Articles | Volume 15, issue 9
https://doi.org/10.5194/essd-15-4047-2023
https://doi.org/10.5194/essd-15-4047-2023
Data description paper
 | 
13 Sep 2023
Data description paper |  | 13 Sep 2023

ChinaWheatYield30m: a 30 m annual winter wheat yield dataset from 2016 to 2021 in China

Yu Zhao, Shaoyu Han, Jie Zheng, Hanyu Xue, Zhenhai Li, Yang Meng, Xuguang Li, Xiaodong Yang, Zhenhong Li, Shuhong Cai, and Guijun Yang

Related authors

Phenology-modulated Crop Responses to the 2024 Spring-Early Summer Compound Dry-Hot Event in the North China Plain
Linying Ma, Jun Wang, Zishan Wang, Qian Zhang, Ran Yan, Zhi Huang, Yabin Ye, Hao Zheng, Shuyue Xiao, Xiaokang Zhang, Zhenhai Li, Hongzhang Wang, Tao Wei, Haijin Dai, Meirong Wang, and Xiuying Zhang
EGUsphere, https://doi.org/10.5194/egusphere-2026-142,https://doi.org/10.5194/egusphere-2026-142, 2026
This preprint is open for discussion and under review for Biogeosciences (BG).
Short summary
THE "INTEGRATION OF SCIENCE AND EDUCATION, INTERNATIONAL COOPERATION" MODE OF TRAINING TALENTS IN GEOMATICS
C. Zhao, Z. Li, S. Zhang, G. Huang, C. Yang, and S. Duan
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-5-W1-2023, 59–64, https://doi.org/10.5194/isprs-archives-XLVIII-5-W1-2023-59-2023,https://doi.org/10.5194/isprs-archives-XLVIII-5-W1-2023-59-2023, 2023

Cited articles

Arslan, M., Guzel, M., Demirci, M., and Ozdemir, S.: SMOTE and Gaussian Noise Based Sensor Data Augmentation, in: 2019 4th International Conference on Computer Science and Engineering (UBMK), 11 September 2019, Samsun, Turkey, 458–462, https://doi.org/10.1109/UBMK.2019.8907003, 2019. 
Bailey-Serres, J., Parker, J. E., Ainsworth, E. A., Oldroyd, G. E. D., and Schroeder, J. I.: Genetic strategies for improving crop yields, Nature, 575, 109–118, https://doi.org/10.1038/s41586-019-1679-0, 2019. 
Battude, M., Al Bitar, A., Morin, D., Cros, J., Huc, M., Marais Sicre, C., Dantec, V., and Demarez, V.: Estimating maize biomass and yield over large areas using high spatial and temporal resolution sentinel-2 like remote sensing data, Remote Sens. Environ., 184, 668–681, https://doi.org/10.1016/j.rse.2016.07.030, 2016. 
Breiman, L.: Random forests, Mach. Learn., 45, 5–32, https://doi.org/10.1023/A:1010933404324, 2001. 
Cabas, J., Weersink, A., and Olale, E.: Crop yield response to economic, site and climatic variables, Clim. Change, 101, 599–616, https://doi.org/10.1007/s10584-009-9754-4, 2010. 
Download
Short summary
In the present study, we generated a 30 m Chinese winter wheat yield dataset from 2016 to 2021, called ChinaWheatYield30m. The dataset has high spatial resolution and great accuracy. It is the highest-resolution yield dataset known. Such a dataset will provide basic knowledge of detailed wheat yield distribution, which can be applied for many purposes including crop production modeling or regional climate evaluation.
Share
Altmetrics
Final-revised paper
Preprint