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Abstract. Generating spatial crop yield information is of great significance for academic research and guiding
agricultural policy. Existing public yield datasets have a coarse spatial resolution, spanning from 1 to 43 km.
Although these datasets are useful for analyzing large-scale temporal and spatial change in yield, they cannot
deal with small-scale spatial heterogeneity, which happens to be the most significant characteristic of the Chi-
nese farmers’ economy. Hence, we generated a 30 m Chinese winter wheat yield dataset (ChinaWheatYield30m)
for major winter-wheat-producing provinces in China for the period 2016–2021 with a semi-mechanistic model
(hierarchical linear model, HLM). The yield prediction model was built by considering the wheat growth sta-
tus and climatic factors. It can estimate wheat yield with excellent accuracy and low cost using a combination
of satellite observations and regional meteorological information (i.e., Landsat 8, Sentinel 2 and ERA5 data
from the Google Earth Engine (GEE) platform). The results were validated using in situ measurements and cen-
sus statistics and indicated a stable performance of the HLM based on calibration datasets across China, with a
correlation coefficient (r) of 0.81 and a relative root mean square error (rRMSE) of 12.59 %. With regards to vali-
dation, the ChinaWheatYield30m dataset was highly consistent with in situ measurement data and statistical data
(p < 0.01), indicated by an r (rRMSE) of 0.72** (15.34 %) and 0.69** (19.16 %). The ChinaWheatYield30m is
a sophisticated dataset with both high spatial resolution and excellent accuracy; such a dataset will provide basic
knowledge of detailed wheat yield distribution, which can be applied for many purposes including crop produc-
tion modeling and regional climate evaluation. The ChinaWheatYield30m dataset generated from this study can
be downloaded from https://doi.org/10.5281/zenodo.7360753 (Zhao et al., 2022b).
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1 Introduction

Wheat is the most widely planted crop, supplying a fifth
of global food calories and protein (Erenstein et al., 2022).
However, wheat production is facing unprecedented chal-
lenges in the global context of climate change, such as fre-
quent extreme weather events. Apart from natural factors,
socioeconomic events such as the COVID-19 pandemic, re-
gional conflicts and other global crises can also significantly
perturb wheat production (IFPRI, 2021). In China, where the
need to feed one-fifth of the world’s population on its limited
land (FAO et al., 2020) and food security is crucial, wheat
production is an essential agricultural activity. Ensuring sta-
ble grain supplies and increasing production are important to
the national economy and people’s livelihoods (Feng et al.,
2020). Therefore, the monitoring of crop yields in a timely
manner is of great significance for regulating import and ex-
port decision-making, grain market prices, crop insurance
evaluations, smart agriculture applications, and rational al-
locations of agricultural resources.

In the past decades, remote sensing data from ground-
based, aerial-based and satellite-based platforms have re-
ceived extensive attention for crop yield prediction (Bat-
tude et al., 2016; Jiang et al., 2019; Li et al., 2020; Wang
et al., 2021). Ground- and aerial-based platforms have high
spatial resolution and control, which are advantageous for
farm-scale applications. However, their application to large-
area yield estimations is too expensive. Satellite-based ap-
proaches have been widely used to monitor crop production
over large areas in the past few decades, benefitting from
the capability to acquire temporally and spatially continu-
ous information (Battude et al., 2016; Huang et al., 2019).
With the rapid launch of new satellites carrying various types
of sensors, regional yield mapping is becoming more accu-
rate and is being obtained at a higher spatial resolution. The
mapping relies on vegetation indices (VIs) that can be de-
rived from visible and near-infrared (NIR) reflectance bands
in multispectral optical data, such as the normalized differ-
ence vegetation index (NDVI) (Rouse et al., 1974), the en-
hanced vegetation index (EVI) (Sims et al., 2008) or the opti-
mized soil adjust vegetation index (OSAVI) (Rondeaux et al.,
1996). These VIs have often been used to predict crop yield
(Magney et al., 2016; Cao et al., 2021; Zhao et al., 2022c).
There are many methods to incorporate VIs in yield estima-
tion, such as parametric regressions, deep learning and data
assimilation (Battude et al., 2016; Huang et al., 2019; Li et
al., 2020).

Parametric regression models directly establish the rela-
tionship between VIs and crop yield, which may be linear or
nonlinear (Magney et al., 2016; Li et al., 2020). These para-
metric regressions are limited to the specific research area
and growing season for which they are developed, making it
hard to extrapolate them either in the spatial or temporal do-
mains. Non-parametric statistical approaches have been used
in recent yield projections research. Notable studies have

been done using machine learning (ML) (Cai et al., 2019; Li
et al., 2021). An emerging new technique for crop yield esti-
mations is deep learning (Tian et al., 2021) applied to various
types of data acquired by satellites and drones (Jiang et al.,
2020; Wang et al., 2020). Overall, ML methods heavily rely
on large training datasets (Cao et al., 2021). Nonetheless, the
application of machine learning in the realm of synthetic data
generation has also exhibited encouraging outcomes (Arslan
et al., 2019; Sivakumar et al., 2022; Ebrahimy et al., 2023).

Unlike the above-mentioned statistical models, process-
based mechanic models simulate crop yield from various in-
puts, including soil properties, meteorological data and crop
characteristics. Examples of such models are the Decision
Support System of Agrotechnology Transfer modeling sys-
tem (DSSAT), the Agricultural Production Systems sIMula-
tor (APSIM) and the Simple Algorithm For Yield (SAFY)
and many other crop models (Jones et al., 2003; Keating et
al., 2003; Duchemin et al., 2008). These mechanistic models
can generate reliable yield estimates (Paudel et al., 2021).
Data assimilation (DA) provides a way of integrating the
monitoring properties of observed data into the predictive
and explanatory abilities of crop growth models. Leaf area
index (LAI) or biomass is often used as a state variable of
the DA system to correct a crop growth model behavior and
ensure accurate yield predictions (Battude et al., 2016; Kang
and Ozdogan, 2019). Yield is a complex trait that is related to
numerous factors, including natural drivers (Li et al., 2021);
crop variety (Wei et al., 2022; Bailey-Serres et al., 2019); and
human factors, mainly consisting of fertilization and irriga-
tion (Jones et al., 2003; Keating et al., 2003; Duchemin et al.,
2008). Existing studies demonstrated that only updating one
or two state variables is not sufficient to correct a crop growth
model and thus cannot improve output predictions (Ines et
al., 2013; Huang et al., 2015; Hu et al., 2017; Huang et al.,
2019). In addition, uncertainties in the remote sensing moni-
toring of state variables such as LAI and biomass are also in-
herited by the DA system (Kang et al., 2019). Although data
assimilation techniques allow a formal and well-understood
way to combine model predictions with observations, their
computational intensity is a problem that tends to be ignored
when estimating large-area crop production. Transfer learn-
ing techniques can be used to transfer the knowledge learned
from a crop growth model to predict wheat yield to effec-
tively improve calculation efficiency (Zhao et al., 2022a). A
reliable labeled dataset is a prerequisite for the transfer learn-
ing method (Zhang et al., 2021). However, building an effec-
tive dataset for transfer learning over a large region is still
challenging.

In addition to traditional crop models and assimilation
strategies, there are hybrid models that incorporate the sim-
plicity of a statistical model and the rationality of a mecha-
nistic model and are thus called semi-mechanistic models (Ji
et al., 2022). For example, Dong et al. (2020b) developed the
EC-LUE-GPP (eddy covariance–light use efficiency–gross
primary production) model and successfully estimated the

Earth Syst. Sci. Data, 15, 4047–4063, 2023 https://doi.org/10.5194/essd-15-4047-2023



Y. Zhao et al.: ChinaWheatYield30m 4049

wheat yield in Kansas, USA. Li et al. (2020) used the hierar-
chical linear model (HLM) to estimate interannual yield, and
it showed good performance. Generally, a semi-mechanistic
model has great potential in yield estimation, but its ap-
plication is often limited to a relatively small area, e.g.,
farm, county or city scale, rather than a larger scale. Na-
tional crop yield datasets, which are of great significance for
large-scale agricultural resource allocation, agricultural sys-
tem model construction and climate change impact assess-
ment, are produced at coarse spatial resolutions (Table 1),
e.g., 0.5◦, 10 km, 4 km or 1 km resolution (Monfreda et al.,
2008; You et al., 2014; Iizumi and Sakai, 2020; Grogan et al.,
2022; Luo et al., 2022; Cheng et al., 2022), and are mostly
downscaled based on the statistical yield datasets and other
datasets (Monfreda et al., 2008; You et al., 2014; Iizumi
and Sakai, 2020; Grogan et al., 2022). This method of yield
downscaling may lead to inaccurate yield estimates and in-
correct assessments of the impact of climate change. In ad-
dition, yield predictions cannot rely on statistical data alone.
Luo et al. (2022) and Cheng et al. (2022) developed yield
datasets combining coarse-resolution real-time remote sens-
ing data with agricultural statistics, but because 1 km× 1 km
plots or 4 km× 4 km farmlands are rare in China, their field
application is limited. Although these datasets are useful
for analyzing larger-scale temporal and spatial changes in
yield, they cannot deal with small-scale spatial heterogene-
ity, which happens to be the most significant characteristic of
the Chinese farmers’ economy. Therefore, there is an urgent
need to construct a high-resolution yield dataset for investi-
gating spatiotemporal patterns of crop production, assessing
climate change impacts and modeling crop growth processes
over large spatial extents.

In this study, by integrating remote sensing and climate
data, we aim to (1) propose a semi-mechanistic model with
excellent accuracy and low cost by combining remote sens-
ing observations and regional meteorological information,
which can simultaneously overcome inter-annual and cross-
regional problems; (2) evaluate model performance using
both validation dataset and the census yield data; and (3) gen-
erate a high-resolution (30 m) Chinese winter wheat yield
dataset (ChinaWheatYield30m) for the period 2016–2021.
This dataset will be useful to further yield-related research
and guide related food policies.

2 Data and methods

2.1 Study areas

Our study area consists of the main winter-wheat-growing
region of China, which includes 12 provinces and munici-
palities (Fig. 1). The main winter wheat production areas are
mainly distributed in the Huang–Huai–Hai region (HHH),
southwest China (SW), the Gansu–Xinjiang region (GX), the
middle and lower reaches of the Yangtze River (MLYR), and
the Loess Plateau (LP). Most of the region is in the middle of

China and includes temperate, continental monsoon, temper-
ate monsoon and subtropical monsoon climates. The sown
area and production of winter wheat in China accounted for
20.02 % and 21.77 % of staple food crops in 2021 (National
Bureau of Statistics of China, 2021), respectively. Three sam-
ple areas were selected for detailed analysis based on their
different geographical and climatic conditions. The three se-
lected regions in this study were chosen for comparison with
other yield datasets based on different wheatland coverages.
Region 1, 2 and 3 represent areas with winter wheat cover-
ages below 25 %, around 50 % and above 75 %, respectively,
serving as representative regions for these respective cover-
age levels.

2.2 Data collection

2.2.1 The winter wheat land cover data

We used a winter wheat map with a 30 m resolution across
the main growing areas of China (Dong et al., 2020a). These
data produce winter wheat maps from 2016 to 2020, which is
the base map of ChinaWheatYield30m production. The yield
distribution map of 2021 uses the winter wheat classification
map of 2020, and the rest of the yield distribution maps are
winter wheat classification maps of that year.

2.2.2 Satellite imagery data acquisition

In this work, we extracted the atmospherically corrected
reflectance from Landsat 8 and Sentinel 2 images on the
Google Earth Engine (GEE) platform during the period of
2016–2021. Subsequently, we calculated the Enhanced Veg-
etation Index 2 (EVI2) (Jiang et al., 2008) using the extracted
reflectance values. These datasets were chosen to increase
observation frequency and were used for yield estimation.
Xu et al. (2020) have shown that Landsat 8 data and Sen-
tinel 2 data have high consistency. The EVI2 is calculated
from the reflectance in red and NIR bands (Eq. 1):

EVI2= 2.5 ·
NIR− red

NIR+ 2.4 · red+ 1
, (1)

where NIR and red represent the near-infrared and red re-
flectance, respectively, in Landsat 8 or Sentinel 2. The max-
imum EVI2 (EVI2max) of the winter-wheat-growing season
was used in this paper. It is generally believed that the time of
EVI2max corresponds to the heading period, which has been
shown to be the best period for remote sensing yield estima-
tion (Luo et al., 2020).

2.2.3 Meteorological data

Meteorological data were important input variables for
yield prediction, mainly from March to May, because
this period includes most key growth stages of win-
ter wheat (i.e., stem elongation, booting, heading, flow-
ering and filling stages). The meteorological data, in-
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Table 1. Summary of studies on crop yield datasets. LSTM: long short-term memory.

Method Species Resolution Span Spatial coverage References

Dataset summary 175 crops 10 km 2000 Global Monfreda et al. (2008)

Global spatial production allo-
cation model

20 crops 10 km 2000, 2005, 2010 Global You et al. (2014)

Maize, rice, wheat and soybean 4 crops 43 km 1981–2016 Global Iizumi and Sakai (2020)

Gata statistics based on the
Global Agro-Ecological Zones
version 4 model

26 crops 10 km 2015 Global Grogan et al. (2022)

LSTM Wheat 4 km 1982–2020 Global Luo et al. (2022)

Random forest Maize, wheat 1 km 2001–2015 China Cheng et al. (2022)

Figure 1. Distribution of winter wheat within the study area and three selected example areas. Region 1, 2 and 3 are available at http:
//lbs.tianditu.gov.cn/server/MapService.html (last access: August 2023) and represent areas with winter wheat coverages below 25 %, around
50 % and above 75 %, respectively, serving as representative regions for these respective coverage levels.

cluding monthly average temperatures (Tem), monthly
solar radiation (Rad) and monthly precipitation (Pre),
were obtained from the ERA5 dataset provided by the
GEE platform (https://developers.google.com/earth-engine/
datasets/catalog/ECMWF_ERA5_LAND_MONTHLY, last
access: August 2023) with a resolution of 0.1◦ for the sam-
pling site (Muñoz-Sabater, 2019). All three types of mete-
orological datasets were resampled to a 30 m resolution to
ensure data uniformity.

2.2.4 In situ measurement yield data

Georeferenced field-scale yields were obtained by field in-
vestigation from 2016 to 2021. During the harvest period, a
five-point (1 m2 per point) sampling method was used to de-
structively sample each winter wheat plot to measure yield.
To avoid edge effects, each sample point was at least 2 m
away from the edge of the farmland. The harvested grain was
threshed and air-dried for yield determination. Then, the final
yield was standardized as grain with 14 % moisture content.
The detailed collection numbers of samples from different
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regions are shown in Table 2. In this paper, the data were
randomly split into two datasets; two-thirds of the data were
used for modeling, and the remaining data were used for val-
idation.

2.2.5 The province-level and municipal-level statistical
data

The province-level and municipal-level yield data for the
study area were collected from National Bureau of Statistics
between 2016 and 2021 (http://www.stats.gov.cn/tjsj/ndsj/,
last access: December 2022). However, the data collected did
not have direct records of the unit yield data. Therefore, to
obtain the statistical yield data (kg ha−1), the total production
was calculated by dividing the planted area. These data were
used to validate the model in the selected research provinces
and municipalities. Table 3 shows the main information and
sources of all data used in this study.

2.3 Method

2.3.1 Methodology

The hierarchical linear model (HLM) is a simple and effi-
cient method for dealing with nested structures. At present,
the HLM has been extensively applied to predicting yield,
grain protein content and agronomic traits for inter-annual
and transregional studies (Li et al., 2020; Xu et al., 2020; Li
et al., 2022; Zhao et al., 2022c). These papers have demon-
strated that the HLM is a stable, reliable and scalable way of
solving yield estimation problems. They also demonstrated
that, although a linear relationship between EVI2max and
crop yield can be established in a particular field of a single
year, differences in meteorological factors between regions
and years will differentiate this relationship, which is the ex-
act problem that the HLM was employed to settle. In this
study, normalization was performed on the data to reduce the
impact of differences in variable scales. For each province,
a set of parameters was generated using the data collected
from the sample fields. The specific yield-predicting models
in different provinces using the HLM method in this study
involved a two-level hierarchy. Level 1 of the HLM was con-
structed based on the yield and EVI2max:

Level 1: yield= β0+β1 ·EVI2max+ r, (2)

where β0 and r represent the intercept and random error, re-
spectively, and β1 represents the slope of the linear model
corresponding to EVI2max.

In the HLM, the parameters of β0 and β1 at Level 1 be-
come dependent variables at Level 2. The independent vari-
ables of Level 2 are the accumulated meteorological data
(Tem, Rad and Pre) of different growth stages, such that

Level 2: βj = γmj + γmj ·Temmj + γmj ·Radmj
+ γmj ·Premj +µmj , (3)

where βj represents the β0 and β1 from Level 1 of HLM,
j represents 0 or 1, γm0 is the intercept, γm1–γm3 are the
slopes of each accumulated meteorological data of different
months (m= 3, 4, and 5), and µmj is the random error of
Level 2 of HLM. The parameters of the HLM in this article
are estimated using maximum likelihood estimation. Figure 2
shows a schematic of the workflow.

2.3.2 Comparison with the random forest method and
the other yield datasets

Random forest (RF) is a model with predictive performance
commonly used in the current yield estimation literature (Li
et al., 2020; Cheng et al., 2022; Luo et al., 2022). RF regres-
sion is a classic ensemble machine learning model that estab-
lishes multiple unrelated decision trees by randomly extract-
ing samples and features and obtains the prediction results
in parallel. Each decision tree can obtain a prediction result
through the samples and features extracted, and the regres-
sion prediction result of the whole forest can be obtained by
averaging the results of all trees (Breiman, 2001). This study
generated multiple RF models for each province just like the
way we build HLMs, using same calibration and validation
datasets, so this makes two models for each province and def-
initely comparable. Given the wide range of RF applications
in generating crop yield data, we built a RF prediction model
in MATLAB and compared its performance with the HLM.
The number of decision trees was set to 200, and the maxi-
mum depth of the tree and the number of features optimized
the models’ hyperparameters through a pretuned procedure
(Li et al., 2021; Cheng et al., 2022).

We compared our yield production (Chi-
naWheatYield30m) with an existing 4 km dataset of
global wheat yield (GlobalWheatYield4km) (Luo et al.,
2022) using in situ data to validate the reliability of our
dataset. More specifically, we calculated the correlation
coefficient (r) and relative root mean square error (rRMSE)
between the in situ measurement yields and the estimates
of GlobalWheatYield4km or ChinaWheatYield30m from
2016 to 2021. This study compared and analyzed national
statistical data at different scales, focusing mainly on the
provincial and municipal levels, to validate the accuracy of
the ChinaWheatYield30m dataset. This study compared the
difference between the statistical yield per unit area from
2016 and the average yield using ChinaWheatYield30m
extracted from both province and municipal vector data.
The provincial and municipal average yields based on the
ChinaWheatYield30m dataset were calculated by dividing
the total yield of all winter wheat pixels by the number of
winter wheat pixels in that area.

2.3.3 Model evaluation

The commonly used correlation coefficient (r) and relative
root mean square error (rRMSE) were used to compare the
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Table 2. Detailed statistics on the sample numbers in this study.

Province Anhui Gansu Hebei Henan Hubei Jiangsu Shaanxi Shandong Shanxi Sichuan Tianjin Xinjiang Total

2016 12 8 26 45 – 33 – 10 3 11 1 – 149
2017 53 4 35 72 16 46 25 59 11 9 1 2 333
2018 85 3 63 126 18 47 21 56 14 13 1 3 450
2019 85 3 48 130 13 53 17 62 14 10 2 437
2020 82 10 26 121 11 60 19 52 14 0 – – 395
2021 81 7 25 125 10 26 18 64 8 7 2 3 376

Total 398 35 223 619 68 265 100 303 64 50 5 10 2140

Note that “–” represents no collected data.

Table 3. Details on the datasets used in this study.

Data type Content Resolution Span Data usage Data sources

Winter wheat
land cover data

Classification of winter
wheat

30 m 2016–2020 Research area Dong et al. (2020a)

Satellite data EVI2max 30 m Winter-wheat-growing
season of each year
from 2016 to 2021

Input variables Landsat 8 and Sentinel
2 dataset of GEE plat-
form

Meteorological
data

Tem
Rad
Pre

0.1◦ March to May of each
year from 2016 to 2021

Input variables ERA5 dataset of GEE
platform

In situ-
measured
yield data

Field-level yield with
coordinates

Field-level 2016–2021 Model establishment
and evaluation

Field investigation

Census yield
data

Statistical data Province-level
and municipal-
level

2016–2021 Model validation State statistical bureau

Yield dataset GlobalWheatYield4km 4 km 2016–2020 Dataset comparison Luo et al. (2022)

performance of generated models. To estimate the contri-
bution of each input variable of the HLM, we applied an
extended Fourier amplitude sensitivity test (Saltelli et al.,
1999). The EFAST (extended Fourier amplitude sensitivity
test) was used to determine a sensitivity index (SI) which
combined the advantages from both Fourier amplitude sen-
sitivity tests and the Sobol algorithm. The derived SI quan-
tified how output results were impacted by input variables.
The SI of each independent input variable to the yield in dif-
ferent provinces was computed with Simlab (version 2.2.1)
software. To verify the stability of the yield model in this
study, in addition to using independent samples for valida-
tion, we also selected cross-validation of the model deviation
in different agricultural regions and years (Fushiki, 2011). In
this study, regional and temporal cross-validation was per-
formed by training the models on specific years or regions
and then independently validating them on the remaining
years or study regions as separate samples.

3 Results

3.1 Exploring the appropriate method and accuracy
assessment

The performance of the RF and HLM in situ yield pre-
dictions during 2016–2021 for each province is shown in
Fig. 3. The calibration sets for the RF and HLM have
similar performance, with r (rRMSE) ranging 0.79–0.92
(5.78 %–23.37 %) and 0.67–0.87 (4.87 %–22.06 %), respec-
tively. However, in the validation set, the HLM outperformed
RF, with r (rRMSE) ranging 0.50–0.93 (1.93 %–23.00 %)
and 0.27–0.76 (13.44 %–30.86 %), respectively. The superior
performance of HLM was attributed to its ability to capture
the interaction effects among various factors. This interac-
tion explained most of the variation among the provinces,
with a sensitive index range of 9.85 %–69.92 % (Fig. 4). The
sensitive index of input variables to the HLM is shown in
Fig. 4, indicating the contributions of each variable to the
HLM. Overall, in most of the analyzed provinces, EVI2 was
the most important variable in the HLM, with a contribution
range of 11.70 %–63.18 % for different provinces. As for the
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Figure 2. Schematic diagram outlining the inputs, major processing steps used and generated outputs.

Figure 3. Comparison between the predicted and measured yield in the calibrated datasets (a, c) and the validation datasets (b, d).

meteorological factors, in general, temperature was the most
important factor, whereas radiation and precipitation were
less significant. The variables related to accumulated temper-
ature, Tem04 and Tem05, had a high contribution (8.50 %–
21.90 %) to the HLM. The results show the importance of
weather in April and May, which in our research areas are the

key months for the flowering and filling of winter wheat, the
critical periods in grain formation when most organic matter
is accumulated (Cabas et al., 2010).

The HLM and RF model were implemented to predict
in situ wheat yield using the calibration dataset. By com-
paring the predicted results from 2016 to 2021 with the in
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Figure 4. Sensitive index in the trained HLM for different input
variables.

situ records, it was found that there is a high consistency
between the measured and predicted yield of winter wheat.
The r (p < 0.01) and rRMSE for the HLM were 0.81**
and 12.59 %, respectively, while for the RF model, the r
(p < 0.01) and rRMSE were 0.83** and 12.66 %, respec-
tively. When validating with independent samples, the HLM
performed better than the RF model, with an r (p < 0.01) of
0.72** and an RMSE of 15.34 % for the HLM, while the RF
model had an r of 0.69** and an RMSE of 15.71 %. Due to
the fact that the majority of the pixels to be predicted are
located in areas not covered by the calibrated dataset, the
HLM with stable performance in independent sample vali-
dation was chosen for subsequent analysis and dataset con-
struction.

3.2 Cross-validation of the HLM across years and
regions

Apart from validating the model using independent samples,
this study also conducted cross-validation based on differ-
ent years and different agricultural regions to further assess
the stability of the HLM (Figs. 7 and 8). Interannual cross-
validation results show that the predicted yield using the
HLM has high consistency with the measured yield, with the
r (p < 0.01) and rRMSE values ranging from 0.55**–0.69**
and 15.44 %–28.61 %, respectively. In the regional cross-
validation, the cross-validation results in GX regions per-
formed poorly, and the measured data and verification data
in other regions have high consistency, with r (p < 0.01) and
rRMSE values ranging from 0.30**–0.51** and 17.31 %–
23.16 %, respectively. The yield estimation results for the GX
region and the southwest region are poor. These two regions
have a large area, and there are significant differences in cli-
mate and planting management conditions. The existing data
are not sufficient to reflect these differences. However, the
main recommended winter wheat varieties at the provincial
level have similar characteristics, and the planting patterns
are similar for policy reasons. By utilizing meteorological

conditions, it is possible to reflect the differences in win-
ter wheat production within provinces as much as possible.
Therefore, this article constructed a 30 m winter wheat yield
dataset for China at the provincial scale.

3.3 Comparing ChinaWheatYield30m with
GlobalWheatYield4km

Figure 9 shows the spatial patterns of ChinaWheatYield30m
from 2016 to 2021. Generally, the spatial patterns of pre-
dicted yields were consistent with in situ-measured yields,
with large variability from 2273.82–10 518.82 kg ha−1.
We further summarized the province-level statistic
yield. The yield averages were highest in Shandong
Province (6567.48 kg ha−1), followed by Henan Province
(6498.42 kg ha−1) and Hebei Province (6039.39 kg ha−1).
By contrast, Jiangsu Province achieved the lowest aver-
age yield (4337.05 kg ha−1) (Fig. 10). Overall, these data
are consistent with the census data. In contrast, model
performance showed overestimates of wheat crop yield
compared with statistical yield (r = 0.69** (p < 0.01),
rRMSE= 19.16 %) (Fig. 10). Therefore, the field-scale yield
prediction dataset not only has high precision at a fine scale,
but it also performs well on a large scale.

We compared the datasets at the field level using single
pixels and through a zonal analysis of three selected re-
search areas. Field-level yield estimates were aggregated to
match the ChinaWheatYield30m and GlobalWheatYield4km
from 2016 to 2020 and then compared with in situ mea-
surement yields (Fig. 11). The yield estimates of Chi-
naWheatYield30m showed higher consistencies with in situ
measurement yields as the scatter points were closer to the
1 : 1 line than in the case of GlobalWheatYield4km. The re-
sults showed that, in different years, ChinaWheatYield30m
has a lower rRMSE range (12.40 %–13.84 %) compared to
GlobalWheatYield4km (20.43 %–33.06 %) (Fig. 9).

As for the zonal analysis, winter wheat yield de-
rived from ChinaWheatYield30m also has a close spa-
tial pattern to GlobalWheatYield4km production (Fig. 12
and Table 4). In addition, ChinaWheatYield30m, with
a standard deviation of 290.27–880.91 kg ha−1, depicts
the difference in yield with greater spatial detail com-
pared to the GlobalWheatYield4km standard deviation
of 195.46–1516.09 kg ha−1. In the selected sample areas,
the yield ranges of ChinaWheatYield30m and Global-
WheatYield4km are 2115.95–7668.69 kg ha−1 and 2653.62–
10 504.50 kg ha−1, respectively. This wide range and mi-
nor deviation reveal the advantages of fine-resolution
data. Compared with the actual yield records, Global-
WheatYield4km significantly underestimates them, whereas
ChinaWheatYield30m is closer to the 1 : 1 line. In the se-
lected sample areas, the mean yield of ChinaWheatYield30m
is generally higher than that of GlobalWheatYield4km be-
cause the wheat classification at 30 m resolution is dominated
by pure wheat pixels. In contrast, the wheat classification
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Figure 5. Comparison of measured yield with predicted yield based on the HLM (a) and the RF model (b) in the calibrated datasets. **
represents that the model is significant at the 0.01 level of probability.

Figure 6. Comparison of measured yield with predicted yield based on HLM (a) and RF model (b) in the validated datasets. ** represents
that the model is significant at the 0.01 level of probability.

with 4 km resolution has more mixed pixels. For example,
buildings and roads cannot be identified in the 4 km classi-
fication but result in an underestimation of yield prediction
(Fig. 12).

4 Discussion

4.1 Advancements of the 30 m resolution yield dataset

Information on the spatial extent of winter wheat yield is
essential for drafting economic and food subsidy policies
and rationally allocating resources (FAOSTAT, 2018). To our
knowledge, to date there is no fine resolution (30 m) winter
wheat yield distribution map. Previous research has gener-
ated the winter wheat yield distribution map of some major
production areas in China at moderate resolution, e.g., 10 km,
5 arcmin grid, 5 min grid, 4 km and 1 km (Monfreda et al.,
2008; Grogan et al., 2022; Luo et al., 2022; Cheng et al.,
2022). Moderate-resolution yield maps have a mixed-pixel
problem, which may lead to great uncertainties, as mentioned
in comparison with the 4 km yield dataset. Existing wheat
yield maps are usually available at the end of the season

or based on yield statistics, which limits their application in
early field management and government macro-control (Bat-
tude et al., 2016; Kang and Ozdogan, 2019). For example,
crop growth models strongly depend on daily meteorologi-
cal data as input; this increases the difficulty in early yield
prediction because meteorological data during the season are
lacking and long-term meteorological forecasts are unreli-
able. ChinaWheatYield30m had the following advantages:

1. This study generated ChinaWheatYield30m dataset
with 30 m resolution (Fig. 10); the primary reason is
we adopted the winter wheat classification map from
Dong et al. (2020a), providing the highest resolution of
30 m wheat pixels. Such a resolution will not only pro-
vide higher result credibility, but also balance the com-
putational efficiency problems. High-resolution yield
datasets can provide more accurate spatial information
about crop production, improving agricultural produc-
tivity and enabling rapid monitoring and analysis of
large agricultural areas. This allows for timely detection
and resolution of issues that arise during crop growth,
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Figure 7. Interannual cross-validation of the correlation between measured data and predicted data, where panels (a)–(f) indicate that the
HLMs of 2016, 2017, 2018, 2019, 2020 or 2021 are directly used in other years. ** represents that the model is significant at the 0.01 level
of probability.

Figure 8. Reginal cross-validation of the correlation between measured data and predicted data, where panels (a)–(e) indicate that the HLMs
of HHH, LP, MYLR, SW or GX are directly used in other years. ** represents that the model is significant at the 0.01 level of probability.

ultimately enhancing both the efficiency and effective-
ness of agricultural production.

2. A stable accuracy at field scale and large regional scale
will highly contribute to field management, the mod-
eling of agricultural systems and the drafting of agri-
cultural policies. This study combined remote sens-
ing and meteorological data to construct a spatiotem-
porally expandable HLM method for predicting win-
ter wheat yield in the main producing areas. The rela-

tionship between vegetation index and crop yield varies
across different years and regions (Li et al., 2020).
Meteorological data have an important impact on crop
yield (Moschini and Hennessy, 2001; Lee et al., 2013).
Li et al. (2021) showed that environmental data for
wheat in China explained more than 60 % of the vari-
ation in wheat yield. In this study, we generated Chi-
naWheatYield30m with stable results, which fully ex-
ploited the advantages of HLM to solve the nested prob-
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Figure 9. Spatial patterns of annual winter wheat yield during 2016–2021.

lem of yield prediction impacted by remote sensing and
meteorological data.

3. The product has a high real-time performance and can
be used to forecast the output in the early period of the
year. EVI2max and meteorological data used in this pa-
per can be obtained before May, while wheat in China’s
main winter wheat production areas is generally har-
vested in June. Therefore, the proposed method can ac-
curately predict winter wheat yield in real time. The
strengths of the HLM are overcoming inter-annual and
regional variations (Li et al., 2020; Xu et al., 2020; Zhao
et al., 2022c). The results based on field investigation
and statistical data show that the method can accurately
predict winter wheat yield in the main production areas.

The ChinaWheatYield30m is presumed to be most com-
monly concerned in metropolis level or county level; in
this sense, the resolution will be feasible to these scales.

4.2 Uncertainties and limitations

Despite the advantages of ChinaWheatYield30m, the dataset
also presents some data and model uncertainties.

1. Remote sensing and meteorological data used in this
study still have uncertainties. This study generated
the ChinaWheatYield30m dataset with 30 m resolution;
the primary reason is we adopted winter wheat clas-
sification map from Dong et al. (2020a), providing
the highest resolution of 30 m wheat pixels. The Chi-
naWheatYield30m input data consist of meteorological
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Table 4. Statistical analysis of GlobalWheatYield4km and ChinaWheatYield30m.

Reg. Year
GlobalWheatYield4km (kg ha−1) ChinaWheatYield30m (kg ha−1)

Min Max Mean SD Min Max Mean SD

1

2016 2215.59 4499.56 3085.45 394.45 3787.87 10 504.50 5797.42 711.83
2017 2115.95 5543.09 3034.08 660.67 3555.29 7470.59 4849.84 374.35
2018 2461.41 5192.57 3499.66 632.27 3015.54 6231.35 3746.34 422.38
2019 2802.90 4987.77 3511.21 346.15 2653.62 9978.73 5351.96 1516.09
2020 2336.31 4584.65 3347.63 505.31 2705.24 7874.20 4238.19 977.18

2

2016 2751.27 6626.20 4807.49 880.91 4257.01 9078.25 6002.05 438.40
2017 3504.07 7102.54 5349.48 847.29 4997.04 10 504.47 6564.42 968.29
2018 4524.76 6755.62 5880.72 402.58 3818.12 10 291.08 6472.96 721.93
2019 3988.76 6555.61 5551.69 528.77 3198.47 9902.78 6704.21 989.46
2020 3766.66 6301.66 5069.00 526.35 4352.21 8439.71 6100.75 745.51

3

2016 4388.15 7127.87 6103.27 491.77 3788.11 7554.13 7047.07 321.38
2017 5000.56 7387.55 6261.93 433.99 5917.13 8266.23 7199.44 214.30
2018 5637.92 7668.69 6931.35 356.61 4927.40 8384.25 6357.63 378.09
2019 5589.33 7540.64 6535.69 290.27 5394.00 9980.07 7576.74 652.95
2020 3861.44 7003.86 5590.34 521.12 5557.38 8186.71 6802.47 195.46

Note that “Reg” represents “region”.

Figure 10. Comparison of predicted yield and municipal statistical
yield. ** represents the model being significant at the 0.01 level of
probability.

variables and remote sensing data; all datasets were re-
sampled to a 30 m resolution to ensure data uniformity.
In terms of remote sensing data, resampling Sentinel 2
data to 30 m may result in loss of some surface infor-
mation, and the differences between pixels in the im-
age may not be accurately captured. The increase in the
number of mixed pixels can lead to uncertainties in yield
estimation results. Besides, maximum EVI2 is obtained
at the heading or flowering period (Luo et al., 2020),
but due to the irregular availability of usable Sentinel 2
and Landsat 8 observations, the maximum EVI2 na-
tionwide may correspond to different phenological peri-
ods.In addition, meteorological data are another impor-

Figure 11. Comparisons between in situ measurement yields
and predicted yields of GlobalWheatYield4km or Chi-
naWheatYield30m for 2016 (a), 2017 (b), 2018 (c), 2019 (d),
and 2020 (e).

tant component of the yield dataset. To obtain spatially
and temporally continuous meteorological driving data,
this study utilizes a dataset generated by ECMWF; its
meteorological data were updated in a timely manner to
meet our spatio-temporal demand. However, meteoro-
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Figure 12. Comparison of spatial patterns between GlobalWheatYield4km (a, b, c) and ChinaWheatYield30m (d, e, f) from 2016 to 2020.
The detailed location of the selected example areas (Region 1 and d; Region 2 and e; Region 3) is shown in Fig. 1.

logical data such as precipitation, temperature and radi-
ation exhibit highly nonlinear and chaotic characteris-
tics (Lorenz and Haman 1996), leading to ongoing de-
bates about the reliability of interpolation methods. The
coarse resolution of meteorological data, combined with
its high spatial homogeneity over larger areas, weakens
its ability to effectively capture the relationship between
remote sensing data and yield variations as the second-
level correction in the HLM.

2. Uncertainties in winter wheat classifications are trans-
ferred to the yield predictions. The wheat classification
is based on optical remote sensing data and may be af-
fected by meteorological factors such as clouds and rain
(Dong et al., 2020a). In addition, the winter wheat clas-
sification data are mainly based on time series, and a
similar time series may lead to a wrong classification,
which results in uncertainties in regional yield statistics.

3. The accessibility of in situ measurement data is also one
of the uncertainties in ChinaWheatYield30m. The per-
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formance of HLM depends on the quantity and qual-
ity of samples. It is more precise when sampling in
the quadrat and is often higher than the statistical yield
data. It was particularly difficult to collect finer-scale
census data with longer time coverage in some areas,
such as Xinjiang Province, leading to data gaps in Chi-
naWheatYield30m. We combined in situ measurements
and statistical data to calibrate and validate the Chi-
naWheatYield30m. However, where sparse observation
were available, we could only calibrate the parameters
of the mathematical optimization.

4. The uncertainties of HLM application scenarios need
further analysis. There is a nested issue between vegeta-
tion indices and yield relationships, as well as between
meteorological data and yield relationships (Li et al.,
2020; Xu et al., 2020). HLM has advantages in address-
ing this problem. Under similar meteorological condi-
tions, the yield estimation of the model mainly depends
on the differences in vegetation indices. In the major
wheat production area, variations in crop types, soil
types, climate factors and other factors have an impact
on the model’s estimation results (Li et al., 2021). The
current model only considers the effect of meteorologi-
cal data on remote sensing yield estimation, and future
analyses will incorporate additional factors such as soil
to generate more accurate yield datasets. The current
model is primarily constructed based on normal pro-
duction conditions, and estimating winter wheat yield
under abnormal climatic conditions introduces signifi-
cant uncertainties. Therefore, it is necessary to consider
stress factors and further improve the framework of re-
mote sensing estimation models for winter wheat in the
future.

5 Data availability

The derived yield dataset for Chi-
naWheatYield30m during 2016–2021 is available at
https://doi.org/10.5281/zenodo.7360753 (Zhao et al.,
2022b). Please be so kind to contact the authors for more
detailed information.

6 Conclusions

In the present study, we generated a 30 m Chinese win-
ter wheat yield dataset from 2016 to 2021 based on the
HLM, called ChinaWheatYield30m. First, we construct a
semi-mechanical model with excellent accuracy and low cost
in a combination of remote sensing observations and re-
gional meteorological information for major winter-wheat-
producing areas in China. The HLM has a stable perfor-
mance in calibration sets across China, with an r of 0.81**
(p < 0.01) and rRMSE of 12.59 %, respectively. Next, we
validated the predictive performance of in situ measurement

data and statistical data. The ChinaWheatYield30m dataset
was highly consistent with in situ measurement data and sta-
tistical data (p < 0.01), indicated by r (rRMSE) of 0.72**
(15.34 %) and 0.69** (19.16 %), respectively. Finally, we es-
tablished a high-resolution yield product for winter wheat in
China during 2016–2021. Our ChinaWheatYield30m can be
applied for many purposes, including further academic re-
search, the establishing of economic food subsidy policies
and the rational allocation of imperative resources.
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