Articles | Volume 15, issue 8
https://doi.org/10.5194/essd-15-3747-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/essd-15-3747-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
A first global height-resolved cloud condensation nuclei data set derived from spaceborne lidar measurements
Goutam Choudhury
CORRESPONDING AUTHOR
Leipzig Institute for Meteorology (LIM), Leipzig University, Stephanstrasse 3, 04103 Leipzig, Germany
Department of Geography and Environment, Bar-Ilan University, 5290002 Ramat Gan, Israel
Matthias Tesche
Leipzig Institute for Meteorology (LIM), Leipzig University, Stephanstrasse 3, 04103 Leipzig, Germany
Related authors
Yun He, Goutam Choudhury, Matthias Tesche, Albert Ansmann, Fan Yi, Detlef Müller, and Zhenping Yin
EGUsphere, https://doi.org/10.5194/egusphere-2025-2666, https://doi.org/10.5194/egusphere-2025-2666, 2025
Short summary
Short summary
We present a global data set of POLIPHON dust conversion factors at 532 nm obtained using Aerosol RObotic NETwork (AERONET) observations at 137 sites for INP and 123 sites for CCN calculations. We also conduct a comparison of dust CCN concentration profiles derived using both POLIPHON and the independent OMCAM (Optical Modelling of the CALIPSO Aerosol Microphysics) retrieval.
Goutam Choudhury, Karoline Block, Mahnoosh Haghighatnasab, Johannes Quaas, Tom Goren, and Matthias Tesche
Atmos. Chem. Phys., 25, 3841–3856, https://doi.org/10.5194/acp-25-3841-2025, https://doi.org/10.5194/acp-25-3841-2025, 2025
Short summary
Short summary
Aerosol particles in the atmosphere increase cloud reflectivity, thereby cooling the Earth. Accurate global measurements of these particles are crucial for estimating this cooling effect. This study compares and harmonizes two newly developed global aerosol datasets, offering insights for their future use and refinement. We identify pristine oceans as a significant source of uncertainty in the datasets and, therefore, in quantifying the role of aerosols in Earth's climate.
Tom Goren, Goutam Choudhury, Jan Kretzschmar, and Isabel McCoy
Atmos. Chem. Phys., 25, 3413–3423, https://doi.org/10.5194/acp-25-3413-2025, https://doi.org/10.5194/acp-25-3413-2025, 2025
Short summary
Short summary
Many studies have identified an inverted-V relationship between the liquid water path (LWP) and droplet concentration (Nd), where LWP increases and then decreases with Nd. Using satellite observations and meteorological data, we demonstrate that the inverted V primarily reflects co-variability between LWP and Nd. We suggest taking a holistic approach that considers this co-variability when assessing the climatological sensitivity of LWP to anthropogenic aerosols.
Fani Alexandri, Felix Müller, Goutam Choudhury, Peggy Achtert, Torsten Seelig, and Matthias Tesche
Atmos. Meas. Tech., 17, 1739–1757, https://doi.org/10.5194/amt-17-1739-2024, https://doi.org/10.5194/amt-17-1739-2024, 2024
Short summary
Short summary
We present a novel method for studying aerosol–cloud interactions. It combines cloud-relevant aerosol concentrations from polar-orbiting lidar observations with the development of individual clouds from geostationary observations. Application to 1 year of data gives first results on the impact of aerosols on the concentration and size of cloud droplets and on cloud phase in the regime of heterogeneous ice formation. The method could enable the systematic investigation of warm and cold clouds.
Goutam Choudhury, Albert Ansmann, and Matthias Tesche
Atmos. Chem. Phys., 22, 7143–7161, https://doi.org/10.5194/acp-22-7143-2022, https://doi.org/10.5194/acp-22-7143-2022, 2022
Short summary
Short summary
Lidars provide height-resolved type-specific aerosol properties and are key in studying vertically collocated aerosols and clouds. In this study, we compare the aerosol number concentrations derived from spaceborne lidar with the in situ flight measurements. Our results show a reasonable agreement between both datasets. Such an agreement has not been achieved yet. It shows the potential of spaceborne lidar in studying aerosol–cloud interactions, which is needed to improve our climate forecasts.
Goutam Choudhury and Matthias Tesche
Atmos. Meas. Tech., 15, 639–654, https://doi.org/10.5194/amt-15-639-2022, https://doi.org/10.5194/amt-15-639-2022, 2022
Short summary
Short summary
Aerosols are tiny particles suspended in the atmosphere. A fraction of these particles can form clouds and are called cloud condensation nuclei (CCN). Measurements of such aerosol particles are necessary to study the aerosol–cloud interactions and reduce the uncertainty in our future climate predictions. We present a novel methodology to estimate global 3D CCN concentrations from the CALIPSO satellite measurements. The final data set will be used to study the aerosol–cloud interactions.
Goutam Choudhury, Bhishma Tyagi, Naresh Krishna Vissa, Jyotsna Singh, Chandan Sarangi, Sachchida Nand Tripathi, and Matthias Tesche
Atmos. Chem. Phys., 20, 15389–15399, https://doi.org/10.5194/acp-20-15389-2020, https://doi.org/10.5194/acp-20-15389-2020, 2020
Short summary
Short summary
This study uses 17 years (2001–2017) of observed rain rate, aerosol optical depth (AOD), meteorological reanalysis fields and outgoing long-wave radiation to investigate high precipitation events at the foothills of the Himalayas. Composite analysis of all data sets for high precipitation events (daily rainfall > 95th percentile) indicates clear and robust associations between high precipitation events, high aerosol loading and high moist static energy values.
Peggy Achtert, Torsten Seelig, Gabriella Wallentin, Luisa Ickes, Matthew D. Shupe, Corinna Hoose, and Matthias Tesche
EGUsphere, https://doi.org/10.5194/egusphere-2025-3529, https://doi.org/10.5194/egusphere-2025-3529, 2025
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
We quantify the occurrence of single- and multi-layer clouds in the Arctic based on combining soundings with cloud-radar observations. We also assess the rate of ice-crystal seeding in multi-layer cloud systems as this is an important initiator of glaciation in super-cooled liquid cloud layers. We find an abundance of multi-layer clouds in the Arctic with seeding in about half to two thirds of cases in which the gap between upper and lower layers ranges between 100 and 1000 m.
Gabriella Wallentin, Annika Oertel, Luisa Ickes, Peggy Achtert, Matthias Tesche, and Corinna Hoose
Atmos. Chem. Phys., 25, 6607–6631, https://doi.org/10.5194/acp-25-6607-2025, https://doi.org/10.5194/acp-25-6607-2025, 2025
Short summary
Short summary
Multilayer clouds are common in the Arctic but remain underrepresented. We use an atmospheric model to simulate multilayer cloud cases from the Arctic expedition MOSAiC 2019/2020. We find that it is complex to accurately model these cloud layers due to the lack of correct temperature profiles. The model also struggles to capture the observed cloud phase and the relative concentration of cloud droplets and cloud ice. We constrain our model to measured aerosols to mitigate this issue.
Yun He, Goutam Choudhury, Matthias Tesche, Albert Ansmann, Fan Yi, Detlef Müller, and Zhenping Yin
EGUsphere, https://doi.org/10.5194/egusphere-2025-2666, https://doi.org/10.5194/egusphere-2025-2666, 2025
Short summary
Short summary
We present a global data set of POLIPHON dust conversion factors at 532 nm obtained using Aerosol RObotic NETwork (AERONET) observations at 137 sites for INP and 123 sites for CCN calculations. We also conduct a comparison of dust CCN concentration profiles derived using both POLIPHON and the independent OMCAM (Optical Modelling of the CALIPSO Aerosol Microphysics) retrieval.
Goutam Choudhury, Karoline Block, Mahnoosh Haghighatnasab, Johannes Quaas, Tom Goren, and Matthias Tesche
Atmos. Chem. Phys., 25, 3841–3856, https://doi.org/10.5194/acp-25-3841-2025, https://doi.org/10.5194/acp-25-3841-2025, 2025
Short summary
Short summary
Aerosol particles in the atmosphere increase cloud reflectivity, thereby cooling the Earth. Accurate global measurements of these particles are crucial for estimating this cooling effect. This study compares and harmonizes two newly developed global aerosol datasets, offering insights for their future use and refinement. We identify pristine oceans as a significant source of uncertainty in the datasets and, therefore, in quantifying the role of aerosols in Earth's climate.
Tom Goren, Goutam Choudhury, Jan Kretzschmar, and Isabel McCoy
Atmos. Chem. Phys., 25, 3413–3423, https://doi.org/10.5194/acp-25-3413-2025, https://doi.org/10.5194/acp-25-3413-2025, 2025
Short summary
Short summary
Many studies have identified an inverted-V relationship between the liquid water path (LWP) and droplet concentration (Nd), where LWP increases and then decreases with Nd. Using satellite observations and meteorological data, we demonstrate that the inverted V primarily reflects co-variability between LWP and Nd. We suggest taking a holistic approach that considers this co-variability when assessing the climatological sensitivity of LWP to anthropogenic aerosols.
Sohee Joo, Juseon Shin, Matthias Tesche, Naghmeh Dehkhoda, Taegyeong Kim, and Youngmin Noh
Atmos. Chem. Phys., 25, 1023–1036, https://doi.org/10.5194/acp-25-1023-2025, https://doi.org/10.5194/acp-25-1023-2025, 2025
Short summary
Short summary
In our study, we investigated why, in northeast Asia, visibility has not improved even though air pollution levels have decreased. By examining trends in Seoul and Ulsan, we found that the particles in the air are getting smaller, which scatters light more effectively and reduces how far we can see. Our findings suggest that changes in particle properties adversely affected public perception of air quality improvement even though the PM2.5 mass concentration is continuously decreasing.
Fani Alexandri, Felix Müller, Goutam Choudhury, Peggy Achtert, Torsten Seelig, and Matthias Tesche
Atmos. Meas. Tech., 17, 1739–1757, https://doi.org/10.5194/amt-17-1739-2024, https://doi.org/10.5194/amt-17-1739-2024, 2024
Short summary
Short summary
We present a novel method for studying aerosol–cloud interactions. It combines cloud-relevant aerosol concentrations from polar-orbiting lidar observations with the development of individual clouds from geostationary observations. Application to 1 year of data gives first results on the impact of aerosols on the concentration and size of cloud droplets and on cloud phase in the regime of heterogeneous ice formation. The method could enable the systematic investigation of warm and cold clouds.
Juseon Shin, Gahyeong Kim, Dukhyeon Kim, Matthias Tesche, Gahyeon Park, and Youngmin Noh
Atmos. Meas. Tech., 17, 397–406, https://doi.org/10.5194/amt-17-397-2024, https://doi.org/10.5194/amt-17-397-2024, 2024
Short summary
Short summary
We introduce the multi-section method, a novel approach for stable extinction coefficient retrievals in horizontally scanning aerosol lidar measurements, in this study. Our method effectively removes signal–noise-induced irregular peaks and derives a reference extinction coefficient, αref, from multiple scans, resulting in a strong correlation (>0.74) with PM2.5 mass concentrations. Case studies demonstrate its utility in retrieving spatio-temporal aerosol distributions and PM2.5 concentrations.
Peter Bräuer and Matthias Tesche
Geosci. Model Dev., 15, 7557–7572, https://doi.org/10.5194/gmd-15-7557-2022, https://doi.org/10.5194/gmd-15-7557-2022, 2022
Short summary
Short summary
This paper presents a tool for (i) finding temporally and spatially resolved intersections between two- or three-dimensional geographical tracks (trajectories) and (ii) extracting of data in the vicinity of intersections to achieve the optimal combination of various data sets.
Matthias Tesche and Vincent Noel
Atmos. Meas. Tech., 15, 4225–4240, https://doi.org/10.5194/amt-15-4225-2022, https://doi.org/10.5194/amt-15-4225-2022, 2022
Short summary
Short summary
Mid-level and high clouds can be considered natural laboratories for studying cloud glaciation in the atmosphere. While they can be conveniently observed from ground with lidar, such measurements require a clear line of sight between the instrument and the target cloud. Here, observations of clouds with two spaceborne lidars are used to assess where ground-based lidar measurements of mid- and upper-level clouds are least affected by the light-attenuating effect of low-level clouds.
Goutam Choudhury, Albert Ansmann, and Matthias Tesche
Atmos. Chem. Phys., 22, 7143–7161, https://doi.org/10.5194/acp-22-7143-2022, https://doi.org/10.5194/acp-22-7143-2022, 2022
Short summary
Short summary
Lidars provide height-resolved type-specific aerosol properties and are key in studying vertically collocated aerosols and clouds. In this study, we compare the aerosol number concentrations derived from spaceborne lidar with the in situ flight measurements. Our results show a reasonable agreement between both datasets. Such an agreement has not been achieved yet. It shows the potential of spaceborne lidar in studying aerosol–cloud interactions, which is needed to improve our climate forecasts.
Juseon Shin, Juhyeon Sim, Naghmeh Dehkhoda, Sohee Joo, Taekyung Kim, Gahyung Kim, Detlef Müller, Matthias Tesche, Sungkyun Shin, Dongho Shin, and Youngmin Noh
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2022-219, https://doi.org/10.5194/acp-2022-219, 2022
Preprint withdrawn
Short summary
Short summary
We analyzed long-term AERONET sun/sky radiometer for 6 continentals to verify the trend of aerosol physical properties depending on sources (dust or pollution) and size (fine or coarse mode). We identified the trend of classified aerosol optical depth (AOD) and size change over 9 years. Especially, we find out aerosol properties causing AOD variations are different from regions and fine aerosol particle in most regions has become smaller using MK-test for trend analysis.
Goutam Choudhury and Matthias Tesche
Atmos. Meas. Tech., 15, 639–654, https://doi.org/10.5194/amt-15-639-2022, https://doi.org/10.5194/amt-15-639-2022, 2022
Short summary
Short summary
Aerosols are tiny particles suspended in the atmosphere. A fraction of these particles can form clouds and are called cloud condensation nuclei (CCN). Measurements of such aerosol particles are necessary to study the aerosol–cloud interactions and reduce the uncertainty in our future climate predictions. We present a novel methodology to estimate global 3D CCN concentrations from the CALIPSO satellite measurements. The final data set will be used to study the aerosol–cloud interactions.
Maria Kezoudi, Matthias Tesche, Helen Smith, Alexandra Tsekeri, Holger Baars, Maximilian Dollner, Víctor Estellés, Johannes Bühl, Bernadett Weinzierl, Zbigniew Ulanowski, Detlef Müller, and Vassilis Amiridis
Atmos. Chem. Phys., 21, 6781–6797, https://doi.org/10.5194/acp-21-6781-2021, https://doi.org/10.5194/acp-21-6781-2021, 2021
Short summary
Short summary
Mineral dust concentrations in the diameter range from 0.4 to 14.0 μm were measured with the balloon-borne UCASS optical particle counter. Launches were coordinated with ground-based remote-sensing and airborne in situ measurements during a Saharan dust outbreak over Cyprus. Particle number concentrations reached 50 cm−3 for the diameter range 0.8–13.9 μm. Comparisons with aircraft data show reasonable agreement in magnitude and shape of the particle size distribution.
Matthias Tesche, Peggy Achtert, and Michael C. Pitts
Atmos. Chem. Phys., 21, 505–516, https://doi.org/10.5194/acp-21-505-2021, https://doi.org/10.5194/acp-21-505-2021, 2021
Short summary
Short summary
We combine spaceborne lidar observations of clouds in the troposphere and stratosphere to assess the outcome of ground-based polar stratospheric cloud (PSC) observations that are often performed at the mercy of tropospheric clouds. We find that the outcome of ground-based lidar measurements of PSCs depends on the location of the measurement. We also provide recommendations regarding the most suitable sites in the Arctic and Antarctic.
Goutam Choudhury, Bhishma Tyagi, Naresh Krishna Vissa, Jyotsna Singh, Chandan Sarangi, Sachchida Nand Tripathi, and Matthias Tesche
Atmos. Chem. Phys., 20, 15389–15399, https://doi.org/10.5194/acp-20-15389-2020, https://doi.org/10.5194/acp-20-15389-2020, 2020
Short summary
Short summary
This study uses 17 years (2001–2017) of observed rain rate, aerosol optical depth (AOD), meteorological reanalysis fields and outgoing long-wave radiation to investigate high precipitation events at the foothills of the Himalayas. Composite analysis of all data sets for high precipitation events (daily rainfall > 95th percentile) indicates clear and robust associations between high precipitation events, high aerosol loading and high moist static energy values.
Johannes Quaas, Antti Arola, Brian Cairns, Matthew Christensen, Hartwig Deneke, Annica M. L. Ekman, Graham Feingold, Ann Fridlind, Edward Gryspeerdt, Otto Hasekamp, Zhanqing Li, Antti Lipponen, Po-Lun Ma, Johannes Mülmenstädt, Athanasios Nenes, Joyce E. Penner, Daniel Rosenfeld, Roland Schrödner, Kenneth Sinclair, Odran Sourdeval, Philip Stier, Matthias Tesche, Bastiaan van Diedenhoven, and Manfred Wendisch
Atmos. Chem. Phys., 20, 15079–15099, https://doi.org/10.5194/acp-20-15079-2020, https://doi.org/10.5194/acp-20-15079-2020, 2020
Short summary
Short summary
Anthropogenic pollution particles – aerosols – serve as cloud condensation nuclei and thus increase cloud droplet concentration and the clouds' reflection of sunlight (a cooling effect on climate). This Twomey effect is poorly constrained by models and requires satellite data for better quantification. The review summarizes the challenges in properly doing so and outlines avenues for progress towards a better use of aerosol retrievals and better retrievals of droplet concentrations.
Cited articles
Albrecht, B. A.: Aerosols, Cloud Microphysics, and Fractional
Cloudiness, Science, 245, 1227–1230, https://doi.org/10.1126/science.245.4923.1227,
1989. a
Amiridis, V., Marinou, E., Tsekeri, A., Wandinger, U., Schwarz, A., Giannakaki, E., Mamouri, R., Kokkalis, P., Binietoglou, I., Solomos, S., Herekakis, T., Kazadzis, S., Gerasopoulos, E., Proestakis, E., Kottas, M., Balis, D., Papayannis, A., Kontoes, C., Kourtidis, K., Papagiannopoulos, N., Mona, L., Pappalardo, G., Le Rille, O., and Ansmann, A.: LIVAS: a 3-D multi-wavelength aerosol/cloud database based on CALIPSO and EARLINET, Atmos. Chem. Phys., 15, 7127–7153, https://doi.org/10.5194/acp-15-7127-2015, 2015. a
Andreae, M. O. and Rosenfeld, D.: Aerosol–cloud–precipitation interactions.
Part 1. The nature and sources of cloud-active aerosols, Earth-Sci.
Rev., 89, 13–41, https://doi.org/10.1016/j.earscirev.2008.03.001, 2008. a
Aravindhavel, A., Choudhury, G., Prabhakaran, T., Murugavel, P., and Tesche,
M.: Retrieval and validation of cloud condensation nuclei from satellite and
airborne measurements over the Indian Monsoon region, Atmos. Res.,
290, 106802, https://doi.org/10.1016/j.atmosres.2023.106802, 2023. a, b
Bellouin, N., Quaas, J., Gryspeerdt, E., Kinne, S., Stier, P., Watson-Parris,
D., Boucher, O., Carslaw, K. S., Christensen, M., Daniau, A.-L., Dufresne,
J.-L., Feingold, G., Fiedler, S., Forster, P., Gettelman, A., Haywood, J. M.,
Lohmann, U., Malavelle, F., Mauritsen, T., McCoy, D. T., Myhre, G.,
Mülmenstädt, J., Neubauer, D., Possner, A., Rugenstein, M., Sato, Y.,
Schulz, M., Schwartz, S. E., Sourdeval, O., Storelvmo, T., Toll, V., Winker,
D., and Stevens, B.: Bounding Global Aerosol Radiative Forcing of
Climate Change, Rev. Geophys., 58, e2019RG000660,
https://doi.org/10.1029/2019RG000660, 2020. a, b
Brock, C. A., Froyd, K. D., Dollner, M., Williamson, C. J., Schill, G., Murphy, D. M., Wagner, N. J., Kupc, A., Jimenez, J. L., Campuzano-Jost, P., Nault, B. A., Schroder, J. C., Day, D. A., Price, D. J., Weinzierl, B., Schwarz, J. P., Katich, J. M., Wang, S., Zeng, L., Weber, R., Dibb, J., Scheuer, E., Diskin, G. S., DiGangi, J. P., Bui, T., Dean-Day, J. M., Thompson, C. R., Peischl, J., Ryerson, T. B., Bourgeois, I., Daube, B. C., Commane, R., and Wofsy, S. C.: Ambient aerosol properties in the remote atmosphere from global-scale in situ measurements, Atmos. Chem. Phys., 21, 15023–15063, https://doi.org/10.5194/acp-21-15023-2021, 2021. a
Chen, Y., Haywood, J., Wang, Y., Malavelle, F., Jordan, G., Partridge, D.,
Fieldsend, J., De Leeuw, J., Schmidt, A., Cho, N., Oreopoulos, L., Platnick, S., Grosvenor, D., Field, P., and Lohmann, U.: Machine learning
reveals climate forcing from aerosols is dominated by increased cloud cover,
Nat. Geosci., 15, 609–614, https://doi.org/10.1038/s41561-022-00991-6, 2022. a
Choudhury, G. and Tesche, M.: Global multiyear 3D dataset of cloud condensation
nuclei derived from spaceborne lidar measurements, PANGAEA [data set],
https://doi.org/10.1594/PANGAEA.956215, 2023. a, b, c, d
Deng, Z. Z., Zhao, C. S., Ma, N., Liu, P. F., Ran, L., Xu, W. Y., Chen, J., Liang, Z., Liang, S., Huang, M. Y., Ma, X. C., Zhang, Q., Quan, J. N., Yan, P., Henning, S., Mildenberger, K., Sommerhage, E., Schäfer, M., Stratmann, F., and Wiedensohler, A.: Size-resolved and bulk activation properties of aerosols in the North China Plain, Atmos. Chem. Phys., 11, 3835–3846, https://doi.org/10.5194/acp-11-3835-2011, 2011. a
Dusek, U., Frank, G. P., Hildebrandt, L., Curtius, J., Schneider, J., Walter,
S., Chand, D., Drewnick, F., Hings, S., Jung, D., Borrmann, S., and Andreae,
M. O.: Size Matters More Than Chemistry for Cloud-Nucleating Ability of
Aerosol Particles, Science, 312, 1375–1378, https://doi.org/10.1126/science.1125261,
2006. a
Fanourgakis, G. S., Kanakidou, M., Nenes, A., Bauer, S. E., Bergman, T., Carslaw, K. S., Grini, A., Hamilton, D. S., Johnson, J. S., Karydis, V. A., Kirkevåg, A., Kodros, J. K., Lohmann, U., Luo, G., Makkonen, R., Matsui, H., Neubauer, D., Pierce, J. R., Schmale, J., Stier, P., Tsigaridis, K., van Noije, T., Wang, H., Watson-Parris, D., Westervelt, D. M., Yang, Y., Yoshioka, M., Daskalakis, N., Decesari, S., Gysel-Beer, M., Kalivitis, N., Liu, X., Mahowald, N. M., Myriokefalitakis, S., Schrödner, R., Sfakianaki, M., Tsimpidi, A. P., Wu, M., and Yu, F.: Evaluation of global simulations of aerosol particle and cloud condensation nuclei number, with implications for cloud droplet formation, Atmos. Chem. Phys., 19, 8591–8617, https://doi.org/10.5194/acp-19-8591-2019, 2019a. a, b, c, d, e, f
Fanourgakis, G., Kanakidou, M., Nenes, A., et al.: Data for the “Evaluation of global simulations of aerosol particle and cloud condensation nuclei number, with implications for cloud droplet formation” (Version v1), Zenodo [data set], https://doi.org/10.5281/zenodo.3265866, 2019b. a, b
Forster, P., Storelvmo, T., Armour, K., Collins, W., Dufresne, J. L., Frame, D., Lunt, D. J.,
Mauritsen, T., Palmer, M. D., Watanabe, M.,Wild, M., and Zhang, H.: The Earth's energy budget,
climate feedbacks, and climate sensitivity, in: Climate Change 2021: The Physical Science Basis,
Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on
Climate Change, edited by: Masson-Delmotte, V., Zhai, P., Pirant, A., Connors, S. L., Pean, C.,
Berger, S., Caud, C., Chen, Y., Goldfarb, L., Gomis, M. I., Huang, M., Leitzell, K., Lonnoy, E.,
Matthews, L. B. R., Maycock, T. K., Waterfield, T., Yelekci, O., Yu, R., and Zhou, B., Cambridge
University Press, 923–1054, https://www.ipcc.ch/report/ar6/wg1/ (last access: 11 August 2023),
2021. a
Gasteiger, J. and Wiegner, M.: MOPSMAP v1.0: a versatile tool for the
modeling of aerosol optical properties, Geoscientific Model Development, 11,
2739–2762, https://doi.org/10.5194/gmd-11-2739-2018, 2018. a
Hasekamp, O. P., Gryspeerdt, E., and Quaas, J.: Analysis of polarimetric
satellite measurements suggests stronger cooling due to aerosol-cloud
interactions, Nat. Commun., 10, 5405,
https://doi.org/10.1038/s41467-019-13372-2, 2019. a
Humphries, R. S., Keywood, M. D., Gribben, S., McRobert, I. M., Ward, J. P., Selleck, P., Taylor, S., Harnwell, J., Flynn, C., Kulkarni, G. R., Mace, G. G., Protat, A., Alexander, S. P., and McFarquhar, G.: Southern Ocean latitudinal gradients of cloud condensation nuclei, Atmos. Chem. Phys., 21, 12757–12782, https://doi.org/10.5194/acp-21-12757-2021, 2021. a
Kim, M.-H., Omar, A. H., Tackett, J. L., Vaughan, M. A., Winker, D. M., Trepte, C. R., Hu, Y., Liu, Z., Poole, L. R., Pitts, M. C., Kar, J., and Magill, B. E.: The CALIPSO version 4 automated aerosol classification and lidar ratio selection algorithm, Atmos. Meas. Tech., 11, 6107–6135, https://doi.org/10.5194/amt-11-6107-2018, 2018. a, b, c
Koehler, K. A., Kreidenweis, S. M., DeMott, P. J., Petters, M. D., Prenni,
A. J., and Carrico, C. M.: Hygroscopicity and cloud droplet activation of
mineral dust aerosol, Geophys. Res. Lett., 36, L08805,
https://doi.org/10.1029/2009GL037348, 2009. a
Kumar, P., Sokolik, I. N., and Nenes, A.: Cloud condensation nuclei activity and droplet activation kinetics of wet processed regional dust samples and minerals, Atmos. Chem. Phys., 11, 8661–8676, https://doi.org/10.5194/acp-11-8661-2011, 2011. a
Liu, Z., Vaughan, M., Winker, D., Kittaka, C., Getzewich, B., Kuehn, R., Omar,
A., Powell, K., Trepte, C., and Hostetler, C.: The CALIPSO Lidar Cloud and
Aerosol Discrimination: Version 2 Algorithm and Initial Assessment of
Performance, J. Atmos. Ocean. Tech., 26, 1198–1213,
https://doi.org/10.1175/2009JTECHA1229.1, 2009. a, b
Mamouri, R. E. and Ansmann, A.: Estimated desert-dust ice nuclei profiles from polarization lidar: methodology and case studies, Atmos. Chem. Phys., 15, 3463–3477, https://doi.org/10.5194/acp-15-3463-2015, 2015. a
Mao, F., Shi, R., Rosenfeld, D., Pan, Z., Zang, L., Zhu, Y., and Lu, X.: Retrieving instantaneous extinction of aerosol undetected by the CALIPSO layer detection algorithm, Atmos. Chem. Phys., 22, 10589–10602, https://doi.org/10.5194/acp-22-10589-2022, 2022. a
Molod, A., Takacs, L., Suarez, M., and Bacmeister, J.: Development of the GEOS-5 atmospheric general circulation model: evolution from MERRA to MERRA2, Geosci. Model Dev., 8, 1339–1356, https://doi.org/10.5194/gmd-8-1339-2015, 2015. a
Myhre, G., Grini, A., Haywood, J. M., Stordal, F., Chatenet, B., Tanré, D.,
Sundet, J. K., and Isaksen, I. S. A.: Modeling the radiative impact of
mineral dust during the Saharan Dust Experiment (SHADE) campaign, J.
Geophys. Res.-Atmos., 108, 8579,
https://doi.org/10.1029/2002JD002566, 2003. a
NASA/LARC/SD/ASDC: CALIPSO Lidar Level 2 Aerosol Profile, V4-20, NASA [data set],
https://doi.org/10.5067/CALIOP/CALIPSO/LID_L2_05KMAPRO-STANDARD-V4-20,
2018. a, b
Omar, A. H., Winker, D. M., Vaughan, M. A., Hu, Y., Trepte, C. R., Ferrare,
R. A., Lee, K.-P., Hostetler, C. A., Kittaka, C., Rogers, R. R., Kuehn,
R. E., and Liu, Z.: The CALIPSO Automated Aerosol Classification and Lidar
Ratio Selection Algorithm, J. Atmos. Ocean. Tech., 26,
1994–2014, https://doi.org/10.1175/2009JTECHA1231.1, 2009. a, b, c
Petters, M. D. and Kreidenweis, S. M.: A single parameter representation of hygroscopic growth and cloud condensation nucleus activity, Atmos. Chem. Phys., 7, 1961–1971, https://doi.org/10.5194/acp-7-1961-2007, 2007. a
Quaas, J., Arola, A., Cairns, B., Christensen, M., Deneke, H., Ekman, A. M. L., Feingold, G., Fridlind, A., Gryspeerdt, E., Hasekamp, O., Li, Z., Lipponen, A., Ma, P.-L., Mülmenstädt, J., Nenes, A., Penner, J. E., Rosenfeld, D., Schrödner, R., Sinclair, K., Sourdeval, O., Stier, P., Tesche, M., van Diedenhoven, B., and Wendisch, M.: Constraining the Twomey effect from satellite observations: issues and perspectives, Atmos. Chem. Phys., 20, 15079–15099, https://doi.org/10.5194/acp-20-15079-2020, 2020. a, b
Rose, D., Nowak, A., Achtert, P., Wiedensohler, A., Hu, M., Shao, M., Zhang, Y., Andreae, M. O., and Pöschl, U.: Cloud condensation nuclei in polluted air and biomass burning smoke near the mega-city Guangzhou, China – Part 1: Size-resolved measurements and implications for the modeling of aerosol particle hygroscopicity and CCN activity, Atmos. Chem. Phys., 10, 3365–3383, https://doi.org/10.5194/acp-10-3365-2010, 2010. a
Rosenfeld, D., Zheng, Y., Hashimshoni, E., Pöhlker, M. L., Jefferson, A.,
Pöhlker, C., Yu, X., Zhu, Y., Liu, G., Yue, Z., Fischman, B., Li, Z.,
Giguzin, D., Goren, T., Artaxo, P., Barbosa, H. M. J., Pöschl, U., and
Andreae, M. O.: Satellite retrieval of cloud condensation nuclei
concentrations by using clouds as CCN chambers, P. Natl.
Acad. Sci. USA, 113, 5828–5834, https://doi.org/10.1073/pnas.1514044113, 2016. a
Sayer, A. M., Smirnov, A., Hsu, N. C., and Holben, B. N.: A pure marine aerosol
model, for use in remote sensing applications, J. Geophys.
Res.-Atmos., 117, D05213, https://doi.org/10.1029/2011JD016689, 2012. a
Schmale, J., Henning, S., Decesari, S., Henzing, B., Keskinen, H., Sellegri, K., Ovadnevaite, J., Pöhlker, M. L., Brito, J., Bougiatioti, A., Kristensson, A., Kalivitis, N., Stavroulas, I., Carbone, S., Jefferson, A., Park, M., Schlag, P., Iwamoto, Y., Aalto, P., Äijälä, M., Bukowiecki, N., Ehn, M., Frank, G., Fröhlich, R., Frumau, A., Herrmann, E., Herrmann, H., Holzinger, R., Kos, G., Kulmala, M., Mihalopoulos, N., Nenes, A., O'Dowd, C., Petäjä, T., Picard, D., Pöhlker, C., Pöschl, U., Poulain, L., Prévôt, A. S. H., Swietlicki, E., Andreae, M. O., Artaxo, P., Wiedensohler, A., Ogren, J., Matsuki, A., Yum, S. S., Stratmann, F., Baltensperger, U., and Gysel, M.: Long-term cloud condensation nuclei number concentration, particle number size distribution and chemical composition measurements at regionally representative observatories, Atmos. Chem. Phys., 18, 2853–2881, https://doi.org/10.5194/acp-18-2853-2018, 2018. a, b
Seinfeld, J. H., Bretherton, C., Carslaw, K. S., Coe, H., DeMott, P. J.,
Dunlea, E. J., Feingold, G., Ghan, S., Guenther, A. B., Kahn, R., Kraucunas,
I., Kreidenweis, S. M., Molina, M. J., Nenes, A., Penner, J. E., Prather,
K. A., Ramanathan, V., Ramaswamy, V., Rasch, P. J., Ravishankara, A. R.,
Rosenfeld, D., Stephens, G., and Wood, R.: Improving our fundamental
understanding of the role of aerosol−cloud interactions in the climate
system, P. Natl. Acad. Sci. USA, 113, 5781–5790,
https://doi.org/10.1073/pnas.1514043113, 2016. a
Shinozuka, Y., Clarke, A. D., Nenes, A., Jefferson, A., Wood, R., McNaughton, C. S., Ström, J., Tunved, P., Redemann, J., Thornhill, K. L., Moore, R. H., Lathem, T. L., Lin, J. J., and Yoon, Y. J.: The relationship between cloud condensation nuclei (CCN) concentration and light extinction of dried particles: indications of underlying aerosol processes and implications for satellite-based CCN estimates, Atmos. Chem. Phys., 15, 7585–7604, https://doi.org/10.5194/acp-15-7585-2015, 2015. a
Tesche, M., Ansmann, A., Müller, D., Althausen, D., Engelmann, R.,
Freudenthaler, V., and Groß, S.: Vertically resolved separation of dust and
smoke over Cape Verde using multiwavelength Raman and polarization
lidars during Saharan Mineral Dust Experiment 2008, J.
Geophys. Res.-Atmos., 114, D13202, https://doi.org/10.1029/2009JD011862, 2009. a, b
Twomey, S.: Pollution and the planetary albedo, Atmos. Environ.,
8, 1251–1256, https://doi.org/10.1016/0004-6981(74)90004-3, 1974. a
van der Werf, G. R., Randerson, J. T., Giglio, L., van Leeuwen, T. T., Chen, Y., Rogers, B. M., Mu, M., van Marle, M. J. E., Morton, D. C., Collatz, G. J., Yokelson, R. J., and Kasibhatla, P. S.: Global fire emissions estimates during 1997–2016, Earth Syst. Sci. Data, 9, 697–720, https://doi.org/10.5194/essd-9-697-2017, 2017. a
Wall, C. J., Norris, J. R., Possner, A., McCoy, D. T., McCoy, I. L., and
Lutsko, N. J.: Assessing effective radiative forcing from aerosol–cloud
interactions over the global ocean, P. Natl. Acad.
Sci. USA, 119, e2210481119, https://doi.org/10.1073/pnas.2210481119, 2022. a
Winker, D. M., Vaughan, M. A., Omar, A., Hu, Y., Powell, K. A., Liu, Z., Hunt,
W. H., and Young, S. A.: Overview of the CALIPSO Mission and CALIOP
Data Processing Algorithms, J. Atmos. Ocean.
Tech., 26, 2310–2323, https://doi.org/10.1175/2009JTECHA1281.1, 2009. a, b
Winker, D. M., Tackett, J. L., Getzewich, B. J., Liu, Z., Vaughan, M. A., and Rogers, R. R.: The global 3-D distribution of tropospheric aerosols as characterized by CALIOP, Atmos. Chem. Phys., 13, 3345–3361, https://doi.org/10.5194/acp-13-3345-2013, 2013. a
Young, S. A., Vaughan, M. A., Kuehn, R. E., and Winker, D. M.: The Retrieval of
Profiles of Particulate Extinction from Cloud–Aerosol Lidar and Infrared
Pathfinder Satellite Observations (CALIPSO) Data: Uncertainty and Error
Sensitivity Analyses, J. Atmos. Ocean. Tech., 30, 395–428, https://doi.org/10.1175/JTECH-D-12-00046.1, 2013.
a
Zang, L., Rosenfeld, D., Mao, F., Pan, Z., Zhu, Y., Gong, W., and Wang, Z.:
CALIOP retrieval of droplet effective radius accounting for cloud vertical
homogeneity, Opt. Express, 29, 21921–21935, https://doi.org/10.1364/OE.427022,
2021. a
Zhang, R., Wang, Y., Li, Z., Wang, Z., Dickerson, R. R., Ren, X., He, H., Wang, F., Gao, Y., Chen, X., Xu, J., Cheng, Y., and Su, H.: Vertical profiles of cloud condensation nuclei number concentration and its empirical estimate from aerosol optical properties over the North China Plain, Atmos. Chem. Phys., 22, 14879–14891, https://doi.org/10.5194/acp-22-14879-2022, 2022. a
Zhang, Y., Zhao, C., Zhang, K., Ke, J., Che, H., Shen, X., Zheng, Z., and Liu,
D.: Retrieving the microphysical properties of opaque liquid water clouds
from CALIOP measurements, Opt. Express, 27, 34126–34140,
https://doi.org/10.1364/OE.27.034126, 2019. a
Zieger, P., Fierz-Schmidhauser, R., Weingartner, E., and Baltensperger, U.: Effects of relative humidity on aerosol light scattering: results from different European sites, Atmos. Chem. Phys., 13, 10609–10631, https://doi.org/10.5194/acp-13-10609-2013, 2013. a
Short summary
Aerosols in the atmosphere that can form liquid cloud droplets are called cloud condensation nuclei (CCN). Accurate measurements of CCN, especially CCN of anthropogenic origin, are necessary to quantify the effect of anthropogenic aerosols on the present-day as well as future climate. In this paper, we describe a novel global 3D CCN data set calculated from satellite measurements. We also discuss the potential applications of the data in the context of aerosol–cloud interactions.
Aerosols in the atmosphere that can form liquid cloud droplets are called cloud condensation...
Altmetrics
Final-revised paper
Preprint