurities observed on a snowpack in northwest Greenland during summer and our attempt to reproduce the changes in albedo with a physically based snow albedo model coupled with a snow algae model. To our knowledge, this is the first report proposing such a coupled albedo model in Greenland.
Adrien Gilbert, Anna Sinisalo, Tika R. Gurung, Koji Fujita, Sudan B. Maharjan, Tenzing C. Sherpa, and Takehiro Fukuda
The Cryosphere, 14, 1273–1288, https://doi.org/10.5194/tc-14-1273-2020, https://doi.org/10.5194/tc-14-1273-2020, 2020
Ambarish Pokhrel, Kimitaka Kawamura, Bhagawati Kunwar, Kaori Ono, Akane Tsushima, Osamu Seki, Sumio Matoba, and Takayuki Shiraiwa
Atmos. Chem. Phys., 20, 597–612, https://doi.org/10.5194/acp-20-597-2020, https://doi.org/10.5194/acp-20-597-2020, 2020
Short summary
Short summary
A 180 m long (ca. 274 year) ice core was drilled in the saddle of the Aurora Peak in Alaska (63.52° N, 146.54° W; elevation: 2,825 m). The ice core samples were derived with O-bis-(trimethylsilyl)trifluoroacetamide with 1 % trimethylsilyl chloride and pyridine followed by gas-chromatography–mass-spectrometry analyses. Levoglucosan, dehydroabietic acid and vanillic acid are reported for the first time from the alpine glacier to better understand historical biomass burning.
Shun Tsutaki, Koji Fujita, Takayuki Nuimura, Akiko Sakai, Shin Sugiyama, Jiro Komori, and Phuntsho Tshering
The Cryosphere, 13, 2733–2750, https://doi.org/10.5194/tc-13-2733-2019, https://doi.org/10.5194/tc-13-2733-2019, 2019
Short summary
Short summary
We investigate thickness change of Bhutanese glaciers during 2004–2011 using repeat GPS surveys and satellite-based observations. The thinning rate of Lugge Glacier (LG) is > 3 times that of Thorthormi Glacier (TG). Numerical simulations of ice dynamics and surface mass balance (SMB) demonstrate that the rapid thinning of LG is driven by both negative SMB and dynamic thinning, while the thinning of TG is minimised by a longitudinally compressive flow regime.
Satoru Yamaguchi, Masaaki Ishizaka, Hiroki Motoyoshi, Sent Nakai, Vincent Vionnet, Teruo Aoki, Katsuya Yamashita, Akihiro Hashimoto, and Akihiro Hachikubo
The Cryosphere, 13, 2713–2732, https://doi.org/10.5194/tc-13-2713-2019, https://doi.org/10.5194/tc-13-2713-2019, 2019
Short summary
Short summary
The specific surface area (SSA) of solid precipitation particles (PPs) includes detailed information of PP. This work is based on field measurement of SSA of PPs in Nagaoka, the city with the heaviest snowfall in Japan. The values of SSA strongly depend on wind speed (WS) and wet-bulb temperature (Tw) on the ground. An equation to empirically estimate the SSA of fresh PPs with WS and Tw was established and the equation successfully reproduced the fluctuation of SSA in Nagaoka.
Koji Fujita, Sumito Matoba, Yoshinori Iizuka, Nozomu Takeuchi, and Teruo Aoki
Clim. Past Discuss., https://doi.org/10.5194/cp-2019-97, https://doi.org/10.5194/cp-2019-97, 2019
Revised manuscript not accepted
Short summary
Short summary
This study presents a novel method for reconstructing summer temperatures from ice-layer thickness and annual accumulation in an ice core using an energy balance model. The method calculates a lookup table by considering heat conduction and meltwater refreezing in firn. We applied the method to four ice cores in different climates. Sensitivity analyses reveal that the annual temperature range, amount of annual precipitation, and firn albedo significantly affect the estimated summer temperature.
Cécile B. Ménard, Richard Essery, Alan Barr, Paul Bartlett, Jeff Derry, Marie Dumont, Charles Fierz, Hyungjun Kim, Anna Kontu, Yves Lejeune, Danny Marks, Masashi Niwano, Mark Raleigh, Libo Wang, and Nander Wever
Earth Syst. Sci. Data, 11, 865–880, https://doi.org/10.5194/essd-11-865-2019, https://doi.org/10.5194/essd-11-865-2019, 2019
Short summary
Short summary
This paper describes long-term meteorological and evaluation datasets from 10 reference sites for use in snow modelling. We demonstrate how data sharing is crucial to the identification of errors and how the publication of these datasets contributes to good practice, consistency, and reproducibility in geosciences. The ease of use, availability, and quality of the datasets will help model developers quantify and reduce model uncertainties and errors.
Sauvik Santra, Shubha Verma, Koji Fujita, Indrajit Chakraborty, Olivier Boucher, Toshihiko Takemura, John F. Burkhart, Felix Matt, and Mukesh Sharma
Atmos. Chem. Phys., 19, 2441–2460, https://doi.org/10.5194/acp-19-2441-2019, https://doi.org/10.5194/acp-19-2441-2019, 2019
Short summary
Short summary
The present study provided information on specific glaciers over the Hindu Kush Himalayan region identified as being vulnerable to BC-induced impacts (affected by high BC-induced snow albedo reduction in addition to being sensitive to BC-induced impacts), thus impacting the downstream hydrology. The source-specific contribution to atmospheric BC aerosols by emission sources led to identifying the potential emission source, which was distinctive over south and north to 30° N.
Gerhard Krinner, Chris Derksen, Richard Essery, Mark Flanner, Stefan Hagemann, Martyn Clark, Alex Hall, Helmut Rott, Claire Brutel-Vuilmet, Hyungjun Kim, Cécile B. Ménard, Lawrence Mudryk, Chad Thackeray, Libo Wang, Gabriele Arduini, Gianpaolo Balsamo, Paul Bartlett, Julia Boike, Aaron Boone, Frédérique Chéruy, Jeanne Colin, Matthias Cuntz, Yongjiu Dai, Bertrand Decharme, Jeff Derry, Agnès Ducharne, Emanuel Dutra, Xing Fang, Charles Fierz, Josephine Ghattas, Yeugeniy Gusev, Vanessa Haverd, Anna Kontu, Matthieu Lafaysse, Rachel Law, Dave Lawrence, Weiping Li, Thomas Marke, Danny Marks, Martin Ménégoz, Olga Nasonova, Tomoko Nitta, Masashi Niwano, John Pomeroy, Mark S. Raleigh, Gerd Schaedler, Vladimir Semenov, Tanya G. Smirnova, Tobias Stacke, Ulrich Strasser, Sean Svenson, Dmitry Turkov, Tao Wang, Nander Wever, Hua Yuan, Wenyan Zhou, and Dan Zhu
Geosci. Model Dev., 11, 5027–5049, https://doi.org/10.5194/gmd-11-5027-2018, https://doi.org/10.5194/gmd-11-5027-2018, 2018
Short summary
Short summary
This paper provides an overview of a coordinated international experiment to determine the strengths and weaknesses in how climate models treat snow. The models will be assessed at point locations using high-quality reference measurements and globally using satellite-derived datasets. How well climate models simulate snow-related processes is important because changing snow cover is an important part of the global climate system and provides an important freshwater resource for human use.
Yukihiko Onuma, Nozomu Takeuchi, Sota Tanaka, Naoko Nagatsuka, Masashi Niwano, and Teruo Aoki
The Cryosphere, 12, 2147–2158, https://doi.org/10.5194/tc-12-2147-2018, https://doi.org/10.5194/tc-12-2147-2018, 2018
Short summary
Short summary
Snow algal bloom can substantially increase melt rates of the snow due to the effect of albedo reduction on the snow surface. In this study, the temporal changes in algal abundance on the snowpacks of Greenland Glacier were studied in order to reproduce snow algal growth using a numerical model. Our study demonstrates that a simple numerical model could simulate the temporal variation in snow algal abundance on the glacier throughout the summer season.
Masashi Niwano, Teruo Aoki, Akihiro Hashimoto, Sumito Matoba, Satoru Yamaguchi, Tomonori Tanikawa, Koji Fujita, Akane Tsushima, Yoshinori Iizuka, Rigen Shimada, and Masahiro Hori
The Cryosphere, 12, 635–655, https://doi.org/10.5194/tc-12-635-2018, https://doi.org/10.5194/tc-12-635-2018, 2018
Short summary
Short summary
We present a high-resolution regional climate model called NHM–SMAP applied to the Greenland Ice Sheet (GrIS). The model forced by JRA-55 reanalysis is evaluated using in situ data from automated weather stations, stake measurements,
and ice core obtained from 2011 to 2014. By utilizing the model, we highlight that the choice of calculation schemes for vertical water movement in snow and firn has an effect of up to 200 Gt/year in the yearly accumulated GrIS-wide surface mass balance estimates.
Damodar Lamsal, Koji Fujita, and Akiko Sakai
The Cryosphere, 11, 2815–2827, https://doi.org/10.5194/tc-11-2815-2017, https://doi.org/10.5194/tc-11-2815-2017, 2017
Short summary
Short summary
This study presents the geodetic mass balance of Kanchenjunga Glacier, a heavily debris-covered glacier in the easternmost Nepal Himalaya, between 1975 and 2010 using high-resolution DEMs. The rate of elevation change positively correlates with elevation and glacier velocity, and significant surface lowering is observed at supraglacial ponds. A difference in pond density would strongly affect the different geodetic mass balances of the Kanchenjunga and Khumbu glaciers.
Hiroyuki Hirashima, Francesco Avanzi, and Satoru Yamaguchi
Hydrol. Earth Syst. Sci., 21, 5503–5515, https://doi.org/10.5194/hess-21-5503-2017, https://doi.org/10.5194/hess-21-5503-2017, 2017
Short summary
Short summary
We reproduced the formation of capillary barriers and the development of preferential flow through snow using a multi-dimensional water transport model, which was then validated using laboratory experiments of liquid water infiltration into layered, initially dry snow. Simulation results showed that the model reconstructs some relevant features of capillary barriers and the timing of liquid water arrival at the snow base.
Keiichiro Hara, Sumito Matoba, Motohiro Hirabayashi, and Tetsuhide Yamasaki
Atmos. Chem. Phys., 17, 8577–8598, https://doi.org/10.5194/acp-17-8577-2017, https://doi.org/10.5194/acp-17-8577-2017, 2017
Short summary
Short summary
To obtain knowledge about sea-salt chemistry in polar regions, we made simultaneous measurements and sampling of aerosols, frost flowers, and brine around northwestern Greenland during winter–spring. Our results show sea-salt enrichment in frost flowers and snow. Also, the fractionated sea-salt particles were suspended in the atmosphere over sea-ice areas. From the field evidence and results from earlier studies, we propose and describe sea-salt cycles in seasonal sea-ice areas.
Koji Fujita, Hiroshi Inoue, Takeki Izumi, Satoru Yamaguchi, Ayako Sadakane, Sojiro Sunako, Kouichi Nishimura, Walter W. Immerzeel, Joseph M. Shea, Rijan B. Kayastha, Takanobu Sawagaki, David F. Breashears, Hiroshi Yagi, and Akiko Sakai
Nat. Hazards Earth Syst. Sci., 17, 749–764, https://doi.org/10.5194/nhess-17-749-2017, https://doi.org/10.5194/nhess-17-749-2017, 2017
Short summary
Short summary
We create multiple DEMs from photographs taken by helicopter and UAV and reveal the deposit volumes over the Langtang village, which was destroyed by avalanches induced by the Gorkha earthquake. Estimated snow depth in the source area is consistent with anomalously large snow depths observed at a neighboring glacier. Comparing with a long-term observational data, we conclude that this anomalous winter snow amplified the disaster induced by the 2015 Gorkha earthquake in Nepal.
Sascha Bellaire, Martin Proksch, Martin Schneebeli, Masashi Niwano, and Konrad Steffen
The Cryosphere Discuss., https://doi.org/10.5194/tc-2017-55, https://doi.org/10.5194/tc-2017-55, 2017
Preprint withdrawn
Masaaki Ishizaka, Hiroki Motoyoshi, Satoru Yamaguchi, Sento Nakai, Toru Shiina, and Ken-ichiro Muramoto
The Cryosphere, 10, 2831–2845, https://doi.org/10.5194/tc-10-2831-2016, https://doi.org/10.5194/tc-10-2831-2016, 2016
Short summary
Short summary
We measured the snowfall densities with a CCD camera, simultaneously observing the predominant snowfall types determined by the measured size and the fall speed. With a CCD camera, we obtain the quantitative relationships between snowfall densities and presumed density derived from the size and mass components. This suggests the possibility of estimating snowfall densities from the measured size and the fall speed data, and using them as the initial densities for a snowpack in a numerical model.
Francesco Avanzi, Hiroyuki Hirashima, Satoru Yamaguchi, Takafumi Katsushima, and Carlo De Michele
The Cryosphere, 10, 2013–2026, https://doi.org/10.5194/tc-10-2013-2016, https://doi.org/10.5194/tc-10-2013-2016, 2016
Short summary
Short summary
We investigate capillary barriers and preferential flow in layered snow during nine cold laboratory experiments. The dynamics of each sample were replicated solving Richards equation within the 1-D multi-layer physically based SNOWPACK model. Results show that both processes affect the speed of water infiltration in stratified snow and are marked by a high degree of spatial variability at cm scale and complex 3-D patterns.
Anna Dittmann, Elisabeth Schlosser, Valérie Masson-Delmotte, Jordan G. Powers, Kevin W. Manning, Martin Werner, and Koji Fujita
Atmos. Chem. Phys., 16, 6883–6900, https://doi.org/10.5194/acp-16-6883-2016, https://doi.org/10.5194/acp-16-6883-2016, 2016
Short summary
Short summary
For a better understanding of the stable water isotope data from ice cores, recent time periods have to be analysed, where both measurements and model simulations are available. This was done for Dome Fuji by combining observations, synoptic analysis, back trajectories, and isotopic modelling. It was found that a more northerly moisture source does not necessarily mean a larger temperature difference between source area and deposition site and thus precipitation more depleted in heavy isotopes.
H. Nagai, K. Fujita, A. Sakai, T. Nuimura, and T. Tadono
The Cryosphere, 10, 65–85, https://doi.org/10.5194/tc-10-65-2016, https://doi.org/10.5194/tc-10-65-2016, 2016
Short summary
Short summary
Digital glacier inventories are invaluable data sets for revealing the characteristics of glacier distribution. However, quantitative comparison of present inventories was not performed. Here, we present a new inventory manually delineated from Advanced Land Observing Satellite (ALOS) imagery and compare it with existing inventories for the Bhutan Himalaya. Quantification of overlapping among available glacier outlines suggests consistency and recent improvement of their delineation quality.
S. Miyazaki, K. Saito, J. Mori, T. Yamazaki, T. Ise, H. Arakida, T. Hajima, Y. Iijima, H. Machiya, T. Sueyoshi, H. Yabuki, E. J. Burke, M. Hosaka, K. Ichii, H. Ikawa, A. Ito, A. Kotani, Y. Matsuura, M. Niwano, T. Nitta, R. O'ishi, T. Ohta, H. Park, T. Sasai, A. Sato, H. Sato, A. Sugimoto, R. Suzuki, K. Tanaka, S. Yamaguchi, and K. Yoshimura
Geosci. Model Dev., 8, 2841–2856, https://doi.org/10.5194/gmd-8-2841-2015, https://doi.org/10.5194/gmd-8-2841-2015, 2015
Short summary
Short summary
The paper provides an overall outlook and the Stage 1 experiment (site simulations) protocol of GTMIP, an open model intercomparison project for terrestrial Arctic, conducted as an activity of the Japan-funded Arctic Climate Change Research Project (GRENE-TEA). Models are driven by 34-year data created with the GRENE-TEA observations at four sites in Finland, Siberia and Alaska, and evaluated for physico-ecological key processes: energy budgets, snow, permafrost, phenology, and carbon budget.
M. Niwano, T. Aoki, S. Matoba, S. Yamaguchi, T. Tanikawa, K. Kuchiki, and H. Motoyama
The Cryosphere, 9, 971–988, https://doi.org/10.5194/tc-9-971-2015, https://doi.org/10.5194/tc-9-971-2015, 2015
Short summary
Short summary
A physical snowpack model SMAP and in situ meteorological and snow data obtained at site SIGMA-A on the northwest Greenland ice sheet are used to assess surface energy balance during the extreme near-surface snowmelt event around 12 July 2012. We determined that the main factor for the melt event observed at the SIGMA-A site was low-level clouds accompanied by a significant temperature increase, which induced surface heating via cloud radiative forcing in the polar region.
T. Nuimura, A. Sakai, K. Taniguchi, H. Nagai, D. Lamsal, S. Tsutaki, A. Kozawa, Y. Hoshina, S. Takenaka, S. Omiya, K. Tsunematsu, P. Tshering, and K. Fujita
The Cryosphere, 9, 849–864, https://doi.org/10.5194/tc-9-849-2015, https://doi.org/10.5194/tc-9-849-2015, 2015
Short summary
Short summary
We present a new glacier inventory for high-mountain Asia named “Glacier Area Mapping for Discharge from the Asian Mountains” (GAMDAM). Glacier outlines were delineated manually using 356 Landsat ETM+ scenes in 226 path-row sets from the period 1999–2003, in conjunction with a digital elevation model and high-resolution Google EarthTM imagery. Our GAMDAM Glacier Inventory includes 87,084 glaciers covering a total area of 91,263 ± 13,689 km2 throughout high-mountain Asia.
A. Sakai, T. Nuimura, K. Fujita, S. Takenaka, H. Nagai, and D. Lamsal
The Cryosphere, 9, 865–880, https://doi.org/10.5194/tc-9-865-2015, https://doi.org/10.5194/tc-9-865-2015, 2015
Short summary
Short summary
Among meteorological elements, precipitation has a large spatial variability and less observation, particularly in high-mountain Asia, although precipitation in mountains is an important parameter for hydrological circulation. Based on the GAMDAM glacier inventory, we estimated precipitation contributing to glacier mass at the median elevation of glaciers, which is presumed to be at equilibrium-line altitude, by tuning adjustment parameters of precipitation.
A. Tsushima, S. Matoba, T. Shiraiwa, S. Okamoto, H. Sasaki, D. J. Solie, and K. Yoshikawa
Clim. Past, 11, 217–226, https://doi.org/10.5194/cp-11-217-2015, https://doi.org/10.5194/cp-11-217-2015, 2015
Short summary
Short summary
A 180.17-m ice core was drilled at Aurora Peak in the central part of the Alaska Range, Alaska, in 2008. The ice core age was determined by annual counts of δD and seasonal cycles of Na+. Here, we show that the chronology of the Aurora Peak ice core from 95.61 m to the top corresponds to the period from 1900 to the summer season of 2008, with a dating error of ±3 years. Our results suggest that temporal variations in δD and annual accumulation rates are strongly related to shifts in PDO Index.
K. Fujita and A. Sakai
Hydrol. Earth Syst. Sci., 18, 2679–2694, https://doi.org/10.5194/hess-18-2679-2014, https://doi.org/10.5194/hess-18-2679-2014, 2014
K. Osada, S. Ura, M. Kagawa, M. Mikami, T. Y. Tanaka, S. Matoba, K. Aoki, M. Shinoda, Y. Kurosaki, M. Hayashi, A. Shimizu, and M. Uematsu
Atmos. Chem. Phys., 14, 1107–1121, https://doi.org/10.5194/acp-14-1107-2014, https://doi.org/10.5194/acp-14-1107-2014, 2014
H. Nagai, K. Fujita, T. Nuimura, and A. Sakai
The Cryosphere, 7, 1303–1314, https://doi.org/10.5194/tc-7-1303-2013, https://doi.org/10.5194/tc-7-1303-2013, 2013
K. Fujita, A. Sakai, S. Takenaka, T. Nuimura, A. B. Surazakov, T. Sawagaki, and T. Yamanokuchi
Nat. Hazards Earth Syst. Sci., 13, 1827–1839, https://doi.org/10.5194/nhess-13-1827-2013, https://doi.org/10.5194/nhess-13-1827-2013, 2013
Y. Zhang, Y. Hirabayashi, K. Fujita, S. Liu, and Q. Liu
The Cryosphere Discuss., https://doi.org/10.5194/tcd-7-2413-2013, https://doi.org/10.5194/tcd-7-2413-2013, 2013
Revised manuscript not accepted
Related subject area
Domain: ESSD – Atmosphere | Subject: Meteorology
SARAH-3 – satellite-based climate data records of surface solar radiation
A database of deep convective systems derived from the intercalibrated meteorological geostationary satellite fleet and the TOOCAN algorithm (2012–2020)
Generation of global 1 km all-weather instantaneous and daily mean land surface temperatures from MODIS data
Special Observing Period (SOP) data for the Year of Polar Prediction site Model Intercomparison Project (YOPPsiteMIP)
Dataset of spatially extensive long-term quality-assured land–atmosphere interactions over the Tibetan Plateau
Multifrequency radar observations of marine clouds during the EPCAPE campaign
The PAZ Polarimetric Radio Occultation Research Dataset for Scientific Applications
Data collected using small uncrewed aircraft systems during the TRacking Aerosol Convection interactions ExpeRiment (TRACER)
LGHAP v2: a global gap-free aerosol optical depth and PM2.5 concentration dataset since 2000 derived via big Earth data analytics
Water vapor Raman-lidar observations from multiple sites in the framework of WaLiNeAs
Reanalysis of multi-year high-resolution X-band weather radar observations in Hamburg
The 2023 National Offshore Wind data set (NOW-23)
Dataset of stable isotopes of precipitation in the Eurasian continent
A 7-year record of vertical profiles of radar measurements and precipitation estimates at Dumont d'Urville, Adélie Land, East Antarctica
Long-term monthly 0.05° terrestrial evapotranspiration dataset (1982–2018) for the Tibetan Plateau
High-resolution (1 km) all-sky net radiation over Europe enabled by the merging of land surface temperature retrievals from geostationary and polar-orbiting satellites
Atmospheric and surface observations during the Saint John River Experiment on Cold Season Storms (SAJESS)
Year-long buoy-based observations of the air–sea transition zone off the US west coast
The historical Greenland Climate Network (GC-Net) curated and augmented level-1 dataset
Low-level mixed-phase clouds at the high Arctic site of Ny-Ålesund: a comprehensive long-term dataset of remote sensing observations
CHESS-SCAPE: high-resolution future projections of multiple climate scenarios for the United Kingdom derived from downscaled United Kingdom Climate Projections 2018 regional climate model output
A dataset of energy, water vapor, and carbon exchange observations in oasis–desert areas from 2012 to 2021 in a typical endorheic basin
Derivation and compilation of lower-atmospheric properties relating to temperature, wind, stability, moisture, and surface radiation budget over the central Arctic sea ice during MOSAiC
CLARA-A3: The third edition of the AVHRR-based CM SAF climate data record on clouds, radiation and surface albedo covering the period 1979 to 2023
An integrated and homogenized global surface solar radiation dataset and its reconstruction based on a convolutional neural network approach
IWIN: the Isfjorden Weather Information Network
A new daily gridded precipitation dataset for the Chinese mainland based on gauge observations
A 16-year global climate data record of total column water vapour generated from OMI observations in the visible blue spectral range
The EUPPBench postprocessing benchmark dataset v1.0
CHELSA-W5E5: daily 1 km meteorological forcing data for climate impact studies
Database of the Italian disdrometer network
East Asia Reanalysis System (EARS)
Data rescue of historical wind observations in Sweden since the 1920s
LegacyClimate 1.0: a dataset of pollen-based climate reconstructions from 2594 Northern Hemisphere sites covering the last 30 kyr and beyond
EURADCLIM: the European climatological high-resolution gauge-adjusted radar precipitation dataset
Radar and ground-level measurements of clouds and precipitation collected during the POPE 2020 campaign at Princess Elisabeth Antarctica
Combined wind lidar and cloud radar for high-resolution wind profiling
An enhanced integrated water vapour dataset from more than 10 000 global ground-based GPS stations in 2020
TPHiPr: a long-term (1979–2020) high-accuracy precipitation dataset (1∕30°, daily) for the Third Pole region based on high-resolution atmospheric modeling and dense observations
The AntAWS dataset: a compilation of Antarctic automatic weather station observations
HiTIC-Monthly: a monthly high spatial resolution (1 km) human thermal index collection over China during 2003–2020
A long-term 1 km monthly near-surface air temperature dataset over the Tibetan glaciers by fusion of station and satellite observations
A global dataset of daily maximum and minimum near-surface air temperature at 1 km resolution over land (2003–2020)
Tropospheric water vapor: a comprehensive high-resolution data collection for the transnational Upper Rhine Graben region
The hourly wind-bias-adjusted precipitation data set from the Environment and Climate Change Canada automated surface observation network (2001–2019)
Enhanced automated meteorological observations at the Canadian Arctic Weather Science (CAWS) supersites
Quality control and correction method for air temperature data from a citizen science weather station network in Leuven, Belgium
Combined high-resolution rainfall and wind data collected for 3 months on a wind farm 110 km southeast of Paris (France)
Sub-mesoscale observations of convective cold pools with a dense station network in Hamburg, Germany
Observational data from uncrewed systems over Southern Great Plains
Uwe Pfeifroth, Jaqueline Drücke, Steffen Kothe, Jörg Trentmann, Marc Schröder, and Rainer Hollmann
Earth Syst. Sci. Data, 16, 5243–5265, https://doi.org/10.5194/essd-16-5243-2024, https://doi.org/10.5194/essd-16-5243-2024, 2024
Short summary
Short summary
The energy reaching Earth's surface from the Sun is a quantity of great importance for the climate system and for many applications. SARAH-3 is a satellite-based climate data record of surface solar radiation parameters. It is generated and distributed by the EUMETSAT Climate Monitoring Satellite Application Facility (CM SAF). SARAH-3 covers more than 4 decades and provides a high spatial and temporal resolution, and its validation shows good accuracy and stability.
Thomas Fiolleau and Rémy Roca
Earth Syst. Sci. Data, 16, 4021–4050, https://doi.org/10.5194/essd-16-4021-2024, https://doi.org/10.5194/essd-16-4021-2024, 2024
Short summary
Short summary
This paper presents a database of tropical deep convective systems over the 2012–2020 period, built from a cloud-tracking algorithm called TOOCAN, which has been applied to homogenized infrared observations from a fleet of geostationary satellites. This database aims to analyze the tropical deep convective systems, the evolution of their associated characteristics over their life cycle, their organization, and their importance in the hydrological and energy cycle.
Bing Li, Shunlin Liang, Han Ma, Guanpeng Dong, Xiaobang Liu, Tao He, and Yufang Zhang
Earth Syst. Sci. Data, 16, 3795–3819, https://doi.org/10.5194/essd-16-3795-2024, https://doi.org/10.5194/essd-16-3795-2024, 2024
Short summary
Short summary
This study describes 1 km all-weather instantaneous and daily mean land surface temperature (LST) datasets on the global scale during 2000–2020. It is the first attempt to synergistically estimate all-weather instantaneous and daily mean LST data on a long global-scale time series. The generated datasets were evaluated by the observations from in situ stations and other LST datasets, and the evaluation indicated that the dataset is sufficiently reliable.
Zen Mariani, Sara M. Morris, Taneil Uttal, Elena Akish, Robert Crawford, Laura Huang, Jonathan Day, Johanna Tjernström, Øystein Godøy, Lara Ferrighi, Leslie M. Hartten, Jareth Holt, Christopher J. Cox, Ewan O'Connor, Roberta Pirazzini, Marion Maturilli, Giri Prakash, James Mather, Kimberly Strong, Pierre Fogal, Vasily Kustov, Gunilla Svensson, Michael Gallagher, and Brian Vasel
Earth Syst. Sci. Data, 16, 3083–3124, https://doi.org/10.5194/essd-16-3083-2024, https://doi.org/10.5194/essd-16-3083-2024, 2024
Short summary
Short summary
During the Year of Polar Prediction (YOPP), we increased measurements in the polar regions and have made dedicated efforts to centralize and standardize all of the different types of datasets that have been collected to facilitate user uptake and model–observation comparisons. This paper is an overview of those efforts and a description of the novel standardized Merged Observation Data Files (MODFs), including a description of the sites, data format, and instruments.
Yaoming Ma, Zhipeng Xie, Yingying Chen, Shaomin Liu, Tao Che, Ziwei Xu, Lunyu Shang, Xiaobo He, Xianhong Meng, Weiqiang Ma, Baiqing Xu, Huabiao Zhao, Junbo Wang, Guangjian Wu, and Xin Li
Earth Syst. Sci. Data, 16, 3017–3043, https://doi.org/10.5194/essd-16-3017-2024, https://doi.org/10.5194/essd-16-3017-2024, 2024
Short summary
Short summary
Current models and satellites struggle to accurately represent the land–atmosphere (L–A) interactions over the Tibetan Plateau. We present the most extensive compilation of in situ observations to date, comprising 17 years of data on L–A interactions across 12 sites. This quality-assured benchmark dataset provides independent validation to improve models and remote sensing for the region, and it enables new investigations of fine-scale L–A processes and their mechanistic drivers.
Juan M. Socuellamos, Raquel Rodriguez Monje, Matthew D. Lebsock, Ken B. Cooper, Robert M. Beauchamp, and Arturo Umeyama
Earth Syst. Sci. Data, 16, 2701–2715, https://doi.org/10.5194/essd-16-2701-2024, https://doi.org/10.5194/essd-16-2701-2024, 2024
Short summary
Short summary
This paper describes multifrequency radar observations of clouds and precipitation during the EPCAPE campaign. The data sets were obtained from CloudCube, a Ka-, W-, and G-band atmospheric profiling radar, to demonstrate synergies between multifrequency retrievals. This data collection provides a unique opportunity to study hydrometeors with diameters in the millimeter and submillimeter size range that can be used to better understand the drop size distribution within clouds and precipitation.
Ramon Padullés, Estel Cardellach, Antía Paz, Santi Oliveras, Douglas C. Hunt, Sergey Sokolovskiy, Jan P. Weiss, Kuo-Nung Wang, F. Joe Turk, Chi O. Ao, and Manuel de la Torre Juárez
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-150, https://doi.org/10.5194/essd-2024-150, 2024
Revised manuscript accepted for ESSD
Short summary
Short summary
This dataset provides, for the first time, combined observations of clouds and precipitation with coincident retrievals of atmospheric thermodynamics obtained from the same space based instrument. Furthermore, it provides the locations of the ray-trajectories of the observations, along various precipitation-related products interpolated into them, with the aim to foster the use of such dataset in scientific and operational applications.
Francesca Lappin, Gijs de Boer, Petra Klein, Jonathan Hamilton, Michelle Spencer, Radiance Calmer, Antonio R. Segales, Michael Rhodes, Tyler M. Bell, Justin Buchli, Kelsey Britt, Elizabeth Asher, Isaac Medina, Brian Butterworth, Leia Otterstatter, Madison Ritsch, Bryony Puxley, Angelina Miller, Arianna Jordan, Ceu Gomez-Faulk, Elizabeth Smith, Steven Borenstein, Troy Thornberry, Brian Argrow, and Elizabeth Pillar-Little
Earth Syst. Sci. Data, 16, 2525–2541, https://doi.org/10.5194/essd-16-2525-2024, https://doi.org/10.5194/essd-16-2525-2024, 2024
Short summary
Short summary
This article provides an overview of the lower-atmospheric dataset collected by two uncrewed aerial systems near the Gulf of Mexico coastline south of Houston, TX, USA, as part of the TRacking Aerosol Convection interactions ExpeRiment (TRACER) campaign. The data were collected through boundary layer transitions, through sea breeze circulations, and in the pre- and near-storm environment to understand how these processes influence the coastal environment.
Kaixu Bai, Ke Li, Liuqing Shao, Xinran Li, Chaoshun Liu, Zhengqiang Li, Mingliang Ma, Di Han, Yibing Sun, Zhe Zheng, Ruijie Li, Ni-Bin Chang, and Jianping Guo
Earth Syst. Sci. Data, 16, 2425–2448, https://doi.org/10.5194/essd-16-2425-2024, https://doi.org/10.5194/essd-16-2425-2024, 2024
Short summary
Short summary
A global gap-free high-resolution air pollutant dataset (LGHAP v2) was generated to provide spatially contiguous AOD and PM2.5 concentration maps with daily 1 km resolution from 2000 to 2021. This gap-free dataset has good data accuracies compared to ground-based AOD and PM2.5 concentration observations, which is a reliable database to advance aerosol-related studies and trigger multidisciplinary applications for environmental management, health risk assessment, and climate change analysis.
Frédéric Laly, Patrick Chazette, Julien Totems, Jérémy Lagarrigue, Laurent Forges, and Cyrille Flamant
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-73, https://doi.org/10.5194/essd-2024-73, 2024
Revised manuscript accepted for ESSD
Short summary
Short summary
We present a dataset of water vapor mixing ratio profiles acquired during the WaLiNeAs campaign in fall and winter 2022 and summer 2023, using 3 lidar systems deployed on the Western Mediterranean coastline. This innovative campaign gives access to low tropospheric water vapor variability to constrain meteorological forecasting models. The scientific objective is to improve forecasting of heavy precipation events that lead to severe flash floods.
Finn Burgemeister, Marco Clemens, and Felix Ament
Earth Syst. Sci. Data, 16, 2317–2332, https://doi.org/10.5194/essd-16-2317-2024, https://doi.org/10.5194/essd-16-2317-2024, 2024
Short summary
Short summary
Knowledge of small-scale rainfall variability is needed for hydro-meteorological applications in urban areas. Therefore, we present an open-access data set covering reanalyzed radar reflectivities and rainfall estimates measured by a weather radar at high spatio-temporal resolution in the urban environment of Hamburg between 2013 and 2021. We describe the data reanalysis, outline the measurement’s performance for long time periods, and discuss open issues and limitations of the data set.
Nicola Bodini, Mike Optis, Stephanie Redfern, David Rosencrans, Alex Rybchuk, Julie K. Lundquist, Vincent Pronk, Simon Castagneri, Avi Purkayastha, Caroline Draxl, Raghavendra Krishnamurthy, Ethan Young, Billy Roberts, Evan Rosenlieb, and Walter Musial
Earth Syst. Sci. Data, 16, 1965–2006, https://doi.org/10.5194/essd-16-1965-2024, https://doi.org/10.5194/essd-16-1965-2024, 2024
Short summary
Short summary
This article presents the 2023 National Offshore Wind data set (NOW-23), an updated resource for offshore wind information in the US. It replaces the Wind Integration National Dataset (WIND) Toolkit, offering improved accuracy through advanced weather prediction models. The data underwent regional tuning and validation and can be accessed at no cost.
Longhu Chen, Qinqin Wang, Guofeng Zhu, Xinrui Lin, Dongdong Qiu, Yinying Jiao, Siyu Lu, Rui Li, Gaojia Meng, and Yuhao Wang
Earth Syst. Sci. Data, 16, 1543–1557, https://doi.org/10.5194/essd-16-1543-2024, https://doi.org/10.5194/essd-16-1543-2024, 2024
Short summary
Short summary
We have compiled data regarding stable precipitation isotopes from 842 sampling points throughout the Eurasian continent since 1961, accumulating a total of 51 753 data records. The collected data have undergone pre-processing and statistical analysis. We also analysed the spatiotemporal distribution of stable precipitation isotopes across the Eurasian continent and their interrelationships with meteorological elements.
Valentin Wiener, Marie-Laure Roussel, Christophe Genthon, Étienne Vignon, Jacopo Grazioli, and Alexis Berne
Earth Syst. Sci. Data, 16, 821–836, https://doi.org/10.5194/essd-16-821-2024, https://doi.org/10.5194/essd-16-821-2024, 2024
Short summary
Short summary
This paper presents 7 years of data from a precipitation radar deployed at the Dumont d'Urville station in East Antarctica. The main characteristics of the dataset are outlined in a short statistical study. Interannual and seasonal variability are also investigated. Then, we extensively describe the processing method to retrieve snowfall profiles from the radar data. Lastly, a brief comparison is made with two climate models as an application example of the dataset.
Ling Yuan, Xuelong Chen, Yaoming Ma, Cunbo Han, Binbin Wang, and Weiqiang Ma
Earth Syst. Sci. Data, 16, 775–801, https://doi.org/10.5194/essd-16-775-2024, https://doi.org/10.5194/essd-16-775-2024, 2024
Short summary
Short summary
Accurately monitoring and understanding the spatial–temporal variability of evapotranspiration (ET) components over the Tibetan Plateau (TP) remains difficult. Here, 37 years (1982–2018) of monthly ET component data for the TP was produced, and the data are consistent with measurements. The annual average ET for the TP was about 0.93 (± 0.037) × 103 Gt yr−1. The rate of increase of the ET was around 0.96 mm yr−1. The increase in the ET can be explained by warming and wetting of the climate.
Dominik Rains, Isabel Trigo, Emanuel Dutra, Sofia Ermida, Darren Ghent, Petra Hulsman, Jose Gómez-Dans, and Diego G. Miralles
Earth Syst. Sci. Data, 16, 567–593, https://doi.org/10.5194/essd-16-567-2024, https://doi.org/10.5194/essd-16-567-2024, 2024
Short summary
Short summary
Land surface temperature and surface net radiation are vital inputs for many land surface and hydrological models. However, current remote sensing datasets of these variables come mostly at coarse resolutions, and the few high-resolution datasets available have large gaps due to cloud cover. Here, we present a continuous daily product for both variables across Europe for 2018–2019 obtained by combining observations from geostationary as well as polar-orbiting satellites.
Hadleigh D. Thompson, Julie M. Thériault, Stephen J. Déry, Ronald E. Stewart, Dominique Boisvert, Lisa Rickard, Nicolas R. Leroux, Matteo Colli, and Vincent Vionnet
Earth Syst. Sci. Data, 15, 5785–5806, https://doi.org/10.5194/essd-15-5785-2023, https://doi.org/10.5194/essd-15-5785-2023, 2023
Short summary
Short summary
The Saint John River experiment on Cold Season Storms was conducted in northwest New Brunswick, Canada, to investigate the types of precipitation that can lead to ice jams and flooding along the river. We deployed meteorological instruments, took precipitation measurements and photographs of snowflakes, and launched weather balloons. These data will help us to better understand the atmospheric conditions that can affect local communities and townships downstream during the spring melt season.
Raghavendra Krishnamurthy, Gabriel García Medina, Brian Gaudet, William I. Gustafson Jr., Evgueni I. Kassianov, Jinliang Liu, Rob K. Newsom, Lindsay M. Sheridan, and Alicia M. Mahon
Earth Syst. Sci. Data, 15, 5667–5699, https://doi.org/10.5194/essd-15-5667-2023, https://doi.org/10.5194/essd-15-5667-2023, 2023
Short summary
Short summary
Our understanding and ability to observe and model air–sea processes has been identified as a principal limitation to our ability to predict future weather. Few observations exist offshore along the coast of California. To improve our understanding of the air–sea transition zone and support the wind energy industry, two buoys with state-of-the-art equipment were deployed for 1 year. In this article, we present details of the post-processing, algorithms, and analyses.
Baptiste Vandecrux, Jason E. Box, Andreas P. Ahlstrøm, Signe B. Andersen, Nicolas Bayou, William T. Colgan, Nicolas J. Cullen, Robert S. Fausto, Dominik Haas-Artho, Achim Heilig, Derek A. Houtz, Penelope How, Ionut Iosifescu Enescu, Nanna B. Karlsson, Rebecca Kurup Buchholz, Kenneth D. Mankoff, Daniel McGrath, Noah P. Molotch, Bianca Perren, Maiken K. Revheim, Anja Rutishauser, Kevin Sampson, Martin Schneebeli, Sandy Starkweather, Simon Steffen, Jeff Weber, Patrick J. Wright, Henry Jay Zwally, and Konrad Steffen
Earth Syst. Sci. Data, 15, 5467–5489, https://doi.org/10.5194/essd-15-5467-2023, https://doi.org/10.5194/essd-15-5467-2023, 2023
Short summary
Short summary
The Greenland Climate Network (GC-Net) comprises stations that have been monitoring the weather on the Greenland Ice Sheet for over 30 years. These stations are being replaced by newer ones maintained by the Geological Survey of Denmark and Greenland (GEUS). The historical data were reprocessed to improve their quality, and key information about the weather stations has been compiled. This augmented dataset is available at https://doi.org/10.22008/FK2/VVXGUT (Steffen et al., 2022).
Giovanni Chellini, Rosa Gierens, Kerstin Ebell, Theresa Kiszler, Pavel Krobot, Alexander Myagkov, Vera Schemann, and Stefan Kneifel
Earth Syst. Sci. Data, 15, 5427–5448, https://doi.org/10.5194/essd-15-5427-2023, https://doi.org/10.5194/essd-15-5427-2023, 2023
Short summary
Short summary
We present a comprehensive quality-controlled dataset of remote sensing observations of low-level mixed-phase clouds (LLMPCs) taken at the high Arctic site of Ny-Ålesund, Svalbard, Norway. LLMPCs occur frequently in the Arctic region, and substantially warm the surface. However, our understanding of microphysical processes in these clouds is incomplete. This dataset includes a comprehensive set of variables which allow for extensive investigation of such processes in LLMPCs at the site.
Emma L. Robinson, Chris Huntingford, Valyaveetil Shamsudheen Semeena, and James M. Bullock
Earth Syst. Sci. Data, 15, 5371–5401, https://doi.org/10.5194/essd-15-5371-2023, https://doi.org/10.5194/essd-15-5371-2023, 2023
Short summary
Short summary
CHESS-SCAPE is a suite of high-resolution climate projections for the UK to 2080, derived from United Kingdom Climate Projections 2018 (UKCP18), designed to support climate impact modelling. It contains four realisations of four scenarios of future greenhouse gas levels (RCP2.6, 4.5, 6.0 and 8.5), with and without bias correction to historical data. The variables are available at 1 km resolution and a daily time step, with monthly, seasonal and annual means and 20-year mean-monthly time slices.
Shaomin Liu, Ziwei Xu, Tao Che, Xin Li, Tongren Xu, Zhiguo Ren, Yang Zhang, Junlei Tan, Lisheng Song, Ji Zhou, Zhongli Zhu, Xiaofan Yang, Rui Liu, and Yanfei Ma
Earth Syst. Sci. Data, 15, 4959–4981, https://doi.org/10.5194/essd-15-4959-2023, https://doi.org/10.5194/essd-15-4959-2023, 2023
Short summary
Short summary
We present a suite of observational datasets from artificial and natural oases–desert systems that consist of long-term turbulent flux and auxiliary data, including hydrometeorological, vegetation, and soil parameters, from 2012 to 2021. We confirm that the 10-year, long-term dataset presented in this study is of high quality with few missing data, and we believe that the data will support ecological security and sustainable development in oasis–desert areas.
Gina C. Jozef, Robert Klingel, John J. Cassano, Björn Maronga, Gijs de Boer, Sandro Dahlke, and Christopher J. Cox
Earth Syst. Sci. Data, 15, 4983–4995, https://doi.org/10.5194/essd-15-4983-2023, https://doi.org/10.5194/essd-15-4983-2023, 2023
Short summary
Short summary
Observations from the MOSAiC expedition relating to lower-atmospheric temperature, wind, stability, moisture, and surface radiation budget from radiosondes, a meteorological tower, radiation station, and ceilometer were compiled to create a dataset which describes the thermodynamic and kinematic state of the central Arctic lower atmosphere between October 2019 and September 2020. This paper describes the methods used to develop this lower-atmospheric properties dataset.
Karl-Göran Karlsson, Martin Stengel, Jan Fokke Meirink, Aku Riihelä, Jörg Trentmann, Tom Akkermans, Diana Stein, Abhay Devasthale, Salomon Eliasson, Erik Johansson, Nina Håkansson, Irina Solodovnik, Nikos Benas, Nicolas Clerbaux, Nathalie Selbach, Marc Schröder, and Rainer Hollmann
Earth Syst. Sci. Data, 15, 4901–4926, https://doi.org/10.5194/essd-15-4901-2023, https://doi.org/10.5194/essd-15-4901-2023, 2023
Short summary
Short summary
This paper presents a global climate data record on cloud parameters, radiation at the surface and at the top of atmosphere, and surface albedo. The temporal coverage is 1979–2020 (42 years) and the data record is also continuously updated until present time. Thus, more than four decades of climate parameters are provided. Based on CLARA-A3, studies on distribution of clouds and radiation parameters can be made and, especially, investigations of climate trends and evaluation of climate models.
Boyang Jiao, Yucheng Su, Qingxiang Li, Veronica Manara, and Martin Wild
Earth Syst. Sci. Data, 15, 4519–4535, https://doi.org/10.5194/essd-15-4519-2023, https://doi.org/10.5194/essd-15-4519-2023, 2023
Short summary
Short summary
This paper develops an observational integrated and homogenized global-terrestrial (except for Antarctica) SSRIH station. This is interpolated into a 5° × 5° SSRIH grid and reconstructed into a long-term (1955–2018) global land (except for Antarctica) 5° × 2.5° SSR anomaly dataset (SSRIH20CR) by an improved partial convolutional neural network deep-learning method. SSRIH20CR yields trends of −1.276 W m−2 per decade over the dimming period and 0.697 W m−2 per decade over the brightening period.
Lukas Frank, Marius Opsanger Jonassen, Teresa Remes, Florina Roana Schalamon, and Agnes Stenlund
Earth Syst. Sci. Data, 15, 4219–4234, https://doi.org/10.5194/essd-15-4219-2023, https://doi.org/10.5194/essd-15-4219-2023, 2023
Short summary
Short summary
The Isfjorden Weather Information Network (IWIN) provides continuous meteorological near-surface observations from Isfjorden in Svalbard. The network combines permanent automatic weather stations on lighthouses along the coast line with mobile stations on board small tourist cruise ships regularly trafficking the fjord during spring to autumn. All data are available online in near-real time. Besides their scientific value, IWIN data crucially enhance the safety of field activities in the region.
Jingya Han, Chiyuan Miao, Jiaojiao Gou, Haiyan Zheng, Qi Zhang, and Xiaoying Guo
Earth Syst. Sci. Data, 15, 3147–3161, https://doi.org/10.5194/essd-15-3147-2023, https://doi.org/10.5194/essd-15-3147-2023, 2023
Short summary
Short summary
Constructing a high-quality, long-term daily precipitation dataset is essential to current hydrometeorology research. This study aims to construct a long-term daily precipitation dataset with different spatial resolutions based on 2839 gauge observations. The constructed precipitation dataset shows reliable quality compared with the other available precipitation products and is expected to facilitate the advancement of drought monitoring, flood forecasting, and hydrological modeling.
Christian Borger, Steffen Beirle, and Thomas Wagner
Earth Syst. Sci. Data, 15, 3023–3049, https://doi.org/10.5194/essd-15-3023-2023, https://doi.org/10.5194/essd-15-3023-2023, 2023
Short summary
Short summary
This study presents a long-term data set of monthly mean total column water vapour (TCWV) based on measurements of the Ozone Monitoring Instrument (OMI) covering the time range from January 2005 to December 2020. We describe how the TCWV values are retrieved from UV–Vis satellite spectra and demonstrate that the OMI TCWV data set is in good agreement with various different reference data sets. Moreover, we also show that it fulfills typical stability requirements for climate data records.
Jonathan Demaeyer, Jonas Bhend, Sebastian Lerch, Cristina Primo, Bert Van Schaeybroeck, Aitor Atencia, Zied Ben Bouallègue, Jieyu Chen, Markus Dabernig, Gavin Evans, Jana Faganeli Pucer, Ben Hooper, Nina Horat, David Jobst, Janko Merše, Peter Mlakar, Annette Möller, Olivier Mestre, Maxime Taillardat, and Stéphane Vannitsem
Earth Syst. Sci. Data, 15, 2635–2653, https://doi.org/10.5194/essd-15-2635-2023, https://doi.org/10.5194/essd-15-2635-2023, 2023
Short summary
Short summary
A benchmark dataset is proposed to compare different statistical postprocessing methods used in forecasting centers to properly calibrate ensemble weather forecasts. This dataset is based on ensemble forecasts covering a portion of central Europe and includes the corresponding observations. Examples on how to download and use the data are provided, a set of evaluation methods is proposed, and a first benchmark of several methods for the correction of 2 m temperature forecasts is performed.
Dirk Nikolaus Karger, Stefan Lange, Chantal Hari, Christopher P. O. Reyer, Olaf Conrad, Niklaus E. Zimmermann, and Katja Frieler
Earth Syst. Sci. Data, 15, 2445–2464, https://doi.org/10.5194/essd-15-2445-2023, https://doi.org/10.5194/essd-15-2445-2023, 2023
Short summary
Short summary
We present the first 1 km, daily, global climate dataset for climate impact studies. We show that the high-resolution data have a decreased bias and higher correlation with measurements from meteorological stations than coarser data. The dataset will be of value for a wide range of climate change impact studies both at global and regional level that benefit from using a consistent global dataset.
Elisa Adirosi, Federico Porcù, Mario Montopoli, Luca Baldini, Alessandro Bracci, Vincenzo Capozzi, Clizia Annella, Giorgio Budillon, Edoardo Bucchignani, Alessandra Lucia Zollo, Orietta Cazzuli, Giulio Camisani, Renzo Bechini, Roberto Cremonini, Andrea Antonini, Alberto Ortolani, Samantha Melani, Paolo Valisa, and Simone Scapin
Earth Syst. Sci. Data, 15, 2417–2429, https://doi.org/10.5194/essd-15-2417-2023, https://doi.org/10.5194/essd-15-2417-2023, 2023
Short summary
Short summary
The paper describes the database of 1 min drop size distribution (DSD) of atmospheric precipitation collected by the Italian disdrometer network over the last 10 years. These data are useful for several applications that range from climatological, meteorological and hydrological uses to telecommunications, agriculture and conservation of cultural heritage exposed to precipitation. Descriptions of the processing and of the database organization, along with some examples, are provided.
Jinfang Yin, Xudong Liang, Yanxin Xie, Feng Li, Kaixi Hu, Lijuan Cao, Feng Chen, Haibo Zou, Feng Zhu, Xin Sun, Jianjun Xu, Geli Wang, Ying Zhao, and Juanjuan Liu
Earth Syst. Sci. Data, 15, 2329–2346, https://doi.org/10.5194/essd-15-2329-2023, https://doi.org/10.5194/essd-15-2329-2023, 2023
Short summary
Short summary
A collection of regional reanalysis datasets has been produced. However, little attention has been paid to East Asia, and there are no long-term, physically consistent regional reanalysis data available. The East Asia Reanalysis System was developed using the WRF model and GSI data assimilation system. A 39-year (1980–2018) reanalysis dataset is available for the East Asia region, at a high temporal (of 3 h) and spatial resolution (of 12 km), for mesoscale weather and regional climate studies.
John Erik Engström, Lennart Wern, Sverker Hellström, Erik Kjellström, Chunlüe Zhou, Deliang Chen, and Cesar Azorin-Molina
Earth Syst. Sci. Data, 15, 2259–2277, https://doi.org/10.5194/essd-15-2259-2023, https://doi.org/10.5194/essd-15-2259-2023, 2023
Short summary
Short summary
Newly digitized wind speed observations provide data from the time period from around 1920 to the present, enveloping one full century of wind measurements. The results of this work enable the investigation of the historical variability and trends in surface wind speed in Sweden for
the last century.
Ulrike Herzschuh, Thomas Böhmer, Chenzhi Li, Manuel Chevalier, Raphaël Hébert, Anne Dallmeyer, Xianyong Cao, Nancy H. Bigelow, Larisa Nazarova, Elena Y. Novenko, Jungjae Park, Odile Peyron, Natalia A. Rudaya, Frank Schlütz, Lyudmila S. Shumilovskikh, Pavel E. Tarasov, Yongbo Wang, Ruilin Wen, Qinghai Xu, and Zhuo Zheng
Earth Syst. Sci. Data, 15, 2235–2258, https://doi.org/10.5194/essd-15-2235-2023, https://doi.org/10.5194/essd-15-2235-2023, 2023
Short summary
Short summary
Climate reconstruction from proxy data can help evaluate climate models. We present pollen-based reconstructions of mean July temperature, mean annual temperature, and annual precipitation from 2594 pollen records from the Northern Hemisphere, using three reconstruction methods (WA-PLS, WA-PLS_tailored, and MAT). Since no global or hemispheric synthesis of quantitative precipitation changes are available for the Holocene so far, this dataset will be of great value to the geoscientific community.
Aart Overeem, Else van den Besselaar, Gerard van der Schrier, Jan Fokke Meirink, Emiel van der Plas, and Hidde Leijnse
Earth Syst. Sci. Data, 15, 1441–1464, https://doi.org/10.5194/essd-15-1441-2023, https://doi.org/10.5194/essd-15-1441-2023, 2023
Short summary
Short summary
EURADCLIM is a new precipitation dataset covering a large part of Europe. It is based on weather radar data to provide local precipitation information every hour and combined with rain gauge data to obtain good precipitation estimates. EURADCLIM provides a much better reference for validation of weather model output and satellite precipitation datasets. It also allows for climate monitoring and better evaluation of extreme precipitation events and their impact (landslides, flooding).
Alfonso Ferrone and Alexis Berne
Earth Syst. Sci. Data, 15, 1115–1132, https://doi.org/10.5194/essd-15-1115-2023, https://doi.org/10.5194/essd-15-1115-2023, 2023
Short summary
Short summary
This article presents the datasets collected between November 2019 and February 2020 in the vicinity of the Belgian research base Princess Elisabeth Antarctica. Five meteorological radars, a multi-angle snowflake camera, three weather stations, and two radiometers have been deployed at five sites, up to a maximum distance of 30 km from the base. Their varied locations allow the study of spatial variability in snowfall and its interaction with the complex terrain in the region.
José Dias Neto, Louise Nuijens, Christine Unal, and Steven Knoop
Earth Syst. Sci. Data, 15, 769–789, https://doi.org/10.5194/essd-15-769-2023, https://doi.org/10.5194/essd-15-769-2023, 2023
Short summary
Short summary
This paper describes a dataset from a novel experimental setup to retrieve wind speed and direction profiles, combining cloud radars and wind lidar. This setup allows retrieving profiles from near the surface to the top of clouds. The field campaign occurred in Cabauw, the Netherlands, between September 13th and October 3rd 2021. This paper also provides examples of applications of this dataset (e.g. studying atmospheric turbulence, validating numerical atmospheric models).
Peng Yuan, Geoffrey Blewitt, Corné Kreemer, William C. Hammond, Donald Argus, Xungang Yin, Roeland Van Malderen, Michael Mayer, Weiping Jiang, Joseph Awange, and Hansjörg Kutterer
Earth Syst. Sci. Data, 15, 723–743, https://doi.org/10.5194/essd-15-723-2023, https://doi.org/10.5194/essd-15-723-2023, 2023
Short summary
Short summary
We developed a 5 min global integrated water vapour (IWV) product from 12 552 ground-based GPS stations in 2020. It contains more than 1 billion IWV estimates. The dataset is an enhanced version of the existing operational GPS IWV dataset from the Nevada Geodetic Laboratory. The enhancement is reached by using accurate meteorological information from ERA5 for the GPS IWV retrieval with a significantly higher spatiotemporal resolution. The dataset is recommended for high-accuracy applications.
Yaozhi Jiang, Kun Yang, Youcun Qi, Xu Zhou, Jie He, Hui Lu, Xin Li, Yingying Chen, Xiaodong Li, Bingrong Zhou, Ali Mamtimin, Changkun Shao, Xiaogang Ma, Jiaxin Tian, and Jianhong Zhou
Earth Syst. Sci. Data, 15, 621–638, https://doi.org/10.5194/essd-15-621-2023, https://doi.org/10.5194/essd-15-621-2023, 2023
Short summary
Short summary
Our work produces a long-term (1979–2020) high-resolution (1/30°, daily) precipitation dataset for the Third Pole (TP) region by merging an advanced atmospheric simulation with high-density rain gauge (more than 9000) observations. Validation shows that the produced dataset performs better than the currently widely used precipitation datasets in the TP. This dataset can be used for hydrological, meteorological and ecological studies in the TP.
Yetang Wang, Xueying Zhang, Wentao Ning, Matthew A. Lazzara, Minghu Ding, Carleen H. Reijmer, Paul C. J. P. Smeets, Paolo Grigioni, Petra Heil, Elizabeth R. Thomas, David Mikolajczyk, Lee J. Welhouse, Linda M. Keller, Zhaosheng Zhai, Yuqi Sun, and Shugui Hou
Earth Syst. Sci. Data, 15, 411–429, https://doi.org/10.5194/essd-15-411-2023, https://doi.org/10.5194/essd-15-411-2023, 2023
Short summary
Short summary
Here we construct a new database of Antarctic automatic weather station (AWS) meteorological records, which is quality-controlled by restrictive criteria. This dataset compiled all available Antarctic AWS observations, and its resolutions are 3-hourly, daily and monthly, which is very useful for quantifying spatiotemporal variability in weather conditions. Furthermore, this compilation will be used to estimate the performance of the regional climate models or meteorological reanalysis products.
Hui Zhang, Ming Luo, Yongquan Zhao, Lijie Lin, Erjia Ge, Yuanjian Yang, Guicai Ning, Jing Cong, Zhaoliang Zeng, Ke Gui, Jing Li, Ting On Chan, Xiang Li, Sijia Wu, Peng Wang, and Xiaoyu Wang
Earth Syst. Sci. Data, 15, 359–381, https://doi.org/10.5194/essd-15-359-2023, https://doi.org/10.5194/essd-15-359-2023, 2023
Short summary
Short summary
We generate the first monthly high-resolution (1 km) human thermal index collection (HiTIC-Monthly) in China over 2003–2020, in which 12 human-perceived temperature indices are generated by LightGBM. The HiTIC-Monthly dataset has a high accuracy (R2 = 0.996, RMSE = 0.693 °C, MAE = 0.512 °C) and describes explicit spatial variations for fine-scale studies. It is freely available at https://zenodo.org/record/6895533 and https://data.tpdc.ac.cn/disallow/036e67b7-7a3a-4229-956f-40b8cd11871d.
Jun Qin, Weihao Pan, Min He, Ning Lu, Ling Yao, Hou Jiang, and Chenghu Zhou
Earth Syst. Sci. Data, 15, 331–344, https://doi.org/10.5194/essd-15-331-2023, https://doi.org/10.5194/essd-15-331-2023, 2023
Short summary
Short summary
To enrich a glacial surface air temperature (SAT) product of a long time series, an ensemble learning model is constructed to estimate monthly SATs from satellite land surface temperatures at a spatial resolution of 1 km, and long-term glacial SATs from 1961 to 2020 are reconstructed using a Bayesian linear regression. This product reveals the overall warming trend and the spatial heterogeneity of warming on TP glaciers and helps to monitor glacier warming, analyze glacier evolution, etc.
Tao Zhang, Yuyu Zhou, Kaiguang Zhao, Zhengyuan Zhu, Gang Chen, Jia Hu, and Li Wang
Earth Syst. Sci. Data, 14, 5637–5649, https://doi.org/10.5194/essd-14-5637-2022, https://doi.org/10.5194/essd-14-5637-2022, 2022
Short summary
Short summary
We generated a global 1 km daily maximum and minimum near-surface air temperature (Tmax and Tmin) dataset (2003–2020) using a novel statistical model. The average root mean square errors ranged from 1.20 to 2.44 °C for Tmax and 1.69 to 2.39 °C for Tmin. The gridded global air temperature dataset is of great use in a variety of studies such as the urban heat island phenomenon, hydrological modeling, and epidemic forecasting.
Benjamin Fersch, Andreas Wagner, Bettina Kamm, Endrit Shehaj, Andreas Schenk, Peng Yuan, Alain Geiger, Gregor Moeller, Bernhard Heck, Stefan Hinz, Hansjörg Kutterer, and Harald Kunstmann
Earth Syst. Sci. Data, 14, 5287–5307, https://doi.org/10.5194/essd-14-5287-2022, https://doi.org/10.5194/essd-14-5287-2022, 2022
Short summary
Short summary
In this study, a comprehensive multi-disciplinary dataset for tropospheric water vapor was developed. Geodetic, photogrammetric, and atmospheric modeling and data fusion techniques were used to obtain maps of water vapor in a high spatial and temporal resolution. It could be shown that regional weather simulations for different seasons benefit from assimilating these maps and that the combination of the different observation techniques led to positive synergies.
Craig D. Smith, Eva Mekis, Megan Hartwell, and Amber Ross
Earth Syst. Sci. Data, 14, 5253–5265, https://doi.org/10.5194/essd-14-5253-2022, https://doi.org/10.5194/essd-14-5253-2022, 2022
Short summary
Short summary
It is well understood that precipitation gauges underestimate the measurement of solid precipitation (snow) as a result of systematic bias caused by wind. Relationships between the wind speed and gauge catch efficiency of solid precipitation have been previously established and are applied to the hourly precipitation measurements made between 2001 and 2019 in the automated Environment and Climate Change Canada observation network. The adjusted data are available for download and use.
Zen Mariani, Laura Huang, Robert Crawford, Jean-Pierre Blanchet, Shannon Hicks-Jalali, Eva Mekis, Ludovick Pelletier, Peter Rodriguez, and Kevin Strawbridge
Earth Syst. Sci. Data, 14, 4995–5017, https://doi.org/10.5194/essd-14-4995-2022, https://doi.org/10.5194/essd-14-4995-2022, 2022
Short summary
Short summary
Environment and Climate Change Canada (ECCC) commissioned two supersites in Iqaluit (64°N, 69°W) and Whitehorse (61°N, 135°W) to provide new and enhanced automated and continuous altitude-resolved meteorological observations as part of the Canadian Arctic Weather Science (CAWS) project. These observations are being used to test new technologies, provide recommendations to the optimal Arctic observing system, and evaluate and improve the performance of numerical weather forecast systems.
Eva Beele, Maarten Reyniers, Raf Aerts, and Ben Somers
Earth Syst. Sci. Data, 14, 4681–4717, https://doi.org/10.5194/essd-14-4681-2022, https://doi.org/10.5194/essd-14-4681-2022, 2022
Short summary
Short summary
This paper presents crowdsourced data from the Leuven.cool network, a citizen science network of around 100 low-cost weather stations distributed across Leuven, Belgium. The temperature data have undergone a quality control (QC) and correction procedure. The procedure consists of three levels that remove implausible measurements while also correcting for between-station and station-specific temperature biases.
Auguste Gires, Jerry Jose, Ioulia Tchiguirinskaia, and Daniel Schertzer
Earth Syst. Sci. Data, 14, 3807–3819, https://doi.org/10.5194/essd-14-3807-2022, https://doi.org/10.5194/essd-14-3807-2022, 2022
Short summary
Short summary
The Hydrology Meteorology and Complexity laboratory of École des Ponts ParisTech (https://hmco.enpc.fr) has made a data set of high-resolution atmospheric measurements (rainfall, wind, temperature, pressure, and humidity) available. It comes from a campaign carried out on a meteorological mast located on a wind farm in the framework of the Rainfall Wind Turbine or Turbulence project (RW-Turb; supported by the French National Research Agency – ANR-19-CE05-0022).
Bastian Kirsch, Cathy Hohenegger, Daniel Klocke, Rainer Senke, Michael Offermann, and Felix Ament
Earth Syst. Sci. Data, 14, 3531–3548, https://doi.org/10.5194/essd-14-3531-2022, https://doi.org/10.5194/essd-14-3531-2022, 2022
Short summary
Short summary
Conventional observation networks are too coarse to resolve the horizontal structure of kilometer-scale atmospheric processes. We present the FESST@HH field experiment that took place in Hamburg (Germany) during summer 2020 and featured a dense network of 103 custom-built, low-cost weather stations. The data set is capable of providing new insights into the structure of convective cold pools and the nocturnal urban heat island and variations of local temperature fluctuations.
Fan Mei, Mikhail S. Pekour, Darielle Dexheimer, Gijs de Boer, RaeAnn Cook, Jason Tomlinson, Beat Schmid, Lexie A. Goldberger, Rob Newsom, and Jerome D. Fast
Earth Syst. Sci. Data, 14, 3423–3438, https://doi.org/10.5194/essd-14-3423-2022, https://doi.org/10.5194/essd-14-3423-2022, 2022
Short summary
Short summary
This work focuses on an expanding number of data sets observed using ARM TBS (133 flights) and UAS (seven flights) platforms by the Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) user facility. These data streams provide new perspectives on spatial variability of atmospheric and surface parameters, helping to address critical science questions in Earth system science research, such as the aerosol–cloud interaction in the boundary layer.
Cited articles
Aoki, T., Aoki, T., Fukabori, M., and Uchiyama, A.: Numerical simulation of the atmospheric effects on snow albedo with a multiple scattering radiative transfer model for the atmosphere-snow system, J. Meteorol. Soc. Jpn., 77, 595–614, https://doi.org/10.2151/jmsj1965.77.2_595, 1999.
Aoki, T., Hachikubo, A., and Hori, M.: Effect of snow physical parameters on shortwave broadband albedos, J. Geophys. Res., 108, 4616, https://doi.org/10.1029/2003jd003506, 2003.
Aoki, T., Kuchiki, K., Niwano, M., Kodama, Y., Hosaka, M., and Tanaka, T.: Physically based snow albedo model for calculating broadband albedos and the solar heating profile in snowpack for general circulation models, J. Geophys. Res.-Atmos., 116, 1–22, https://doi.org/10.1029/2010JD015507, 2011.
Aoki, T., Matoba, S., Uetake, J., Takeuchi, N., and Motoyama, H.: Field activities of the “Snow Impurity and Glacial Microbe effects on abrupt warming in the Arctic” (SIGMA) Project in Greenland in 2011–2013, Bull. Glaciol. Res., 32, 3–20, https://doi.org/10.5331/bgr.32.3, 2014.
Armstrong, R. L. and Brun, E. (Eds.): Physical processes within the snow cover and their parameterization, in: Snow and Climate: Physical Processes, Surface Energy Exchange and Modeling, Cambridge University Press, Cambridge, N. Y., p. 58, ISBN 9780521130653, 2008.
Behrens, K.: Radiation sensors, in: Springer handbook of atmospheric measurements, edited by: Foken, T., Springer International Publishing, 297–357, https://doi.org/10.1007/978-3-030-52171-4_11, 2021.
Braithwaite, R. J. and Olesen, O. B.: A simple energy-balance model to calculate ice ablation at the margin of the Greenland ice sheet, J. Glaciol., 36, 222–228, https://doi.org/10.1017/S0022143000009473, 1990.
Brock, B. W. and Arnold, N. S.: A spreadsheet-based (Microsoft Excel) point surface energy balance model for glacier and snow melt studies, Earth Surf. Proc. Land., 25, 649–658, https://doi.org/10.1002/1096-9837(200006)25:6<649::AID-ESP97>3.0.CO;2-U, 2000.
Estévez, J., Gavilán, P., and Giráldez, J. V.: Guidelines on validation procedures for meteorological data from automatic weather stations, J. Hydrol., 402, 144–154, https://doi.org/10.1016/j.jhydrol.2011.02.031, 2011.
Fausto, R. S., van As, D., Mankoff, K. D., Vandecrux, B., Citterio, M., Ahlstrøm, A. P., Andersen, S. B., Colgan, W., Karlsson, N. B., Kjeldsen, K. K., Korsgaard, N. J., Larsen, S. H., Nielsen, S., Pedersen, A. Ø., Shields, C. L., Solgaard, A. M., and Box, J. E.: Programme for Monitoring of the Greenland Ice Sheet (PROMICE) automatic weather station data, Earth Syst. Sci. Data, 13, 3819–3845, https://doi.org/10.5194/essd-13-3819-2021, 2021.
Fiebrich, C. A., Morgan, Y. R., McCombs, A. G., Hall, P. K., and McPherson, R. A.: Quality assurance procedures for mesoscale meteorological data, J. Atmos. Ocean. Tech., 27, 1565–1582, https://doi.org/10.1175/2010JTECHA1433.1, 2010.
Fröhlich, C.: Total solar irradiance observations, Surv. Geophys., 33, 453–473, https://doi.org/10.1007/s10712-011-9168-5, 2012.
Fujita, K., Matoba, S., Iizuka, Y., Takeuchi, N., Tsushima, A., Kurosaki, Y., and Aoki, T.: Physically based summer temperature reconstruction from melt layers in ice cores, Earth Space Sci., 8, e2020EA001590, https://doi.org/10.1029/2020EA001590, 2021.
Hirose, S., Aoki, T., Niwano, M., Matoba, S., Tanikawa T., Yamaguchi, S., and Yamasaki, T.: Surface energy balance observed at the SIGMA-A site on the northwest Greenland ice sheet, Seppyo, 83, 143–154, https://doi.org/10.5331/seppyo.83.2_143, 2021 (in Japanese with English abstract).
Hock, R. and Holmgren, B.: A distributed surface energy-balance model for complex topography and its application to Storglaciären, Sweden, J. Glaciol., 51, 25–36, https://doi.org/10.3189/172756505781829566, 2005.
Jonsell, U., Hock, R., and Holmgren, B.: Spatial and temporal variations in albedo on Storglaciären, Sweden, J. Glaciol., 49, 59–68, https://doi.org/10.3189/172756503781830980, 2003.
Kim, H. M. and Kim, B. M.: Relative contributions of atmospheric energy transport and sea ice loss to the recent warm arctic winter, J. Climate, 30, 7441–7450, https://doi.org/10.1175/JCLI-D-17-0157.1, 2017.
Kurosaki, Y., Matoba, S., Iizuka, Y., Niwano, M., Tanikawa, T., Ando, T., Hori, A., Miyamoto, A., Fujita, S., and Aoki, T.: Reconstruction of sea ice concentration in northern Baffin Bay using deuterium excess in a coastal ice core from the north-western Greenland Ice Sheet, J. Geophys. Res.-Atmos., 125, e2019JD031668, https://doi.org/10.1029/2019JD031668, 2020.
Liang, Y., Bi, H., Huang, H., Lei, R., Liang, X., Cheng, B., and Wang, Y.: Contribution of warm and moist atmospheric flow to a record minimum July sea ice extent of the Arctic in 2020, The Cryosphere, 16, 1107–1123, https://doi.org/10.5194/tc-16-1107-2022, 2022.
Makkonen, L. and Laakso, T.: Humidity measurements in cold and humid environments, Bound.-Lay. Meteorol., 116, 131–147, https://doi.org/10.1007/s10546-004-7955-y, 2005.
Matoba, S., Yamaguchi, S., Tsushima, A., Aoki, T., and Sugiyama, S.: Surface mass balance variations in a maritime area of the north-western Greenland Ice Sheet, Low Temperature Science, 75, 37–44, https://doi.org/10.14943/lowtemsci.75.37, 2017 (in Japanese with English abstract).
Matoba, S., Niwano, M., Tanikawa, T., Iizuka, Y., Yamasaki, T., Kurosaki, Y., Aoki, T., Hashimoto, A., Hosaka, M., and Sugiyama, S.: Field activities at the SIGMA-A site, north-western Greenland Ice Sheet, 2017, Bull. Glaciol. Res., 36, 15–22, https://doi.org/10.5331/BGR.18R01, 2018.
Moon, T., Fisher, M., Harden, L., and Stafford, T.: QGreenland (v1.0.1) [software], https://doi.org/10.5281/zenodo.4558266, 2021.
Moradi, I.: Quality control of global solar radiation using sunshine duration hours, Energy, 34, 1–6, https://doi.org/10.1016/j.energy.2008.09.006, 2009.
Morino, S., Kurita, N., Hirasawa, N., Motoyama, H., Sugiura, K., Lazzara, M., Mikolajczyk, D., Welhouse, L., Keller, L., and Weidner, G.: Comparison of Ventilated and Unventilated Air Temperature Measurements in Inland Dronning Maud Land on the East Antarctic Plateau, J. Atmos. Ocean. Tech., 38, 2061–2070, https://doi.org/10.1175/JTECH-D-21-0107.1, 2021.
Morrison, H., De Boer, G., Feingold, G., Harrington, J., Shupe, M. D., and Sulia, K.: Resilience of persistent Arctic mixed-phase clouds, Nat. Geosci., 5, 11–17, https://doi.org/10.1038/ngeo1332, 2012.
Mouginot, J., Rignot, E., Bjørk, A. A., van den Broeke, M., Millan, R., Morlighem, M., Noël, B., Scheuchl, B., and Wood, M.: Forty-six years of Greenland Ice Sheet mass balance from 1972 to 2018, P. Natl. Acad. Sci. USA, 116, 9239–9244, https://doi.org/10.1073/pnas.1904242116, 2019.
Nishimura, M., Aoki, T., Niwano, M., Matoba, S., Tanikawa, T., Yamaguchi, S., Yamasaki, T., and Fujita, K.: Quality-controlled datasets of Automatic Weather Station (AWS) at SIGMA-B site from 2012 to 2020: Level 1.1, 1.00, Arctic Data archive System (ADS), Japan [dataset], https://doi.org/10.17592/001.2022041304, 2023a.
Nishimura, M., Aoki, T., Niwano, M., Matoba, S., Tanikawa, T., Yamaguchi, S., Yamasaki, T., and Fujita, K.: Quality-controlled datasets of Automatic Weather Station (AWS) at SIGMA-B site from 2012 to 2020: Level 1.2, 1.10, Arctic Data archive System (ADS), Japan [dataset], https://doi.org/10.17592/001.2022041305, 2023b.
Nishimura, M., Aoki, T., Niwano, M., Matoba, S., Tanikawa, T., Yamaguchi, S., Yamasaki, T., and Fujita, K.: Quality-controlled datasets of Automatic Weather Station (AWS) at SIGMA-B site from 2012 to 2020: Level 1.3, 1.20, Arctic Data archive System (ADS), Japan [dataset], https://doi.org/10.17592/001.2022041306, 2023c.
Nishimura, M., Aoki, T., Niwano, M., Matoba, S., Tanikawa, T., Yamaguchi, S., Yamasaki, T., Tsushima, A., Fujita, K., Iizuka, Y., and Kurosaki, Y.: Quality-controlled datasets of Automatic Weather Station (AWS) at SIGMA-A site from 2012 to 2020: Level 1.1, 1.00, Arctic Data archive System (ADS), Japan [dataset], https://doi.org/10.17592/001.2022041301, 2023d.
Nishimura, M., Aoki, T., Niwano, M., Matoba, S., Tanikawa, T., Yamaguchi, S., Yamasaki, T., Tsushima, A., Fujita, K., Iizuka, Y., and Kurosaki, Y.: Quality-controlled datasets of Automatic Weather Station (AWS) at SIGMA-A site from 2012 to 2020: Level 1.2, 1.20, Arctic Data archive System (ADS), Japan [dataset], https://doi.org/10.17592/001.2022041302, 2023e.
Nishimura, M., Aoki, T., Niwano, M., Matoba, S., Tanikawa, T., Yamaguchi, S., Yamasaki, T., Tsushima, A., Fujita, K., Iizuka, Y., and Kurosaki, Y.: Quality-controlled datasets of Automatic Weather Station (AWS) at SIGMA-A site from 2012 to 2020: Level 1.3, 1.20, Arctic Data archive System (ADS), Japan [dataset], https://doi.org/10.17592/001.2022041303, 2023f.
Nishimura, M., Niwano, M., and Aoki, T.: SIGMA-AWS-QC, GitHub [code], https://github.com/MotoshiNishimura/SIGMA-AWS-QC.git (last access: 9 October 2023), 2023g.
Niwano, M., Aoki, T., Matoba, S., Yamaguchi, S., Tanikawa, T., Kuchiki, K., and Motoyama, H.: Numerical simulation of extreme snowmelt observed at the SIGMA-A site, northwest Greenland, during summer 2012, The Cryosphere, 9, 971–988, https://doi.org/10.5194/tc-9-971-2015, 2015.
Niwano, M., Aoki, T., Hashimoto, A., Matoba, S., Yamaguchi, S., Tanikawa, T., Fujita, K., Tsushima, A., Iizuka, Y., Shimada, R., and Hori, M.: NHM–SMAP: spatially and temporally high-resolution nonhydrostatic atmospheric model coupled with detailed snow process model for Greenland Ice Sheet, The Cryosphere, 12, 635–655, https://doi.org/10.5194/tc-12-635-2018, 2018.
Niwano, M., Box, J. E., Wehrlé, A., Vandecrux, B., Colgan, W. T., and Cappelen, J.: Rainfall on the Greenland Ice Sheet: Present-day climatology from a high-resolution non-hydrostatic polar regional climate model, Geophys. Res. Lett., 48, e2021GL092942, https://doi.org/10.1029/2021GL092942, 2021.
Noël, B., van de Berg, W. J., Lhermitte, S., and van den Broeke, M. R.: Rapid ablation zone expansion amplifies north Greenland mass loss, Sci. Adv., 5, 2–11, https://doi.org/10.1126/sciadv.aaw0123, 2019.
Onuma, Y., Takeuchi, N., Tanaka, S., Nagatsuka, N., Niwano, M., and Aoki, T.: Observations and modelling of algal growth on a snowpack in north-western Greenland, The Cryosphere, 12, 2147–2158, https://doi.org/10.5194/tc-12-2147-2018, 2018.
Porter, C., Morin, P., Howat, I., Noh, M. J., Bates, B., Peterman, K., Keesey, S., Schlenk, M., Gardiner, J., Tomko, K., Willis, M., Kelleher, C., Cloutier, M., Husby, E., Foga, S., Nakamura, H., Platson, M., Wethington Jr., M., Williamson, C., Bauer, G., Enos, J., Arnold, G., Kramer, W., Becker, P., Doshi, A., D'Souza, C., Cummens, P., Laurier, F., and Bojesen, M.: “ArcticDEM”, Harvard Dataverse, V1, https://doi.org/10.7910/DVN/OHHUKH, 2018.
Rottman, G.: Measurement of total and spectral solar irradiance, Space Sci. Rev., 125, 39–51, https://doi.org/10.1007/s11214-006-9045-6, 2006.
Ryan, J. C., Smith, L. C., Cooley, S. W., Pearson, B., Wever, N., Keenan, E., and Lenaerts, J. T. M.: Decreasing surface albedo signifies a growing importance of clouds for Greenland Ice Sheet meltwater production, Nat. Commun., 13, 4205, https://doi.org/10.1038/s41467-022-31434-w, 2022.
Steffen, C. and Box, J. E.: Surface climatology of the Greenland ice sheet: Greenland Climate Network 1995–1999, J. Geophys. Res., 106, 33951–33964, 2001.
Stramler, K., Del Genio, A. D., and Rossow, W. B.: Synoptically driven Arctic winter states, J. Climate, 24, 1747–1762, https://doi.org/10.1175/2010JCLI3817.1, 2011.
Sugiyama, S., Sakakibara, D., Matsuno, S., Yamaguchi, S., Matoba, S., and Aoki, T.: Initial field observations on Qaanaaq ice cap, north-western Greenland, Ann. Glaciol., 55, 25–33, https://doi.org/10.3189/2014AoG66A102, 2014.
Takeuchi, N., Sakaki, R., Uetake, J., Nagatsuka, N., Shimada, R., Niwano, M., and Aoki, T.: Temporal variations of cryoconite holes and cryoconite coverage on the ablation ice surface of Qaanaaq Glacier in northwest Greenland, Ann. Glaciol., 59, 21–30, https://doi.org/10.1017/aog.2018.19, 2018.
Tanikawa, T., Hori, M., Aoki, T., Hachikubo, A., Kuchiki, K., Niwano, M., Matoba, S., Yamaguchi, S., and Stamnes, K.: In situ measurements of polarization properties of snow surface under the Brewster geometry in Hokkaido, Japan, and northwest Greenland ice sheet, J. Geophys. Res., 119, 13946–13964, https://doi.org/10.1002/2014JD022325, 2014.
Tsutaki, S., Sugiyama, S., Sakakibara, D., Aoki, T., and Niwano, M.: Surface mass balance, ice velocity and near-surface ice temperature on Qaanaaq Ice Cap, north-western Greenland, from 2012 to 2016, Ann. Glaciol., 58, 181–192, https://doi.org/10.1017/aog.2017.7, 2017.
van As, D., Fausto, R. S., Ahlstrøm, A. P., Andersen, S. B., Andersen, M. L., Citterio, M., Edelvang, K., Gravesen, P., Machguth, H., Nick, F. M., Nielsen, S., and Anker, W.: Programme for Monitoring of the Greenland Ice Sheet (PROMICE): First temperature and ablation records, Geol. Surv. Den. Greenl., 23, 73–76, https://doi.org/10.34194/geusb.v23.4876, 2011.
van de Wal, R. S. W., Greuell, W., Van den Broeke, M. R., Reijmer, C. J., and Oerlemans, J.: Surface mass-balance observations and automatic weather station data along a transect near Kangerlussuaq, West Greenland, Ann. Glaciol., 42, 311–316, https://doi.org/10.3189/172756405781812529, 2005.
van den Broeke, M., Reijmer, C., and van de Wal, R.: Surface radiation balance in Antarctica as measured with automatic weather stations, J. Geophys. Res., 109, D09103, https://doi.org/10.1029/2003JD004394, 2004a.
van den Broeke, M., van As, D., Reijmer, C., and van de Wal, R.: Assessing and improving the quality of unattended radiation observations in Antarctica, J. Atmos. Ocean. Tech., 21, 1417–1431, https://doi.org/10.1175/1520-0426(2004)021<1417:AAITQO>2.0.CO;2, 2004b.
Wehrli, C.: World Radiation Center (WRC) Publication, Davos-Dorf, Switzerland, 615, 10–17, 1985.
Wiscombe, W. J. and Warren S. G.: A model for the spectral albedo of snow. I, Pure snow, J. Atmos. Sci., 37, 2712–2733, 1980.
Yamaguchi, S., Matoba, S., Yamazaki, T., Tsushima, A., Niwano, M., Tanikawa, T., and Aoki, T.: Glaciological observations in 2012 and 2013 at SIGMA-A site, Northwest Greenland, Bull. Glaciol. Res., 32, 95–105, https://doi.org/10.5331/bgr.32.95, 2014.
Short summary
We presented the method of data quality checks and the dataset for two ground weather observations in northwest Greenland. We found that the warm and clear weather conditions in the 2015, 2019, and 2020 summers caused the snowmelt and the decline in surface reflectance of solar radiation at a low-elevated site (SIGMA-B; 944 m), but those were not seen at the high-elevated site (SIGMA-A; 1490 m). We hope that our data management method and findings will help climate scientists.
We presented the method of data quality checks and the dataset for two ground weather...
Altmetrics
Final-revised paper
Preprint