Articles | Volume 15, issue 9
https://doi.org/10.5194/essd-15-4047-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/essd-15-4047-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
ChinaWheatYield30m: a 30 m annual winter wheat yield dataset from 2016 to 2021 in China
Yu Zhao
Key Laboratory of Quantitative Remote Sensing in Agriculture of
Ministry of Agriculture and Rural Affairs, Information Technology Research
Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing
100097, China
College of agriculture, Shanxi Agricultural University, Taigu, Shanxi
030801, China
Shaoyu Han
Key Laboratory of Quantitative Remote Sensing in Agriculture of
Ministry of Agriculture and Rural Affairs, Information Technology Research
Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing
100097, China
Institute of Agricultural Economics and Information, Henan Academy of
Agricultural Sciences, Zhengzhou, Henan 450000, China
Jie Zheng
Key Laboratory of Quantitative Remote Sensing in Agriculture of
Ministry of Agriculture and Rural Affairs, Information Technology Research
Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing
100097, China
Hanyu Xue
Key Laboratory of Quantitative Remote Sensing in Agriculture of
Ministry of Agriculture and Rural Affairs, Information Technology Research
Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing
100097, China
Zhenhai Li
Key Laboratory of Quantitative Remote Sensing in Agriculture of
Ministry of Agriculture and Rural Affairs, Information Technology Research
Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing
100097, China
College of Geodesy and Geomatics, Shandong University of Science and
Technology, Qingdao 266590, China
Yang Meng
Key Laboratory of Quantitative Remote Sensing in Agriculture of
Ministry of Agriculture and Rural Affairs, Information Technology Research
Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing
100097, China
College of agriculture, Shanxi Agricultural University, Taigu, Shanxi
030801, China
Xuguang Li
Cultivated Land Monitoring and Protection Center of Hebei,
Shijiazhuang, 050056, China
Xiaodong Yang
Key Laboratory of Quantitative Remote Sensing in Agriculture of
Ministry of Agriculture and Rural Affairs, Information Technology Research
Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing
100097, China
Zhenhong Li
School of Geological Engineering and Geomatics, Chang'an University,
Xi'an 710054, China
Shuhong Cai
Cultivated Land Monitoring and Protection Center of Hebei,
Shijiazhuang, 050056, China
Guijun Yang
CORRESPONDING AUTHOR
Key Laboratory of Quantitative Remote Sensing in Agriculture of
Ministry of Agriculture and Rural Affairs, Information Technology Research
Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing
100097, China
School of Geological Engineering and Geomatics, Chang'an University,
Xi'an 710054, China
Related authors
No articles found.
Linying Ma, Jun Wang, Zishan Wang, Qian Zhang, Ran Yan, Zhi Huang, Yabin Ye, Hao Zheng, Shuyue Xiao, Xiaokang Zhang, Zhenhai Li, Hongzhang Wang, Tao Wei, Haijin Dai, Meirong Wang, and Xiuying Zhang
EGUsphere, https://doi.org/10.5194/egusphere-2026-142, https://doi.org/10.5194/egusphere-2026-142, 2026
This preprint is open for discussion and under review for Biogeosciences (BG).
Short summary
Short summary
From April to June 2024, the North China Plain experienced an extreme dry-hot event. Satellite data showed rapid crop growth in April but record-low levels in June under combined heat and drought stress. Consistent with vegetation signals, Yield statistics and field observations confirmed higher winter wheat yields but lower summer maize yields. Growth was enhanced by warming and carryover in April, dominated by carryover in May, and strongly limited by high vapor pressure deficit in June.
C. Zhao, Z. Li, S. Zhang, G. Huang, C. Yang, and S. Duan
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-5-W1-2023, 59–64, https://doi.org/10.5194/isprs-archives-XLVIII-5-W1-2023-59-2023, https://doi.org/10.5194/isprs-archives-XLVIII-5-W1-2023-59-2023, 2023
Cited articles
Arslan, M., Guzel, M., Demirci, M., and Ozdemir, S.: SMOTE and Gaussian Noise
Based Sensor Data Augmentation, in: 2019 4th International Conference on
Computer Science and Engineering (UBMK), 11 September 2019, Samsun, Turkey, 458–462,
https://doi.org/10.1109/UBMK.2019.8907003, 2019.
Bailey-Serres, J., Parker, J. E., Ainsworth, E. A., Oldroyd, G. E. D.,
and Schroeder, J. I.: Genetic strategies for improving crop yields, Nature, 575,
109–118, https://doi.org/10.1038/s41586-019-1679-0, 2019.
Battude, M., Al Bitar, A., Morin, D., Cros, J., Huc, M., Marais Sicre, C.,
Dantec, V., and Demarez, V.: Estimating maize biomass and yield over large areas
using high spatial and temporal resolution sentinel-2 like remote sensing
data, Remote Sens. Environ., 184, 668–681,
https://doi.org/10.1016/j.rse.2016.07.030, 2016.
Breiman, L.: Random forests, Mach. Learn., 45, 5–32,
https://doi.org/10.1023/A:1010933404324, 2001.
Cabas, J., Weersink, A., and Olale, E.: Crop yield response to economic, site
and climatic variables, Clim. Change, 101, 599–616, https://doi.org/10.1007/s10584-009-9754-4, 2010.
Cai, Y., Guan, K., Lobell, D., Potgieter, A. B., Wang, S., Peng, J., Xu, T.,
Asseng, S., Zhang, Y., and You, L.: Integrating satellite and climate data
to predict wheat yield in Australia using machine learning approaches, Agric.
For. Meteorol., 274, 144–159, https://doi.org/10.1016/j.agrformet.2019.03.010,
2019.
Cao, J., Zhang, Z., Tao, F., Zhang, L., Luo, Y., Zhang, J., Han, J., and Xie,
J.: Integrating multi-Source data for rice yield prediction across China
using machine learning and deep learning approaches, Agric. For. Meteorol.,
297, 108275, https://doi.org/10.1016/j.agrformet.2020.108275, 2021.
Cheng, M., Jiao, X., Shi, L., Penueals, J., Kumar, L., Nie, C., Wu, T., Liu,
K., Wu, W., and Jin, X.: High-resolution crop yield and water productivity
dataset generated using random forest and remote sensing, Sci Data, 9, 641,
https://doi.org/10.1038/s41597-022-01761-0, 2022.
Dong, J., Fu, Y., Wang, J., Tian, H., Fu, S., Niu, Z., Han, W., Zheng, Y., Huang, J., and Yuan, W.: Early-season mapping of winter wheat in China based on Landsat and Sentinel images, Earth Syst. Sci. Data, 12, 3081–3095, https://doi.org/10.5194/essd-12-3081-2020, 2020a.
Dong, J., Lu, H., Wang, Y., Ye, T., and Yuan, W.: Estimating winter wheat yield
based on a light use efficiency model and wheat variety data, ISPRS J.
Photogramm. Remote, 160, 18–32, https://doi.org/10.1016/j.isprsjprs.2019.12.005, 2020b.
Duchemin, B., Maisongrande, P., Boulet, G., and Benhadj, I.: A simple algorithm
for yield estimates: Evaluation for semi-arid irrigated winter wheat
monitored with green leaf area index, Environ. Model. Softw., 23, 876–892,
https://doi.org/10.1016/j.envsoft.2007.10.003, 2008.
Ebrahimy, H., Wang, Y., and Zhang, Z.: Utilization of synthetic minority
oversampling technique for improving potato yield prediction using remote
sensing data and machine learning algorithms with small sample size of yield
data, ISPRS J. Photogramm. Remote, 201, 12–25,
https://doi.org/10.1016/j.isprsjprs.2023.05.015, 2023.
Erenstein, O., Jaleta, M., Mottaleb, K. A., Sonder, K., Donovan, J., and
Braun, H.-J.: Global trends in wheat production, consumption and trade, in:
Wheat improvement: food security in a changing climate, Springer
International Publishing, Cham, 47–66, 2022.
FAO, IFAD, UNICEF, WFP, and WHO.: The State of Food Security and Nutrition
in the World. ransforming food systems for affordable healthy diets, FAO,
Rome, Italy, https://doi.org/10.4060/ca9692en, 2020.
FAOSTAT: Food and Agriculture Organization of the United Nations, FAO
Statistical Databases, http://www.fao.org/faostat/en/ (last
access: 17 February 2020), 2018.
Feng, P., Wang, B., Liu, D.L., Waters, C., Xiao, D., Shi, L., and Yu, Q.:
Dynamic wheat yield forecasts are improved by a hybrid approach using a
biophysical model and machine learning technique, Agric. For. Meteorol.,
285–286, 107922, https://doi.org/10.1016/j.agrformet.2020.107922, 2020.
Fushiki, T.: Estimation of prediction error by using K-fold
cross-validation, Sta. Comput., 21, 137–146, https://doi.org/10.1007/s11222-009-9153-8, 2011.
Grogan, D., Frolking, S., Wisser, D., Prusevich, A., and Glidden, S.: Global
gridded crop harvested area, production, yield, and monthly physical area
data circa 2015, Sci. Data, 9, 15,
https://doi.org/10.1038/s41597-021-01115-2, 2022.
Hu, S., Shi, L., Zha, Y., Williams, M., and Lin, L.: Simultaneous
state-parameter estimation supports the evaluation of data assimilation
performance and measurement design for soil-water atmosphere-plant system,
J. Hydrol., 555, 812–831, https://doi.org/10.1016/j.jhydrol.2017.10.061, 2017.
Huang, J., Tian, L., Liang, S., Ma, H., Becker-Reshef, I., Huang, Y., Su,
W., Zhang, X., Zhu, D., and Wu, W.: Improving winter wheat yield estimation by
assimilation of the leaf area index from Landsat TM and MODIS data into the
WOFOST model, Agric. For. Meteorol., 204, 106–121, https://doi.org/10.1016/j.agrformet.2015.02.001, 2015.
Huang, J., Ma, H., Sedano, F., Lewis, P., Liang, S., Wu, Q., Su, W., Zhang,
X., and Zhu, D.: Evaluation of regional estimates of winter wheat yield by
assimilating three remotely sensed reflectance datasets into the coupled
WOFOST–PROSAIL model, Eur. J. Agron., 102, 1–13,
https://doi.org/10.1016/j.eja.2018.10.008, 2019.
IFPRI: June 2021, International Food Policy Research Institute (IFPRI), Washington, DC, https://doi.org/10.2499/9780896294165, 2021.
Iizumi, T. and Sakai, T.: The global dataset of historical yields for major
crops 1981–2016, Sci Data, 7, 97, https://doi.org/10.1038/s41597-020-0433-7,
2020.
Ines, A. V. M., Das, N. N., Hansen, J. W., and Njoku, E. G.: Assimilation of remotely
sensed soil moisture and vegetation with a crop simulation model for maize
yield prediction, Remote Sens. Environ., 138, 149–164, https://doi.org/10.1016/j.rse.2013.07.018, 2013.
Ji, Z., Pan, Y., Zhu, X., Zhang, D., and Wang, J.: A generalized model to
predict large-scale crop yields integrating satellite-based vegetation index
time series and phenology metrics, Ecol. Indic., 137, 108759,
https://doi.org/10.1016/j.ecolind.2022.108759, 2022.
Jiang, H., Hu, H., Zhong, R., Xu, J., Xu, J., Huang, J., Wang, S., Ying, Y.,
and Lin, T.: A deep learning approach to conflating heterogeneous geospatial
data for corn yield estimation: A case study of the US Corn Belt at the
county level, Glob. Change Biol., 26, 1754–1766, https://doi.org/10.1111/gcb.14885, 2019.
Jiang, Z., Huete, A. R., Didan, K., and Miura, T.: Development of a two-band
enhanced vegetation index without a blue band, Remote Sens. Environ., 112,
3833–3845, https://doi.org/10.1016/j.rse.2008.06.006, 2008.
Jiang, H., Hu, H., Zhong, R., Xu, J., Xu, J., Huang, J., Wang, S., Ying, Y., and Lin, T.: A deep learning approach to conflating heterogeneous geospatial data for corn yield estimation: A case study of the US Corn Belt at the county level, Global Change Biol., 26, 1754–1766, https://doi.org/10.1111/gcb.14885, 2020.
Jones, J. W., Hoogenboom, G., Porter, C. H., Boote, K. J., Batchelor, W. D.,
Hunt, L. A., Wilkens, P. W., Singh, U., Gijsman, A. J., and Ritchie, J. T.: The DSSAT
cropping system model, Eur. J. Agron., 18, 235–265, https://doi.org/10.1016/S1161-0301(02)00107-7, 2003.
Kang, Y. and Ozdogan, M.: Field-level crop yield mapping with Landsat using a
hierarchical data assimilation approach, Remote Sens. Environ., 228, 144–163,
https://doi.org/10.1016/j.rse.2019.04.005, 2019.
Keating, B. A., Carberry, P. S., Hammer, G. L., Probert, M. E., Robertson, M. J.,
Holzworth, D., Huth, N. I., Hargreaves, J. N. G., Meinke, H., and Hochman, Z.: An
overview of APSIM, a model designed for farming systems simulation, Eur. J.
Agron., 18, 267–288, https://doi.org/10.1016/S1161-0301(02)00108-9, 2003.
Lee, B. H., Kenkel, P., and Brorsen, B. W.: Pre-harvest forecasting of county
wheat yield and wheat quality using weather information, Agric. For. Meteorol.,
168, 26–35, https://doi.org/10.1016/j.agrformet.2012.08.010,
2013.
Li, L., Wang, B., Feng, P., Wang, H., He, Q., Wang, Y., Liu, D. L., Li, Y.,
He, J., and Feng, H.: Crop yield forecasting and associated optimum lead time
analysis based on multi-source environmental data across China, Agric. For. Meteorol., 308–309, 108558, https://doi.org/10.1016/j.agrformet.2021.108558,
2021.
Li, Z., Taylor, J., Yang, H., Casa, R., Jin, X., Li, Z., Song, X., and Yang, G.:
A hierarchical interannual wheat yield and grain protein prediction model
using spectral vegetative indices and meteorological data, Field Crop Res.,
248, 107711, https://doi.org/10.1016/j.fcr.2019.107711, 2020.
Li, Z., Zhao, Y., Taylor, J., Gaulton, R., Jin, X., Song, X., Li, Z., Meng, Y., Chen, P., Feng, H., and Wang, C.: Comparison and transferability of thermal, temporal and phenological-based in-season predictions of above-ground biomass in wheat crops from proximal crop reflectance data, Remote Sens. Environ., 273, 112967, https://doi.org/10.1016/j.rse.2022.112967, 2022.
Lorenz, E. and Haman, K.: The essence of chaos, Pure Appl. Geophys.,
147, 598–599, https://doi.org/10.2307/1347942, 1996.
Luo, Y., Zhang, Z., Chen, Y., Li, Z., and Tao, F.: ChinaCropPhen1km: a high-resolution crop phenological dataset for three staple crops in China during 2000–2015 based on leaf area index (LAI) products, Earth Syst. Sci. Data, 12, 197–214, https://doi.org/10.5194/essd-12-197-2020, 2020.
Luo, Y., Zhang, Z., Cao, J., Zhang, L., Zhang, J., Han, J., Zhuang, H., Cheng, F., Xu, J., and Tao, F.: GlobalWheatYield4km: a global wheat yield dataset at 4-km resolution during 1982–2020 based on deep learning approaches, Earth Syst. Sci. Data Discuss. [preprint], https://doi.org/10.5194/essd-2022-297, 2022.
Magney, T. S., Eitel, J. U. H., Huggins, D. R., and Vierling, L. A.: Proximal
NDVI derived phenology improves in-season predictions of wheat quantity and
quality, Agric. For. Meteorol., 217, 46–60,
https://doi.org/10.1016/j.agrformet.2015.11.009, 2016.
Monfreda, C., Ramankutty, N., and Foley, J. A.: Farming the planet: 2.
Geographic distribution of crop areas, yields, physiological types, and net
primary production in the year 2000, Glob. Biogeochem. Cy., 22, GB1022,
https://doi.org/10.1029/2007GB002947, 2008.
Moschini, G. and Hennessy, D. A.: Uncertainty, risk aversion, and risk
management for agricultural producers, Handb. Agric. Econ., 1, 87–153,
https://doi.org/10.1016/S1574-0072(01)10005-8, 2001.
Muñoz-Sabater, J.: ERA5-Land monthly averaged data from 1981 to present,
Copernicus Climate Change Service (C3S) Climate Data Store (CDS) [data set], https://doi.org/10.24381/cds.68d2bb30, 2019.
National Bureau of Statistics of China: National statistical yearbook, China
Statistics Press, http://www.stats.gov.cn/tjsj/ndsj/2021/indexch.htm (last
access: 8 August 2022), 2021.
Paudel, D., Boogaard, H., Wit, A., Janssen, S., Osinga, S., Pylianidis, C.,
and Athanasiadis, I.: Machine learning for large-scale crop yield forecasting,
Agric. Syst., 187, 103016,
https://doi.org/10.1016/j.agsy.2020.103016, 2021.
Rondeaux, G., Steven, M., and Baret, F.: Optimization of soil-adjusted
vegetation indices, Remote Sens. Environ., 55, 95–107, https://doi.org/10.1016/0034-4257(95)00186-7, 1996.
Rouse, J., Haas, R., Schell, J., and Deering, D.: Monitoring Vegetation Systems
in the Great Plains with ERTS, NASA Special Publication, Washington, D.C.,
USA, 1, 48–62, 1974.
Saltelli, A., Tarantola, S., and Chan, P. S.: A quantitative model-independent
method for global sensitivity analysis of model output, Technometrics,
41, 39–56, https://doi.org/10.2307/1270993, 1999
Sims, D. A., Rahman, A. F., Cordova, V. D., El-Masri, B. Z., Baldocchi, D. D.,
Bolstad, P. V., Flanagan, L. B., Goldstein, A. H., Hollinger, D. Y., and Misson, L.:
A new model of gross primary productivity for North American ecosystems
based solely on the enhanced vegetation index and land surface temperature
from MODIS, Remote Sens. Environ., 112, 1633–1646,
https://doi.org/10.1016/j.rse.2007.08.004, 2008.
Sivakumar, J., Ramamurthy, K., Radhakrishnan, M., and Won, D.: Synthetic
sampling from small datasets: a modified mega-trend diffusion approach using
k-nearest neighbors, Knowl.-Based Syst., 236, 107687,
https://doi.org/10.1016/j.knosys.2021.107687, 2022.
Tian, H., Wang, P., Tansey, K., Zhang, J., Zhang, S., and Li, H.: An LSTM neural
network for improving wheat yield estimates by integrating remote sensing
data and meteorological data in the Guanzhong Plain, PR China, Agric. For. Meteorol., 310, 108629, https://doi.org/10.1016/j.agrformet.2021.108629,
2021.
Wang, F., Yi, Q., Hu, J., Xie, L., Yao, X., Xu, T., and Zheng, J.: Combining
spectral and textural information in UAV hyperspectral images to estimate
rice grain yield, J. Appl. Earth Obs., 102, 102397,
https://doi.org/10.1016/j.jag.2021.102397, 2021.
Wang, X., Huang, J., Feng, Q., and Yin, D.: Winter Wheat Yield Prediction at
County Level and Uncertainty Analysis in Main Wheat-Producing Regions of
China with Deep Learning Approaches, Remote Sens., 12, 1744, https://doi.org/10.3390/rs12111744, 2020.
Wei, S., Li, X., Lu, Z., Zhang, H., Ye, X., Zhou, Y., Li, J., Yan, Y., Pei,
H., Duan, F., Wang, D., Chen, S., Wang, P., Zhang, C., Shang, L., Zhou, Y.,
Pan, P., Zhao, M, Huang, J., Bock, R., Qian, Q., and Zhou, W.: A transcriptional
regulator that boosts grain yields and shortens the growth duration of rice,
Science, 377, eabi8455, https://doi.org/10.1126/science.abi8455,
2022.
Xu, X., Teng, C., Zhao, Y., Du, Y., Zhao, C., Yang, G., Jin, X., Song, X.,
Gu, X., Casa, R., Chen, L., and Li, Z.: Prediction of wheat grain protein by
coupling multisource remote sensing imagery and ECMWF data, Remote Sens.,
12, 1349, https://doi.org/10.3390/rs12081349, 2020.
You, L. Z., Wood, S., Wood-Sichra, U., and Wu, W. B.: Generating global crop
distribution maps: From census to grid, AgrSyst, 127, 53–60,
https://doi.org/10.1016/j.agsy.2014.01.002, 2014.
Zhao, Y., Han, S., Meng, Y., Feng, H., Li, Z., Chen, J., Song, X., Zhu, Y.,
and Yang, G.: Transfer-Learning-Based Approach for Yield Prediction of Winter
Wheat from Planet Data and SAFY Model, Remote Sens., 14, 5474,
https://doi.org/10.3390/rs14215474, 2022a.
Zhao, Y., Han, S., Zheng, J., Xue, H., Li Z., Meng, Y., Li, X., Yang, X.,
Li, Z., Cai, S., and Yang, G.: ChinaWheatYield30m: A 30-m annual winter wheat
yield dataset from 2016 to 2021 in China, Zenodo [data set],
https://doi.org/10.5281/zenodo.7360753, 2022b.
Zhao, Y., Meng, Y., Feng, H., Han, S., Yang, G., and Li, Z.: Should phenological
information be applied to predict agronomic traits across growth stages of
winter wheat?, Crop J., 10, 1346–1352,
https://doi.org/10.1016/j.cj.2022.08.003, 2022c.
Zhang, Y., Hui, J., Qin, Q., Sun, Y., Zhang, T., Sun, H., and Li, M.:
Transfer-learning-based approach for leaf chlorophyll content estimation of
winter wheat from hyperspectral data, Remote Sens. Environ., 267, 112724,
https://doi.org/10.1016/j.rse.2021.112724, 2021.
Short summary
In the present study, we generated a 30 m Chinese winter wheat yield dataset from 2016 to 2021, called ChinaWheatYield30m. The dataset has high spatial resolution and great accuracy. It is the highest-resolution yield dataset known. Such a dataset will provide basic knowledge of detailed wheat yield distribution, which can be applied for many purposes including crop production modeling or regional climate evaluation.
In the present study, we generated a 30 m Chinese winter wheat yield dataset from 2016 to 2021,...
Altmetrics
Final-revised paper
Preprint