Articles | Volume 15, issue 9
https://doi.org/10.5194/essd-15-4047-2023
https://doi.org/10.5194/essd-15-4047-2023
Data description paper
 | 
13 Sep 2023
Data description paper |  | 13 Sep 2023

ChinaWheatYield30m: a 30 m annual winter wheat yield dataset from 2016 to 2021 in China

Yu Zhao, Shaoyu Han, Jie Zheng, Hanyu Xue, Zhenhai Li, Yang Meng, Xuguang Li, Xiaodong Yang, Zhenhong Li, Shuhong Cai, and Guijun Yang

Related authors

THE "INTEGRATION OF SCIENCE AND EDUCATION, INTERNATIONAL COOPERATION" MODE OF TRAINING TALENTS IN GEOMATICS
C. Zhao, Z. Li, S. Zhang, G. Huang, C. Yang, and S. Duan
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-5-W1-2023, 59–64, https://doi.org/10.5194/isprs-archives-XLVIII-5-W1-2023-59-2023,https://doi.org/10.5194/isprs-archives-XLVIII-5-W1-2023-59-2023, 2023
COMPARING BROAD-BAND AND RED EDGE-BASED SPECTRAL VEGETATION INDICES TO ESTIMATE NITROGEN CONCENTRATION OF CROPS USING CASI DATA
Yanjie Wang, Qinhong Liao, Guijun Yang, Haikuan Feng, Xiaodong Yang, and Jibo Yue
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLI-B7, 137–143, https://doi.org/10.5194/isprs-archives-XLI-B7-137-2016,https://doi.org/10.5194/isprs-archives-XLI-B7-137-2016, 2016

Related subject area

Domain: ESSD – Land | Subject: Land Cover and Land Use
Monsoon Asia Rice Calendar (MARC): a gridded rice calendar in monsoon Asia based on Sentinel-1 and Sentinel-2 images
Xin Zhao, Kazuya Nishina, Haruka Izumisawa, Yuji Masutomi, Seima Osako, and Shuhei Yamamoto
Earth Syst. Sci. Data, 16, 3893–3911, https://doi.org/10.5194/essd-16-3893-2024,https://doi.org/10.5194/essd-16-3893-2024, 2024
Short summary
A 100 m gridded population dataset of China's seventh census using ensemble learning and big geospatial data
Yuehong Chen, Congcong Xu, Yong Ge, Xiaoxiang Zhang, and Ya'nan Zhou
Earth Syst. Sci. Data, 16, 3705–3718, https://doi.org/10.5194/essd-16-3705-2024,https://doi.org/10.5194/essd-16-3705-2024, 2024
Short summary
Annual time-series 1 km maps of crop area and types in the conterminous US (CropAT-US): cropping diversity changes during 1850–2021
Shuchao Ye, Peiyu Cao, and Chaoqun Lu
Earth Syst. Sci. Data, 16, 3453–3470, https://doi.org/10.5194/essd-16-3453-2024,https://doi.org/10.5194/essd-16-3453-2024, 2024
Short summary
Retrieval of dominant methane (CH4) emission sources, the first high-resolution (1–2 m) dataset of storage tanks of China in 2000–2021
Fang Chen, Lei Wang, Yu Wang, Haiying Zhang, Ning Wang, Pengfei Ma, and Bo Yu
Earth Syst. Sci. Data, 16, 3369–3382, https://doi.org/10.5194/essd-16-3369-2024,https://doi.org/10.5194/essd-16-3369-2024, 2024
Short summary
A 10 m resolution land cover map of the Tibetan Plateau with detailed vegetation types
Xingyi Huang, Yuwei Yin, Luwei Feng, Xiaoye Tong, Xiaoxin Zhang, Jiangrong Li, and Feng Tian
Earth Syst. Sci. Data, 16, 3307–3332, https://doi.org/10.5194/essd-16-3307-2024,https://doi.org/10.5194/essd-16-3307-2024, 2024
Short summary

Cited articles

Arslan, M., Guzel, M., Demirci, M., and Ozdemir, S.: SMOTE and Gaussian Noise Based Sensor Data Augmentation, in: 2019 4th International Conference on Computer Science and Engineering (UBMK), 11 September 2019, Samsun, Turkey, 458–462, https://doi.org/10.1109/UBMK.2019.8907003, 2019. 
Bailey-Serres, J., Parker, J. E., Ainsworth, E. A., Oldroyd, G. E. D., and Schroeder, J. I.: Genetic strategies for improving crop yields, Nature, 575, 109–118, https://doi.org/10.1038/s41586-019-1679-0, 2019. 
Battude, M., Al Bitar, A., Morin, D., Cros, J., Huc, M., Marais Sicre, C., Dantec, V., and Demarez, V.: Estimating maize biomass and yield over large areas using high spatial and temporal resolution sentinel-2 like remote sensing data, Remote Sens. Environ., 184, 668–681, https://doi.org/10.1016/j.rse.2016.07.030, 2016. 
Breiman, L.: Random forests, Mach. Learn., 45, 5–32, https://doi.org/10.1023/A:1010933404324, 2001. 
Cabas, J., Weersink, A., and Olale, E.: Crop yield response to economic, site and climatic variables, Clim. Change, 101, 599–616, https://doi.org/10.1007/s10584-009-9754-4, 2010. 
Download
Short summary
In the present study, we generated a 30 m Chinese winter wheat yield dataset from 2016 to 2021, called ChinaWheatYield30m. The dataset has high spatial resolution and great accuracy. It is the highest-resolution yield dataset known. Such a dataset will provide basic knowledge of detailed wheat yield distribution, which can be applied for many purposes including crop production modeling or regional climate evaluation.
Altmetrics
Final-revised paper
Preprint