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Abstract. We present a global multiyear height-resolved data set of aerosol-type-specific cloud condensation
nuclei concentrations (nCCN) estimated from the spaceborne lidar aboard the Cloud-Aerosol Lidar and Infrared
Pathfinder Satellite Observation (CALIPSO) satellite. For estimating nCCN, we apply the recently introduced Op-
tical Modelling of the CALIPSO Aerosol Microphysics (OMCAM) algorithm to the CALIPSO Level 2 Aerosol
Profile product. The estimated nCCN are then gridded into a uniform latitude–longitude grid of 2◦× 5◦, a verti-
cal grid of resolution 60 m from the surface to an altitude of 8 km, and a temporal resolution of 1 month. The
data span a total of 186 months, from June 2006 to December 2021. In addition, we provide a 3D aerosol-
type-specific climatology of nCCN produced using the complete time series. We further highlight some potential
applications of the data set in the context of aerosol–cloud interactions. The complete data set can be accessed
at https://doi.org/10.1594/PANGAEA.956215 (Choudhury and Tesche, 2023).

1 Introduction

Airborne aerosols can serve as cloud condensation nuclei
(CCN) to form liquid cloud droplets and influence the prop-
erties of clouds. For instance, an increase in the number of
aerosols that can act as CCN may result in more but smaller
cloud droplets at a constant cloud liquid water content. As a
result, the effective surface area of the cloud available to in-
teract with incoming solar radiation increases, enhancing the
cloud albedo and cooling the Earth (Twomey, 1974). Further-
more, it may take longer for these smaller droplets to grow
large enough to form precipitation, leading to an increase in
cloud lifetime and cloud cover and, thus, imposing an ad-
ditional cooling effect (Albrecht, 1989). Understanding and
quantifying such aerosol–cloud interactions (ACIs) is nec-
essary to predict and mitigate their potential impacts on the
Earth’s radiation budget (Forster et al., 2021).

Only a fraction of aerosols, depending primarily on their
size and, to a lesser extent, chemical composition, can act as
CCN (Dusek et al., 2006). This dependency is further regu-
lated by atmospheric water vapour supersaturation, which is
a function of meteorological parameters like updraught ve-

locity, humidity, temperature, and pressure (Seinfeld et al.,
2016). The supersaturation near the cloud base of bound-
ary layer clouds is usually about 0.15 %–0.20 %. Under such
conditions, continental and marine aerosols with a dry radius
greater than 50 nm (n50,dry) and dust aerosols with a dry ra-
dius greater than 100 nm (n100,dry) form the reservoir of most
favourable CCN (Mamouri and Ansmann, 2016; Choud-
hury and Tesche, 2022b). The concentration of such parti-
cles varies with geographical location and, as per the find-
ings from surface in situ measurements, can range from about
10 cm−3 under pristine conditions to as much as 105 cm−3

in polluted urban air masses (Schmale et al., 2018). Similar
orders of magnitude of variation in CCN concentrations are
also seen in the vertical dimension, with the highest concen-
trations close to the surface and only a few particles in the
upper troposphere (Brock et al., 2021; Zhang et al., 2022).
Given the wide range of CCN concentrations, global infor-
mation on the horizontal and vertical distribution of CCN is
necessary to accurately quantify the impact of ACIs on cli-
mate (Bellouin et al., 2020; Quaas et al., 2020).
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Today, there is a lack of observation-based global CCN
data. While climate model outputs can be used to study the
global distribution of CCN, they have been identified to un-
derestimate CCN at the surface by a normalized mean error
of about 40 % to 80 % depending on the geographical loca-
tion (Fanourgakis et al., 2019a). In situ measurements, de-
spite being performed continuously with a high temporal res-
olution, are localized to specific land sites and do not cover
oceans. Also, such measurements are usually limited to the
surface, as it is not feasible to operate airborne measurements
over longer periods. Here, satellite remote sensing, specifi-
cally based on spaceborne lidar, emerges as the best way to
obtain a height-resolved, long-term, and observation-based
global picture of atmospheric CCN concentrations.

The polar-orbiting Cloud-Aerosol Lidar and Infrared
Pathfinder Satellite Observation (CALIPSO) satellite in-
cludes the Cloud-Aerosol Lidar with Orthogonal Polariza-
tion (CALIOP) instrument, which provides height-resolved
information on aerosol optical properties for different aerosol
types (Winker et al., 2009). Choudhury and Tesche (2022a)
present an algorithm that uses the spaceborne lidar mea-
surements and the aerosol microphysics included in the
CALIPSO aerosol model (Omar et al., 2009) to estimate
height-resolved cloud-relevant aerosol number concentra-
tions (n50,dry and n100,dry) and CCN concentrations. The re-
sults are found to be consistent with in situ measurements
at various geographic locations over land and ocean cover-
ing different aerosol environments (Choudhury et al., 2022;
Choudhury and Tesche, 2022b; Aravindhavel et al., 2023).
This highlights the potential of CALIOP measurements with
respect to producing an unprecedented global CCN data set
from satellite observations.

In this paper, we present a global monthly 3D data set
of the number concentration of CCN (nCCN) for different
aerosol types that has been constructed by applying the
CCN retrieval algorithm of Choudhury and Tesche (2022a)
to more than 15 years (June 2006 to December 2021) of
CALIPSO Level 2 Aerosol Profile data. We also provide
seasonal and annual climatologies of nCCN estimated from
the monthly data. All data sets are produced at a uniform
latitude–longitude grid of 2◦× 5◦ resolution and a vertical
resolution of 60 m, consistent with the grid of the CALIPSO
Level 3 monthly product (Tackett et al., 2018). The data
records are given in Network Common Data Form (NetCDF)
format separately for each year and can be accessed at
https://doi.org/10.1594/PANGAEA.956215 (Choudhury and
Tesche, 2023). Details regarding the input data and algo-
rithm used to produce the CCN data set are discussed in
Sect. 2. Section 3 provides the description of the pre- and
post-processing steps involved in the production of the grid-
ded data and elaborates on the physical meaning and appli-
cation of all of the variables stored in the data. The estimated
seasonal and annual nCCN climatologies and a comparison
of the annual averaged nCCN with the global climate model
outputs from Fanourgakis et al. (2019a) for the year 2011 are

presented in Sect. 4. We conclude the paper with potential
applications of the global CCN data set in Sect. 6.

2 Data and CCN retrieval

2.1 CALIPSO aerosol profile product

The CALIPSO polar-orbiting satellite has been opera-
tional since June 2006. CALIOP, a nadir-viewing elastic-
backscatter lidar, is the principal payload on CALIPSO. It
measures vertical profiles of aerosol and cloud properties
at two wavelengths: 532 and 1064 nm. In this work, we
use aerosol optical properties at 532 nm from the CALIPSO
Level 2 version 4.20 (4.21 since July 2020) aerosol pro-
file product (NASA/LARC/SD/ASDC, 2018), such as the
aerosol extinction coefficient (α), backscatter coefficient (β),
and depolarization ratio (δ). All parameters are provided at
an along-track horizontal resolution of 5 km with a vertical
resolution of 60 m for tropospheric aerosols. We further use
the atmospheric volume description flag to access the infor-
mation on aerosol type, which contains seven categories: ma-
rine, desert dust, polluted continental, clean continental, ele-
vated smoke, polluted dust, and dusty marine. These aerosol
types are classified based on the type of underlying surface;
the aerosol optical properties, such as the column-integrated
attenuated backscatter coefficient and the initial estimated
particle depolarization ratio at 532 nm; and the height of the
retrieval (Kim et al., 2018). Additionally, quality control flags
are utilized to screen the data for the most reliable retrievals
(further details given in Sect. 3). We also use the auxiliary
profiles of ambient relative humidity (RH) and pressure in
the Level 2 data product. These are derived from the Global
Modelling and Assimilation Office (GMAO) Global Data
Assimilation System (GDAS; Molod et al., 2015). The Level
2 Aerosol Profile data considered in this study cover a total
of 186 months in the time period from June 2006 to Decem-
ber 2021 (data for February 2016 are not available). Note that
CALIPSO underwent an orbit adjustment in September 2018
to synchronize its path with that of the CloudSat satellite.
Although this orbital shift resulted in a slight variation in the
geographic region observed by CALIPSO, there are currently
no known issues associated with CALIPSO’s retrieval qual-
ity as a result of this transition.

2.2 Model data

We use the modelled nCCN from Fanourgakis et al. (2019a)
for comparison to CALIPSO estimates. The data are com-
prised of annual average surface nCCN at different su-
persaturations for the year 2011 with a latitude–longitude
resolution of 1◦× 1◦ and were obtained from the out-
put of 15 global models. Details on the model config-
urations and aerosol emission inventories used for mod-
elling nCCN are described comprehensively in Fanour-
gakis et al. (2019a). The data can be downloaded from
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https://doi.org/10.5281/zenodo.3265866 (Fanourgakis et al.,
2019b).

2.3 CCN retrieval algorithm

The CCN retrieval algorithm used in this work is based on the
Optical Modelling of the CALIPSO Aerosol Microphysics
(OMCAM) algorithm. The algorithm is described compre-
hensively in Choudhury and Tesche (2022a) and Choudhury
et al. (2022). In this section, we briefly review the main steps
involved in OMCAM.

The OMCAM algorithm first estimates the aerosol size
distribution by using (i) CALIPSO-derived aerosol-type-
specific extinction coefficients, (ii) their corresponding mi-
crophysical properties (normalized volume size distributions
and refractive indices), and (iii) an optical modelling package
called Modelled Optical Properties of enseMbles of Aerosol
Particles (MOPSMAP; Gasteiger and Wiegner, 2018) for
light-scattering calculations. The microphysical properties
of continental, dust, and smoke aerosols are taken from
CALIPSO’s aerosol model (Omar et al., 2009). For marine
aerosols, the microphysical properties are derived from Sayer
et al. (2012) because it yields aerosol number concentra-
tions that agree better with airborne in situ measurements
(Choudhury et al., 2022). OMCAM first selects a normal-
ized volume size distribution and refractive index based on
the aerosol type identified by CALIPSO. The algorithm then
scales the normalized size distribution linearly to reproduce
the CALIPSO-estimated extinction coefficient as follows:

dV (r)
d lnr

= SV ·

2∑
i=1

νi
√

2π lnσi
exp

(
−(lnr − lnµi)2

2lnσi2

)
, (1)

where

SV =
α

αn
.

Here, SV is called the volume scaling factor and is esti-
mated from the ratio of α, the CALIOP-derived extinction
coefficient, and αn, the extinction coefficient calculated from
the normalized size distribution and refractive index using
MOPSMAP. For modelling αn, we treat continental (clean
continental, polluted continental, and smoke) and marine
aerosols as spheres and use Mie scattering theory. We con-
sider desert dust aerosols as spheroids and use a combi-
nation of the T matrix and the improved geometric optics
method, depending on the value of the aerosol size parame-
ter, to model αn. The values of normalized size distribution
parameters, such as the standard deviation (σi), volume frac-
tion (νi), and mean radius (µi) of ith (fine and coarse) mode,
are listed in the Table A1. After the scaling step, the volume
size distribution is converted to a number size distribution,
which is then integrated starting at 50 nm to compute n50,dry
for continental and marine aerosols and at 100 nm to com-
pute n100,dry for desert dust aerosols. This is because aerosols

within these size ranges have been identified to act as CCN
for a supersaturation of 0.15 %–0.20 % in several studies us-
ing in situ measurements (Koehler et al., 2009; Rose et al.,
2010; Deng et al., 2011; Kumar et al., 2011; Mamouri and
Ansmann, 2016). In accordance with the Aerosol Robotic
Network (AERONET) size distributions, the upper radius
limit for integrating the size distributions is set at 15 µm. Fur-
ther, the CCN concentrations at higher supersaturation can be
estimated following the simple CCN parameterization given
by Mamouri and Ansmann (2016):

nCCN = fss · nj,dry, (2)

where j represents the lower radius limit of the size-
distribution integration and fss is the enhancement factor
with values equal to 1.0, 1.35, and 1.7 for supersaturations
of 0.15 %–0.20 %, 0.25 %, and 0.40 %, respectively. While
the simple parameterizations based on aerosol size and type
do not consider the aerosol chemistry stringently, they have
been shown to yield reasonable nCCN estimates, particularly
when applied to spaceborne lidar measurements (Choudhury
and Tesche, 2022a, b). Further information on the limitations
and known issues of the algorithm are discussed in Sect. 3.3.

3 Methodology

In this section, we discuss the complete methodology used
to apply the CCN retrieval algorithm to the CALIPSO pro-
file data to generate a global gridded monthly CCN data set.
It includes a number of preprocessing stages that are imple-
mented prior to applying the CCN retrieval algorithm, fol-
lowed by a set of post-processing steps to convert the nCCN
profiles to global gridded data.

3.1 Preprocessing

3.1.1 Quality screening

The CALIPSO Level 2 Aerosol Profile product includes a
number of quality control flags that are intended to filter out
unreliable retrievals that may result from clouds misclassi-
fied as aerosols and errors pertaining to the extinction co-
efficient retrieval (Tackett et al., 2018). The cloud–aerosol
discrimination (CAD) score specifies the confidence in the
classification of aerosol and cloud for each data bin (Liu
et al., 2009). We only select data which have a CAD score
in the range [−100, −20], as they correspond to a high con-
fidence in the aerosol classification (Liu et al., 2009). To
screen retrievals with extinction-coefficient-related retrieval
issues, we use the “extinction uncertainty” and the “extinc-
tion QC” (extQC) metrics. Data bins with an extinction un-
certainty of −99.99 km are not considered and nor are the
bins present below them, as the extinction retrieval uncer-
tainty may propagate to solutions at lower altitudes. The ex-
tQC flag describes how the extinction coefficient is generated
for each Level 2 sample. Following Tackett et al. (2018), we
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Table 1. Quality screening applied to the CALIPSO Level 2 Aerosol Profile product.

Quality flags Valid range or values Comments

Cloud aerosol discrimination flag = [−100,−20] Bins outside the bound have low confidence in aerosol classification
Extinction QC flag = 0, 1, 16, and 18 Low confidence in extinction retrievals for other values
Extinction uncertainty flag 6= −99.99 km−1 Range bins below the affected one are also rejected
Feature-type flag 1 reject if= 2 Reject a profile if it has at least one cloudy bin
Feature-type flag 2 reject if= 0 or >4 Reject any samples if invalid, surface, subsurface, or attenuated
Feature-type flag 3 if= 1, set α = 0 Extinction coefficient of clear air is assumed to be 0 km−1

Minimum laser energy filter reject if <0.08 Deteriorated data quality in the South Atlantic Anomaly region since mid-2017

only consider bins with extQC values of 0, 1, 16, and 18,
because they represent high confidence in the retrieved ex-
tinction coefficient. We also use the minimum laser energy
(MLE) parameter at 532 nm, which was recently introduced
in the version 4.20 update, to identify and screen columns
affected by low-laser-energy shots (MLE< 0.08) that result
in higher noise and degraded retrieval quality. Additionally,
we filter out the profiles or columns with cloudy pixels, as
clouds can impede aerosol retrievals underneath them due to
signal attenuation. All of the quality-screening criteria used
in this work are listed in Table 1. Readers are advised to refer
to Tackett et al. (2018) for further information on the produc-
tion and functions of the quality-screening flags.

3.1.2 Dust separation

Before applying the CCN retrieval algorithm to the quality-
screened Level 2 data, the extinction coefficients of dust mix-
tures (polluted dust and dusty marine) need to be separated
into dust and non-dust components. This is done by using the
particle depolarization ratio and first separating the backscat-
ter coefficient into dust and non-dust components following
the methodology described in Tesche et al. (2009). We as-
sume the aerosol mixture to be pure dust (non-dust) if the par-
ticle depolarization ratio is > 0.31 (< 0.05). The backscat-
ter coefficients of aerosol mixtures with a depolarization ra-
tio between 0.05 and 0.31 are separated using Eq. (14) of
Tesche et al. (2009). This is a rather straightforward tech-
nique that assumes aerosols to be externally mixed. It has
been implemented and tested in several studies based on
ground-based and spaceborne lidar retrievals (Mamouri and
Ansmann, 2015, 2016; Choudhury et al., 2022; Choudhury
and Tesche, 2022b). The extinction coefficients of dust and
non-dust aerosol components are then estimated by multiply-
ing the respective separated backscatter coefficients by the
lidar ratios corresponding to the aerosol type. Following this
methodology, the polluted dust aerosol mixture is separated
into polluted continental and desert dust components, and the
dusty marine aerosol mixture is separated into desert dust and
marine components. The lidar ratio for these aerosol types is
taken from Table 2 of Kim et al. (2018).

3.1.3 Hygroscopicity correction

Hydrophilic aerosols may grow in size under moist condi-
tions and, thus, may result in a higher extinction coefficient
relative to dry conditions, even if the aerosol number con-
centrations remains the same (Zieger et al., 2013). Further,
the normalized size distributions used in OMCAM have been
derived mostly under dry conditions (Omar et al., 2009),
and the CCN parameterization requires the dry-aerosol num-
ber concentration. Therefore, the extinction coefficient is
first corrected for aerosol hygroscopicity before applying the
OMCAM algorithm. This is done by using the aerosol-type-
specific growth factors (ratio of ambient and dry extinction
coefficients) given in Choudhury et al. (2022) at different
RH values. The growth factors for continental and marine
aerosols are estimated at different RH values using the κ pa-
rameterization (Petters and Kreidenweis, 2007), which ex-
presses the hygroscopic growth of an aerosol particle with a
dry radius rdry in terms of a hygroscopicity parameter κ as
follows:

rwet(RH)
rdry

= (1+ κ ·
RH

1−RH
)

1
3 . (3)

Here, rwet is the wet radius of a particle at a given relative
humidity (RH). The ratio between rwet and rdry is used to
modify the dry normalized size distributions of aerosols at
different RH values, followed by the computation of their re-
spective extinction coefficients using the MOPSMAP pack-
age. A globally averaged κ value of 0.3 is used for polluted
continental, clean continental, and smoke aerosols, whereas a
value of 0.7 is used for marine aerosols (Andreae and Rosen-
feld, 2008). We treat desert dust as non-hygroscopic and
do not modify the extinction coefficients for dust samples.
This approach has been shown to yield dry extinction co-
efficients and dry number concentrations that are consistent
with in situ measurements (Choudhury et al., 2022; Choud-
hury and Tesche, 2022a). Further details on the hygroscopic-
ity correction are given in Choudhury et al. (2022).

3.2 Post-processing

We use the quality-screened CALIPSO Level 2 data obtained
by following the steps outlined in Sect. 3.1.1 in the OMCAM
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algorithm to estimate nCCN profiles at a supersaturation of
0.20 %. We further limit the nCCN in the output data to a
supersaturation of 0.20 %, as it can be easily converted to
higher supersaturations by using the enhancement factors as
shown in Eq. (2). In this section, we discuss the spatial and
temporal grid configuration used to covert the nCCN profiles
to 3D gridded data. We further describe all of the parameters
stored in the output data files.

3.2.1 Gridding, sampling, and averaging

The CALIPSO Level 2 Aerosol Profile data have a very high
vertical resolution of 60 m and an along-swath resolution
of 5 km. However, because of the negligible divergence of
lasers, CALIPSO has a narrow cross-track coverage. Further,
the distance between two consecutive overpasses is inversely
proportional to the latitude because of CALIPSO’s polar or-
bit with an inclination of 98.36◦. Therefore, a grid box of
a certain dimension close to the Equator will include fewer
overpasses compared with one close to the poles. Due to this
factor and to produce a regionally representative global grid-
ded data with a sufficient aerosol sampling frequency in each
grid cell, we choose a monthly temporal resolution and a hor-
izontal grid resolution of 2◦× 5◦ to process the nCCN pro-
files. The vertical resolution is, however, kept unchanged at
60 m. We further consider both the daytime and night-time
CALIPSO overpasses to compute the average nCCN to in-
crease the sampling frequency. This grid configuration is also
used in monthly CALIPSO Level 3 products (Tackett et al.,
2018) and is suggested by Choudhury and Tesche (2022b) to
compile a global nCCN data set. Using this grid, we estimated
the number of days observed with valid nCCN (value≥ 0;
hereafter abbreviated as NDO) samples in each grid box for
each month and found them to be as high as 17 d in the trop-
ics and 31 d at the poles. Note that the NDO estimated here
is different from the “Days_Of_Month_Observed” parameter
in the CALIPSO Level 3 product, as the latter also considers
valid cloud retrievals.

We further produced a climatological nCCN data set us-
ing the same horizontal and vertical grid configuration. An
alternative approach would be to consider a higher horizon-
tal resolution of 1◦× 1◦, as used in Amiridis et al. (2015),
to construct a climatology of aerosol and cloud properties
using the CALIPSO Level 2 data. However, using such a
grid results in low aerosol sampling, especially in the trop-
ics. This is shown in Fig. 1 based on more than 15 years
of CALIPSO measurements. While the former gives a maxi-
mum of 2340 d observed in the tropics, the latter results in a
significantly lower maximum of 591 d. Therefore, we use the
coarser grid to produce the nCCN climatology that ensures the
ample aerosol sampling required for a realistic and regionally
representative data set.

For averaging the nCCN for each latitude, longitude, and
altitude grid cell, we follow the methodology used in Tack-
ett et al. (2018) for producing the CALIPSO Level 3 aerosol

products. We assign the clear-air Level 2 bins with an extinc-
tion coefficient of 0 km−1, which leads to an nCCN of 0 cm−3,
and compute the average nCCN (nCCN) for each grid cell as
follows:

nCCN =

∑Na
i=1nCCN,i

Na+Nca
. (4)

Here, Na is the number of Level 2 samples with an aerosol
extinction coefficient> 0 km−1 and Nca is the number of
clear-air samples. This averaging scheme is used to gener-
ate the global monthly gridded data set as well as the nCCN
climatology.

3.2.2 Output data records

Following the gridding and averaging scheme discussed in
the previous section, we produce the global nCCN data sets
at a monthly temporal resolution. Table 2 provides a list of
all of the parameters included in the output data and their
description. Along with the averaged nCCN, we further pro-
vide the total number of Level 2 samples with an aerosol
extinction coefficient≥ 0 km−1 (N =Na+Nca) and with an
extinction coefficient> 0 (Na). The nCCN, N , and Na are
also provided separately for each aerosol type. Note that
both N and Na may not be equal to the sum of the con-
tributions from all of the aerosol types, specifically when
aerosol mixtures are present. They are useful in computing
annual and seasonal averages of nCCN using Eq. (4). We
further provide the NDO for each month and suggest us-
ing the data only when NDO> 10 (coverage of a minimum
of 30 % of days a month). Average pressure and tempera-
ture are also provided for each latitude, longitude, and alti-
tude grid cell. The pressure values can be used to convert
the data from height coordinates to pressure coordinates. As
the retrievals over an altitude of 8 km constitute about 0.7 %
of the total tropospheric CCN, all parameters are limited to
a maximum altitude of 8 km in order to reduce the over-
all data size. For ease of accessibility across different plat-
forms, we provide the data in Network Common Data Form
(NetCDF) format with a medium level of data compression
(deflate level of 5). These NetCDF files are accessible at
https://doi.org/10.1594/PANGAEA.956215 (Choudhury and
Tesche, 2023) and are tested to work with tools and soft-
ware like Climate Data Operators (CDO), netCDF Operators
(NCO), and ncdump. The netCDF files with monthly gridded
data are provided separately for each year from 2006 to 2021.
The nCCN climatology is provided in a separate netCDF file,
with a data structure and nomenclature similar to the monthly
data. The file also includes nCCN climatologies for the boreal
winter (December, January, and February), spring (March,
April, and May), summer (June, July, and August), and au-
tumn (September, October, and November) seasons.
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Figure 1. Global map of the number of days with valid CCN observations (nCCN ≥ 0 cm−3) for horizontal grid configurations of 2◦× 5◦

(a) and 1◦× 1◦ (b) produced from more than 15 years of CALIOP measurements.

Table 2. Description of the NetCDF data records.

Parameter Unit Description

lon ◦ E Longitude midpoint

lat ◦ N Latitude midpoint

altitude km Altitude midpoint above mean sea level

Monthly files

time days Days since 1 January 2000

CCN cm−3 Cloud condensation nuclei (CCN) concentration at 0.20 % supersaturation

CCN_std cm−3 Standard deviation of CCN

CCN_j
cm−3 Type-specific CCN: m – marine, d – dust, pc – polluted continental,

j =m, d , pc, cc, es cc – clean continental, and es – elevated smoke

CCN_j_std cm−3 Standard deviation of CCN_j

N unitless Level 2 bin counts with an aerosol extinction coefficient ≥ 0

N_j unitless N for different aerosol types

Na unitless Level 2 bin counts with an aerosol extinction coefficient >0

Na_j unitless Na for different aerosol types

P hPa or mbar Pressure

T ◦C Temperature

DMO unitless Number of days observed in a month with N>0

Climatology file

CCN_cl cm−3 Climatology of CCN

CCN_cl_j cm−3 Type-specific CCN climatology

CCN_cl_sn cm−3 Seasonal climatology of CCN

CCN_cl_sn_j cm−3 Type-specific seasonal CCN climatology

NDO unitless Number of days observed with N>0
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3.3 Uncertainty, known issues, and validation

The uncertainty in the estimated nCCN can arise from the un-
certainties in the input parameters, such as the aerosol ex-
tinction coefficient, type-specific normalized size distribu-
tion, and the ambient RH, as well as from the dust-separation
technique and the CCN parameterizations used in the algo-
rithm. Choudhury and Tesche (2022a) studied the sensitivity
of the cloud-relevant aerosol number concentrations (nj,dry)
to the variations in the size distributions for each aerosol type
at different RH values. They reported a variation of a factor
of 1–1.5 depending on the aerosol type. Combining this with
the uncertainties associated with other previously mentioned
sources, the overall uncertainty associated with the output
nCCN is found to be between a factor of 2 and 3. Such a range
is reasonable for the spaceborne retrieval of nCCN (Shinozuka
et al., 2015; Mamouri and Ansmann, 2016), as atmospheric
CCN concentrations can potentially vary by orders of mag-
nitude in space and time (Schmale et al., 2018).

There are some known issues associated with CALIOP’s
retrieval algorithm and the CCN parameterizations used to
produce the global data set. First, faint aerosol layers with an
extinction coefficient< 0.001 km−1 (optical depth< 0.01)
may not exceed the signal-to-noise ratio required to be de-
tected by CALIOP (Tackett et al., 2018; Mao et al., 2022).
The background noise due to solar radiation further impacts
the feature detection, especially for the daytime retrievals
(Winker et al., 2009, 2013). Such layers may therefore be
classified as clear air by CALIOP’s feature classification al-
gorithm and assigned with a zero extinction coefficient. This
may result in an underestimation of the average extinction
and, thus, the nCCN, particularly in grid cells comprising a
clean environment (rural continental sites and higher alti-
tudes). Second, the simple aerosol-type-specific parameter-
izations implemented in this study assume that all particles
over a certain minimum radius are CCN active. This may
lead to an overestimation of nCCN that may also compensate
for the underestimation due to the undetected aerosol layers.
Third, CALIOP cannot distinguish between polluted conti-
nental and smoke aerosol layers that occur below a layer-
top height of 2.5 km (Kim et al., 2018). Therefore, isolated
smoke layers that do not extend above a height of 2.5 km
may get classified as polluted continental aerosols, leading
to an overestimation of nCCN by about 13.6 %. As a result,
we anticipate that the CCN retrieval algorithm will overesti-
mate the CCN in areas often influenced by smoke aerosols
below 2.5 km. Additionally, strong signal attenuation caused
by optically thick aerosol layers located above may lead to
increased uncertainties in the retrievals of layers below. Nev-
ertheless, it is anticipated that these retrievals will be filtered
out during the quality-screening process.

As mentioned earlier in Sect. 3.2.1, we combine daytime
and night-time CCN retrievals to achieve an optimal sam-
pling frequency. The daytime retrievals usually have a lower
signal-to-noise ratio compared with night-time retrievals,

which may result in higher retrieval uncertainty (Young et al.,
2013; Tackett et al., 2018). By comparing the daytime and
night-time CCN climatology (refer to Fig. S1 in the Sup-
plement), we observe higher values over continents in the
former. This observation is expected because anthropogenic
emissions are more prominent during the day. The values
over oceans are comparable in both cases. However, it is im-
portant to note that this concurrence may be attributed to
long-term averaging used in computing the climatologies.
Therefore, a more detailed comparison is required at vari-
ous temporal scales (instantaneous, monthly, seasonal, and
annual) to accurately quantify the effect of merging daytime
and night-time retrievals. Such an investigation is beyond the
scope of the present study and will be a subject of future
analysis.

The nCCN values estimated using the OMCAM algorithm
have been validated using independent ground-based and
airborne in situ measurements for different aerosol envi-
ronments (Choudhury et al., 2022; Choudhury and Tesche,
2022b; Aravindhavel et al., 2023). Even though the uncer-
tainty associated with the CCN retrieval from CALIOP can
be as high as a factor of 3, the validation results indicate
a very good agreement with in situ measurements, with a
normalized mean bias of ≈ 22 % and a correlation coeffi-
cient of ≈ 0.7. Such consensus has not yet been achieved for
spaceborne estimations of aerosol and CCN number concen-
trations, accentuating the potential of the spaceborne-lidar-
derived global nCCN data set.

4 Results

4.1 Comparison with global model outputs

A comparison of the CALIOP-estimated average global
nCCN with the model outputs for the year 2011 is shown
in Fig. 2. Excluding the data within the Antarctic Circle
(latitudes<−66.5◦ N), CALIOP-estimated CCN concentra-
tions are, on average, larger than the models, with a nor-
malized difference (100× (MODEL−CALIOP)/CALIOP)
of −65.6 %, 89.4 %, and 4.5 % for the median, minimum,
and maximum of all of the models, respectively. The larger
values are expected, as the models have been identified to
underestimate the nCCN when compared with in situ mea-
surements at continental surface stations with a mean error
of 60 % (Fanourgakis et al., 2019a). The best agreement with
CALIOP is found for the maximum of all of the models, par-
ticularly in the Northern Hemisphere. For retrievals over the
Southern Ocean with latitudes < 45◦ S, the modelled nCCN
are significantly lower than that of CALIOP with a maximum
of 171.9 cm−3. Recent in situ measurements show that the
nCCN in such regions can even exceed 500 cm−3 (Humphries
et al., 2021), which is not observed in the model outputs, al-
though it is well captured by CALIOP. This highlights the
potential of the CALIOP-derived global nCCN data set to val-
idate model outputs at locations where in situ observations
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are sparse or even non-existent. Please note that the com-
parison presented here is intended to highlight the data set’s
unique potential for application and that validation studies
have already been published (Choudhury et al., 2022; Choud-
hury and Tesche, 2022b; Fanourgakis et al., 2019a). Readers
are encouraged to use the full potential of the open-source
data set to conduct further comprehensive model evaluation
studies.

4.2 CCN climatology

Figure 3 shows the global nCCN climatology computed
from the monthly data set averaged for altitudes be-
low 2 km using Eq. (4) and the corresponding averaged
nCCN profile. The global average nCCN is estimated to
be 365.12±649.92 cm−3, with 683.25±1172.95 cm−3 over
land and 303.2± 382.33 cm−3 over ocean. The highest con-
centrations are found over regions influenced by pollu-
tion and dust aerosols, such as South and East Asia. Pol-
luted continental aerosols with an average nCCN of 124.3±
459 cm−3 have the maximum contribution to the total CCN
below 2 km, followed by marine (110.8± 175.12 cm−3),
dust (108.9± 256.39 cm−3), and elevated smoke (21±
74.61 cm−3) aerosols. Clean continental aerosols with a
global average of 0.12± 0.34 cm−3 contribute the least
to the total CCN (not shown). Over land, the average
CCN value is estimated to be 683.25± 1172.95 cm−3, with
maximum contributions coming from polluted continen-
tal (419.4± 900.9 cm−3), dust (203.67± 435.45 cm−3), and
smoke (43.6± 117.93 cm−3) aerosols. The concentrations
over oceans are less than half of those over land with
an average of 303.2± 382.33 cm−3, with marine (181.93±
221.2 cm−3), dust (84.68± 206.8 cm−3), and polluted conti-
nental (27.33± 114.17 cm−3) aerosols being the major con-
tributors. Although pollution aerosols contribute the most to
the total CCN, it is evident that dust has the most widespread
coverage, encompassing nearly the entire globe, indicating
its significance in ACIs, even in pristine aerosol environ-
ments far away from the continents.

When considering the vertical distribution of nCCN, the
highest values are observed near the surface, and these values
decrease exponentially as the altitude increases. The major-
ity of marine CCN (97 %) and continental CCN (78 %) are
predominantly located at altitudes below 2 km. On the other
hand, smoke and dust CCN extend into the free troposphere,
with approximately 60 % and 33 % located above 2 km alti-
tude, respectively. Interestingly, smoke CCN exhibit an op-
posite trend, with concentrations increasing with height and
reaching a maximum between 2 and 3 km before decreasing
at higher altitudes. Land-based aerosols make up the major-
ity of free-tropospheric CCN, with 68 % located above 2 km,
compared with 32 % for aerosols over oceans. They exhibit
a relatively higher contribution to the global CCN across all
altitude levels. It is important to note that this variation may
not be observed in localized regions over oceans that are

more frequently affected by dust and smoke transported from
nearby continents, for instance, the west of Africa.

4.2.1 Seasonal climatology

Figure 4 illustrates the global map presenting the sea-
sonal climatologies of total nCCN for altitudes below
2 km, along with the corresponding profiles of spatially
averaged type-specific nCCN. The global average nCCN
reaches its maximum during winter with a value of
376± 800.91 cm−3. Similar to the global climatology in
Fig. 4, the average winter nCCN is significantly higher over
land (725.53± 1499.36 cm−3) compared with over ocean
(321.61± 427.20 cm−3). Strong seasonality in nCCN is ob-
served in regions influenced by Northern Hemisphere sum-
mer monsoon, such as Asia and West Africa, with minimum
values occurring during the summer. This pattern is likely
attributed to the wet scavenging of aerosol particles associ-
ated with cloud droplet formation and precipitation during
the monsoon season. The seasonality of nCCN is also evi-
dent in regions like East and Central Africa, possibly result-
ing from changes in local biomass burning patterns (Myhre
et al., 2003; van der Werf et al., 2017) that peak during the
dry summer (Southern Hemisphere winter) season.

Furthermore, seasonality in the nCCN profiles is observed
for all of the aerosol types, except for marine aerosols. Dur-
ing boreal winter, CCN concentrations are predominantly
limited to altitudes below 2–3 km (84 %–94 %), with the
highest near-surface concentrations compared with other sea-
sons. The vertical distribution of CCN for all of the aerosol
types gradually expands to higher altitudes with the transi-
tion to warmer spring and summer seasons. Although near-
surface nCCN are at their lowest during summer, they con-
tribute the most to the free-tropospheric CCN, accounting for
35 % of CCN at altitudes higher than 2 km. This is followed
by spring (29 %), autumn (24 %), and winter (16 %), high-
lighting the substantial impact of the boundary layer depth
on modulating the vertical extent of CCN throughout all sea-
sons.

It is worthwhile noting that, in Figs. 3 and 4, we have lim-
ited our focus to the spatial variations in low-level aerosols
(altitude< 2 km) and have only presented the profiles of spa-
tially averaged nCCN. The climatology data include informa-
tion up to an altitude of 8 km for various aerosol types, which
offers a unique opportunity to investigate the altitudinal vari-
ations in type-specific nCCN across different seasons and re-
gions throughout the globe. Such studies, however, are out-
side the scope of this paper, which is aimed at introducing a
new global CCN data set, and will be the focus of a future
publication.

5 Code and data availability

The CALIPSO Level 2 Aerosol Profile product can
be downloaded from https://doi.org/10.5067/CALIOP/
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Figure 2. Comparison of global nCCN maps at a supersaturation of 0.20 % estimated from CALIOP between altitudes of 500 m and 1 km
(a) and from the outputs of 15 global models at the surface (b–d) for the year 2011. Panels (b), (c), and (d) represent the median, maximum,
and minimum modelled nCCN, respectively.

Figure 3. Global climatology of nCCN at a supersaturation of 0.20 % estimated from the monthly CCN data set averaged for altitudes below
2 km for all aerosol types (a), and the results separated according to mineral dust (b), polluted continental (c), marine (d), and elevated smoke
(e) aerosol types, respectively. The sub-panels adjacent to each panel depict the vertical variation in nCCN averaged over the globe (solid
black line), land (dashed red line), and ocean (dashed blue line). The semitransparent grey patch represents half of the standard deviation in
globally averaged nCCN.
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Figure 4. Seasonal climatology of nCCN at a supersaturation of 0.20 % and at altitudes below 2 km for winter (a), spring (b), summer (c),
and autumn (d). The vertical variation in seasonal nCCN is depicted in the adjacent sub-panels for dust (orange line), polluted continental
(green line), marine (blue line), and smoke (black line) aerosol types. The magenta profile in the sub-panels represent the total nCCN, and
the semitransparent patch highlights the associated standard deviation scaled to half of its original value for better visualization.

(NASA/LARC/SD/ASDC, 2018). The data produced
in this work are available at https://doi.org/10.1594/
PANGAEA.956215 (Choudhury and Tesche, 2023).
The model data used for comparison can be found at
https://doi.org/10.5281/zenodo.3265866 (Fanourgakis et al.,
2019b). The codes used to generate the data were written
in MATLAB and can be provided by the corresponding
author upon reasonable request. The MATLAB script used
to generate the plots shown in the paper is provided in the
Supplement.

6 Conclusion and usage notes

We present a first aerosol-type-specific global CCN data set
derived from spaceborne lidar measurements at a horizon-
tal latitude–longitude resolution of 2◦× 5◦, a vertical reso-
lution of 60 m, and a temporal resolution of 1 month. The
data set spans more than 15 years, from June 2006 to De-
cember 2021, or a total of 186 months. We further use the
complete time series to construct a global nCCN climatol-
ogy for different aerosol types. The climatologies are also
reported at a seasonal timescale. These data sets are aimed at
replacing the currently used satellite-derived optical proxies
for CCN. Readers are encouraged to utilize the full potential
of the global data set for the following purposes:

– The data can be used to investigate the horizontal and
vertical distributions of CCN for various aerosol types
as well as to study their trends and variations across
monthly, seasonal, and annual timescales. In Sect. 4.2
of this paper, we briefly discuss the spatial distribution

of nCCN for different aerosol types for altitudes lim-
ited below 2 km, where we find the global average nCCN
to be 365.12 cm−3 and identify various CCN hotspots.
This approach can be expanded to include the varia-
tions along the height and time dimensions. In addi-
tion, the type-specific CCN concentrations can be used
to identify the sources and sinks of CCN as well as to
investigate the contributions of the long-range transport
of aerosols with a high residence time (e.g. dust and
smoke) to CCN in the atmosphere.

– Recent studies have demonstrated that spaceborne
aerosol, cloud, and radiation measurements at a monthly
temporal resolution can be used to estimate the radiative
forcing associated with ACIs (Wall et al., 2022; Chen
et al., 2022). The monthly data presented in this pa-
per can be similarly coupled with cloud and radiation
measurements to quantify ACIs. Studies have demon-
strated the effectiveness of CALIOP in even retrieving
height-resolved cloud microphysical properties (Zhang
et al., 2019; Zang et al., 2021), which can be directly
coupled with corresponding CCN estimates to inves-
tigate ACIs. Furthermore, the type-specific CCN data
can be used to accurately quantify the anthropogenic
component of present-day CCN (sum of polluted con-
tinental and smoke components), which has previously
been estimated from model simulations of past climate
(Bellouin et al., 2020; Quaas et al., 2020). This creates
a unique opportunity to quantify ACIs by solely using
satellite observations independent of model simulations.
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– Due to the lack of any observation-based global CCN
data, model evaluation studies usually rely on in situ
measurements, which are only available for a limited
time period at certain point locations. Further, the obser-
vations over oceans and the height-resolved measure-
ments restricting the model evaluation to specific land
sites are sparse. However, validating global model out-
puts with respect to estimating height-resolved CCN
concentrations over both land and ocean is necessary, as
they form the key components of ACIs and, thus, the fu-
ture climate predictions. With the height-resolved CCN
data available for more than 15 years, a comprehensive
model evaluation can be performed at different height
levels, even for regions over oceans far from continents.
In Sect. 4.1 of the paper, we compare the annual average
nCCN estimated from the monthly data with the simula-
tions from 15 global climate models at the surface for
the year 2011, highlighting the data’s usefulness with
respect to assessing model outputs. This idea can be
further expanded to other models by incorporating the
temporal and altitudinal distribution of CCN for differ-
ent aerosol types encompassing a longer time span.

The above list is by no means exhaustive. Users can also
use this data set and check for closure with other space-
borne retrievals of cloud-relevant CCN or aerosol number
concentrations. For instance, comparisons can be made with
(i) column-integrated aerosol number concentrations derived
from polarimetric observations (Hasekamp et al., 2019), (ii)
aerosol number and CCN concentrations estimated from
spaceborne lidar using AERONET-derived extinction-to-
number concentration conversions (Mamouri and Ansmann,
2016), (iii) CCN at cloud base derived from passive space-
borne sensors by treating clouds as CCN chambers (Rosen-
feld et al., 2016), or with any future algorithms or data.

Appendix A

Table A1. Lognormal, bimodal volume size distribution parameters
of different aerosol types. ν, µ, and σ represent the volume fraction,
mode radius, and standard deviation, respectively. The subscripts
“f” and “c” represent the fine and coarse modes of the size distribu-
tion, respectively.

Aerosol type Size distribution parameters

νf νc µf µc σf σc

Marine 0.14 0.86 0.1137 1.8756 1.6487 2.0544
Dust 0.223 0.777 0.1165 2.8329 1.4813 1.9078
Polluted continental 0.531 0.469 0.1577 3.547 1.5257 2.065
Clean continental 0.050 0.950 0.20556 2.6334 1.61 1.8987
Smoke 0.329 0.671 0.1436 3.726 1.5624 2.1426

Supplement. The supplement related to this article is available
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