Articles | Volume 15, issue 8
https://doi.org/10.5194/essd-15-3747-2023
https://doi.org/10.5194/essd-15-3747-2023
Data description paper
 | 
22 Aug 2023
Data description paper |  | 22 Aug 2023

A first global height-resolved cloud condensation nuclei data set derived from spaceborne lidar measurements

Goutam Choudhury and Matthias Tesche

Related authors

Co-variability drives the inverted-V sensitivity between liquid water path and droplet concentrations
Tom Goren, Goutam Chourdhury, Jan Kretzschmar, and Isabel McCoy
EGUsphere, https://doi.org/10.5194/egusphere-2024-2245,https://doi.org/10.5194/egusphere-2024-2245, 2024
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Pristine oceans control the uncertainty in aerosol–cloud interactions
Goutam Choudhury, Karoline Block, Mahnoosh Haghighatnasab, Johannes Quaas, Tom Goren, and Matthias Tesche
EGUsphere, https://doi.org/10.5194/egusphere-2024-1863,https://doi.org/10.5194/egusphere-2024-1863, 2024
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
A cloud-by-cloud approach for studying aerosol–cloud interaction in satellite observations
Fani Alexandri, Felix Müller, Goutam Choudhury, Peggy Achtert, Torsten Seelig, and Matthias Tesche
Atmos. Meas. Tech., 17, 1739–1757, https://doi.org/10.5194/amt-17-1739-2024,https://doi.org/10.5194/amt-17-1739-2024, 2024
Short summary
Evaluation of aerosol number concentrations from CALIPSO with ATom airborne in situ measurements
Goutam Choudhury, Albert Ansmann, and Matthias Tesche
Atmos. Chem. Phys., 22, 7143–7161, https://doi.org/10.5194/acp-22-7143-2022,https://doi.org/10.5194/acp-22-7143-2022, 2022
Short summary
Estimating cloud condensation nuclei concentrations from CALIPSO lidar measurements
Goutam Choudhury and Matthias Tesche
Atmos. Meas. Tech., 15, 639–654, https://doi.org/10.5194/amt-15-639-2022,https://doi.org/10.5194/amt-15-639-2022, 2022
Short summary

Related subject area

Domain: ESSD – Atmosphere | Subject: Atmospheric chemistry and physics
MAP-IO: an atmospheric and marine observatory program on board Marion Dufresne over the Southern Ocean
Pierre Tulet, Joel Van Baelen, Pierre Bosser, Jérome Brioude, Aurélie Colomb, Philippe Goloub, Andrea Pazmino, Thierry Portafaix, Michel Ramonet, Karine Sellegri, Melilotus Thyssen, Léa Gest, Nicolas Marquestaut, Dominique Mékiès, Jean-Marc Metzger, Gilles Athier, Luc Blarel, Marc Delmotte, Guillaume Desprairies, Mérédith Dournaux, Gaël Dubois, Valentin Duflot, Kevin Lamy, Lionel Gardes, Jean-François Guillemot, Valérie Gros, Joanna Kolasinski, Morgan Lopez, Olivier Magand, Erwan Noury, Manuel Nunes-Pinharanda, Guillaume Payen, Joris Pianezze, David Picard, Olivier Picard, Sandrine Prunier, François Rigaud-Louise, Michael Sicard, and Benjamin Torres
Earth Syst. Sci. Data, 16, 3821–3849, https://doi.org/10.5194/essd-16-3821-2024,https://doi.org/10.5194/essd-16-3821-2024, 2024
Short summary
Retrieving ground-level PM2.5 concentrations in China (2013–2021) with a numerical-model-informed testbed to mitigate sample-imbalance-induced biases
Siwei Li, Yu Ding, Jia Xing, and Joshua S. Fu
Earth Syst. Sci. Data, 16, 3781–3793, https://doi.org/10.5194/essd-16-3781-2024,https://doi.org/10.5194/essd-16-3781-2024, 2024
Short summary
Reconstructing long-term (1980–2022) daily ground particulate matter concentrations in India (LongPMInd)
Shuai Wang, Mengyuan Zhang, Hui Zhao, Peng Wang, Sri Harsha Kota, Qingyan Fu, Cong Liu, and Hongliang Zhang
Earth Syst. Sci. Data, 16, 3565–3577, https://doi.org/10.5194/essd-16-3565-2024,https://doi.org/10.5194/essd-16-3565-2024, 2024
Short summary
Visibility-derived aerosol optical depth over global land from 1959 to 2021
Hongfei Hao, Kaicun Wang, Chuanfeng Zhao, Guocan Wu, and Jing Li
Earth Syst. Sci. Data, 16, 3233–3260, https://doi.org/10.5194/essd-16-3233-2024,https://doi.org/10.5194/essd-16-3233-2024, 2024
Short summary
Characterizing clouds with the CCClim dataset, a machine learning cloud class climatology
Arndt Kaps, Axel Lauer, Rémi Kazeroni, Martin Stengel, and Veronika Eyring
Earth Syst. Sci. Data, 16, 3001–3016, https://doi.org/10.5194/essd-16-3001-2024,https://doi.org/10.5194/essd-16-3001-2024, 2024
Short summary

Cited articles

Albrecht, B. A.: Aerosols, Cloud Microphysics, and Fractional Cloudiness, Science, 245, 1227–1230, https://doi.org/10.1126/science.245.4923.1227, 1989. a
Amiridis, V., Marinou, E., Tsekeri, A., Wandinger, U., Schwarz, A., Giannakaki, E., Mamouri, R., Kokkalis, P., Binietoglou, I., Solomos, S., Herekakis, T., Kazadzis, S., Gerasopoulos, E., Proestakis, E., Kottas, M., Balis, D., Papayannis, A., Kontoes, C., Kourtidis, K., Papagiannopoulos, N., Mona, L., Pappalardo, G., Le Rille, O., and Ansmann, A.: LIVAS: a 3-D multi-wavelength aerosol/cloud database based on CALIPSO and EARLINET, Atmos. Chem. Phys., 15, 7127–7153, https://doi.org/10.5194/acp-15-7127-2015, 2015. a
Andreae, M. O. and Rosenfeld, D.: Aerosol–cloud–precipitation interactions. Part 1. The nature and sources of cloud-active aerosols, Earth-Sci. Rev., 89, 13–41, https://doi.org/10.1016/j.earscirev.2008.03.001, 2008. a
Aravindhavel, A., Choudhury, G., Prabhakaran, T., Murugavel, P., and Tesche, M.: Retrieval and validation of cloud condensation nuclei from satellite and airborne measurements over the Indian Monsoon region, Atmos. Res., 290, 106802, https://doi.org/10.1016/j.atmosres.2023.106802, 2023. a, b
Bellouin, N., Quaas, J., Gryspeerdt, E., Kinne, S., Stier, P., Watson-Parris, D., Boucher, O., Carslaw, K. S., Christensen, M., Daniau, A.-L., Dufresne, J.-L., Feingold, G., Fiedler, S., Forster, P., Gettelman, A., Haywood, J. M., Lohmann, U., Malavelle, F., Mauritsen, T., McCoy, D. T., Myhre, G., Mülmenstädt, J., Neubauer, D., Possner, A., Rugenstein, M., Sato, Y., Schulz, M., Schwartz, S. E., Sourdeval, O., Storelvmo, T., Toll, V., Winker, D., and Stevens, B.: Bounding Global Aerosol Radiative Forcing of Climate Change, Rev. Geophys., 58, e2019RG000660, https://doi.org/10.1029/2019RG000660, 2020. a, b
Download
Short summary
Aerosols in the atmosphere that can form liquid cloud droplets are called cloud condensation nuclei (CCN). Accurate measurements of CCN, especially CCN of anthropogenic origin, are necessary to quantify the effect of anthropogenic aerosols on the present-day as well as future climate. In this paper, we describe a novel global 3D CCN data set calculated from satellite measurements. We also discuss the potential applications of the data in the context of aerosol–cloud interactions.
Altmetrics
Final-revised paper
Preprint