Articles | Volume 15, issue 1
https://doi.org/10.5194/essd-15-331-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/essd-15-331-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
A long-term 1 km monthly near-surface air temperature dataset over the Tibetan glaciers by fusion of station and satellite observations
Jun Qin
CORRESPONDING AUTHOR
State Key Laboratory of Resources and Environmental Information
System, Institute of Geographic Sciences and Natural Resources Research,
Chinese Academy of Sciences, Beijing 100101, China
Weihao Pan
College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
Key Laboratory of Tibetan Environmental Changes and Land Surfaces
Processes, Institute of Tibetan Plateau Research, Chinese Academy of
Sciences, Beijing 100101, China
State Key Laboratory of Resources and Environmental Information
System, Institute of Geographic Sciences and Natural Resources Research,
Chinese Academy of Sciences, Beijing 100101, China
College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
State Key Laboratory of Resources and Environmental Information
System, Institute of Geographic Sciences and Natural Resources Research,
Chinese Academy of Sciences, Beijing 100101, China
State Key Laboratory of Resources and Environmental Information
System, Institute of Geographic Sciences and Natural Resources Research,
Chinese Academy of Sciences, Beijing 100101, China
State Key Laboratory of Resources and Environmental Information
System, Institute of Geographic Sciences and Natural Resources Research,
Chinese Academy of Sciences, Beijing 100101, China
Chenghu Zhou
State Key Laboratory of Resources and Environmental Information
System, Institute of Geographic Sciences and Natural Resources Research,
Chinese Academy of Sciences, Beijing 100101, China
Related authors
Wenjun Tang, Jun Qin, Kun Yang, Yaozhi Jiang, and Weihao Pan
Earth Syst. Sci. Data, 14, 2007–2019, https://doi.org/10.5194/essd-14-2007-2022, https://doi.org/10.5194/essd-14-2007-2022, 2022
Short summary
Short summary
Photosynthetically active radiation (PAR) is a fundamental physiological variable for research in the ecological, agricultural, and global change fields. In this study, we produced a 35-year high-resolution global gridded PAR dataset. Compared with the well-known global satellite-based PAR product of the Earth's Radiant Energy System (CERES), our PAR product was found to be a more accurate dataset with higher resolution.
Xin Yang, Sijin Li, Junfei Ma, Yang Chen, Xingyu Zhou, Fayuan Li, Liyang Xiong, Chenghu Zhou, Guoan Tang, and Michael E. Meadows
Earth Syst. Sci. Data, 17, 4331–4350, https://doi.org/10.5194/essd-17-4331-2025, https://doi.org/10.5194/essd-17-4331-2025, 2025
Short summary
Short summary
Surveys of global relief classes are important for understanding the morphology and land processes of Earth's surface. This study proposes a novel framework integrating the accumulated slope and a new surface relief index for global relief classification (GRC) with 1 arcsec resolution. This dataset can provide abundant and detailed land surface information for the field of Earth sciences.
Lei Zhang, Lin Yang, Thomas W. Crowther, Constantin M. Zohner, Sebastian Doetterl, Gerard B. M. Heuvelink, Alexandre M. J.-C. Wadoux, A.-Xing Zhu, Yue Pu, Feixue Shen, Haozhi Ma, Yibiao Zou, and Chenghu Zhou
Earth Syst. Sci. Data, 17, 2605–2623, https://doi.org/10.5194/essd-17-2605-2025, https://doi.org/10.5194/essd-17-2605-2025, 2025
Short summary
Short summary
Current understandings of depth-dependent variations and controls of soil organic carbon turnover time (τ) at global, biome, and local scales remain incomplete. We used the state-of-the-art soil and root profile databases and satellite observations to generate new spatially explicit global maps of topsoil and subsoil τ, with quantified uncertainties for better user applications. The new insights from the resulting maps will facilitate efforts to model the carbon cycle and will support effective carbon management.
Wenjun Tang, Jun Qin, Kun Yang, Yaozhi Jiang, and Weihao Pan
Earth Syst. Sci. Data, 14, 2007–2019, https://doi.org/10.5194/essd-14-2007-2022, https://doi.org/10.5194/essd-14-2007-2022, 2022
Short summary
Short summary
Photosynthetically active radiation (PAR) is a fundamental physiological variable for research in the ecological, agricultural, and global change fields. In this study, we produced a 35-year high-resolution global gridded PAR dataset. Compared with the well-known global satellite-based PAR product of the Earth's Radiant Energy System (CERES), our PAR product was found to be a more accurate dataset with higher resolution.
Hou Jiang, Ling Yao, Ning Lu, Jun Qin, Tang Liu, Yujun Liu, and Chenghu Zhou
Earth Syst. Sci. Data, 13, 5389–5401, https://doi.org/10.5194/essd-13-5389-2021, https://doi.org/10.5194/essd-13-5389-2021, 2021
Short summary
Short summary
A multi-resolution (0.8, 0.3, and 0.1 m) photovoltaic (PV) dataset is established using satellite and aerial images. The dataset contains 3716 samples of PVs installed on various land and rooftop types. The dataset can support multi-scale PV segmentation (e.g., concentrated PVs, distributed ground PVs, and fine-grained rooftop PVs) and cross applications between different resolutions (e.g., from satellite to aerial samples and vice versa), as well as other research related to PVs.
Chongyang Wang, Li Wang, Danni Wang, Dan Li, Chenghu Zhou, Hao Jiang, Qiong Zheng, Shuisen Chen, Kai Jia, Yangxiaoyue Liu, Ji Yang, Xia Zhou, and Yong Li
Geosci. Model Dev., 14, 6833–6846, https://doi.org/10.5194/gmd-14-6833-2021, https://doi.org/10.5194/gmd-14-6833-2021, 2021
Short summary
Short summary
The turbidity maximum zone (TMZ) is a special phenomenon in estuaries worldwide. However, the extraction methods and criteria used to describe the TMZ vary significantly both spatially and temporally. This study proposes an new index, the turbidity maximum zone index, based on the corresponding relationship of total suspended solid concentration and Chl a concentration, which could better extract TMZs in different estuaries and on different dates.
Cited articles
Belgiu, M. and Dragut, L.: Random Forest in remote sensing: A review of
applications and future directions, Isprs J. Photogramm., 114, 24-31, https://doi.org/10.1016/j.isprsjprs.2016.01.011, 2016.
Benali, A., Carvalho, A. C., Nunes, J. P., Carvalhais, N., and Santos, A.:
Estimating air surface temperature in Portugal using MODIS LST data, Remote
Sens. Environ., 124, 108–121, https://doi.org/10.1016/j.rse.2012.04.024, 2012.
Bhattacharya, A., Bolch, T., Mukherjee, K., King, O., Menounos, B., Kapitsa,
V., Neckel, N., Yang, W., and Yao, T.: High Mountain Asian glacier response
to climate revealed by multi-temporal satellite observations since the
1960s, Nat. Commun., 12, 4133, https://doi.org/10.1038/s41467-021-24180-y, 2021.
Box, J. E., Colgan, W. T., Christensen, T. R., Schmidt, N. M., Lund, M.,
Parmentier, F.-J. W., Brown, R., Bhatt, U. S., Euskirchen, E. S.,
Romanovsky, V. E., Walsh, J. E., Overland, J. E., Wang, M., Corell, R. W.,
Meier, W. N., Wouters, B., Mernild, S., Mård, J., Pawlak, J., and Olsen,
M. S.: Key indicators of Arctic climate change: 1971–2017, Environ.
Res. Lett., 14, 045010, https://doi.org/10.1088/1748-9326/aafc1b, 2019.
Brun, F., Berthier, E., Wagnon, P., Kaab, A., and Treichler, D.: A spatially
resolved estimate of High Mountain Asia glacier mass balances from 2000 to
2016, Nat. Geosci., 10, 668, https://doi.org/10.1038/ngeo2999, 2017.
Cao, L., Zhu, Y., Tang, G., Yuan, F., and Yan, Z.: Climatic warming in China
according to a homogenized data set from 2419 stations, Int.
J. Climatol., 36, 4384–4392, 2016.
Chen, Y., Liang, S., Ma, H., Li, B., He, T., and Wang, Q.: An all-sky 1 km daily land surface air temperature product over mainland China for 2003–2019 from MODIS and ancillary data, Earth Syst. Sci. Data, 13, 4241–4261, https://doi.org/10.5194/essd-13-4241-2021, 2021.
Farinotti, D., Immerzeel, W. W., de Kok, R. J., Quincey, D. J., and Dehecq,
A.: Manifestations and mechanisms of the Karakoram glacier Anomaly, Nat.
Geosci., 13, 8–16, https://doi.org/10.1038/s41561-019-0513-5, 2020.
Guo, D. L., Sun, J. Q., Yang, K., Pepin, N., and Xu, Y. M.: Revisiting
Recent Elevation-Dependent Warming on the Tibetan Plateau Using
Satellite-Based Data Sets, J. Geophys. Res.-Atmos., 124,
8511–8521, 2019.
Harris, I., Jones, P. D., Osborn, T. J., and Lister, D. H. J.: Updated
high-resolution grids of monthly climatic observations–the CRU TS3. 10
Dataset, Int. J. Climatol., 34, 623–642, 2014.
Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A.,
Muñoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., and Schepers, D.
J.: The ERA5 global reanalysis, Q. J. Roy.
Meteor. Soc., 146, 1999–2049, 2020.
Hock, R., Bliss, A., Marzeion, B., Giesen, R. H., Hirabayashi, Y., Huss, M.,
Radić, V., and Slangen, A. B.: GlacierMIP–A model intercomparison of
global-scale glacier mass-balance models and projections, J. Glaciol., 65, 453–467, 2019.
Hooker, J., Duveiller, G., and Cescatti, A.: A global dataset of air
temperature derived from satellite remote sensing and weather stations,
Sci. Data, 5, 180246, https://doi.org/10.1038/sdata.2018.246, 2018.
Huang, M., Piao, S., Ciais, P., Peñuelas, J., Wang, X., Keenan, T. F.,
Peng, S., Berry, J. A., Wang, K., Mao, J., Alkama, R., Cescatti, A., Cuntz,
M., De Deurwaerder, H., Gao, M., He, Y., Liu, Y., Luo, Y., Myneni, R. B.,
Niu, S., Shi, X., Yuan, W., Verbeeck, H., Wang, T., Wu, J., and Janssens, I.
A.: Air temperature optima of vegetation productivity across global biomes,
Nat. Ecol. Evol., 3, 772–779, https://doi.org/10.1038/s41559-019-0838-x, 2019.
Immerzeel, W. W., Lutz, A. F., Andrade, M., Bahl, A., Biemans, H., Bolch,
T., Hyde, S., Brumby, S., Davies, B. J., Elmore, A. C., Emmer, A., Feng, M.,
Fernandez, A., Haritashya, U., Kargel, J. S., Koppes, M., Kraaijenbrink, P.
D. A., Kulkarni, A. V., Mayewski, P. A., Nepal, S., Pacheco, P., Painter, T.
H., Pellicciotti, F., Rajaram, H., Rupper, S., Sinisalo, A., Shrestha, A.
B., Viviroli, D., Wada, Y., Xiao, C., Yao, T., and Baillie, J. E. M.:
Importance and vulnerability of the world's water towers, Nature, 577,
364–369, 2020.
Kang, S., Zhang, Q., Zhang, Y., Guo, W., Ji, Z., Shen, M., Wang, S., Wang,
X., Tripathee, L., Liu, Y., Gao, T., Xu, G., Gao, Y., Kaspari, S., Luo, X.,
and Mayewski, P.: Warming and thawing in the Mt. Everest region: A review of
climate and environmental changes, Earth-Sci. Rev., 225, 103911,
https://doi.org/10.1016/j.earscirev.2021.103911, 2022.
Kraaijenbrink, P. D. A., Bierkens, M. F. P., Lutz, A. F., and Immerzeel, W.
W.: Impact of a global temperature rise of 1.5 degrees Celsius on Asia's
glaciers, Nature, 549, 257, https://doi.org/10.1038/nature23878, 2017.
Lalande, M., Ménégoz, M., Krinner, G., Naegeli, K., and Wunderle, S.: Climate change in the High Mountain Asia in CMIP6, Earth Syst. Dynam., 12, 1061–1098, https://doi.org/10.5194/esd-12-1061-2021, 2021.
Li, X. P., Wang, L., Chen, D. L., Yang, K., Xue, B. L., and Sun, L. T.:
Near-surface air temperature lapse rates in the mainland China during
1962–2011, J. Geophys. Res.-Atmos., 118, 7505–7515,
https://doi.org/10.1002/jgrd.50553, 2013.
Miles, E., McCarthy, M., Dehecq, A., Kneib, M., Fugger, S., and
Pellicciotti, F.: Health and sustainability of glaciers in High Mountain
Asia, Nat. Commun., 12, 2868, https://doi.org/10.1038/s41467-021-23073-4, 2021.
Muñoz-Sabater, J., Dutra, E., Agustí-Panareda, A., Albergel, C., Arduini, G., Balsamo, G., Boussetta, S., Choulga, M., Harrigan, S., Hersbach, H., Martens, B., Miralles, D. G., Piles, M., Rodríguez-Fernández, N. J., Zsoter, E., Buontempo, C., and Thépaut, J.-N.: ERA5-Land: a state-of-the-art global reanalysis dataset for land applications, Earth Syst. Sci. Data, 13, 4349–4383, https://doi.org/10.5194/essd-13-4349-2021, 2021.
Nie, Y., Pritchard, H. D., Liu, Q., Hennig, T., Wang, W., Wang, X., Liu, S.,
Nepal, S., Samyn, D., Hewitt, K., and Chen, X.: Glacial change and
hydrological implications in the Himalaya and Karakoram, Nat. Rev.
Earth Environ., 2, 91–106, https://doi.org/10.1038/s43017-020-00124-w, 2021.
Noi, P. T., Degener, J., and Kappas, M.: Comparison of Multiple Linear
Regression, Cubist Regression, and Random Forest Algorithms to Estimate
Daily Air Surface Temperature from Dynamic Combinations of MODIS LST Data,
Remote Sens., 9, 398, https://doi.org/10.3390/rs9050398, 2017.
Peng, X., Frauenfeld, O. W., Jin, H., Du, R., Qiao, L., Zhao, Y., Mu, C.,
and Zhang, T.: Assessment of Temperature Changes on the Tibetan Plateau
During 1980–2018, Earth Space Sci., 8, e2020EA001609,
https://doi.org/10.1029/2020EA001609, 2021.
Pfeffer, W. T., Arendt, A. A., Bliss, A., Bolch, T., Cogley, J. G., Gardner,
A. S., Hagen, J.-O., Hock, R., Kaser, G., Kienholz, C., Miles, E. S.,
Moholdt, G., Moelg, N., Paul, F., Radic, V., Rastner, P., Raup, B. H., Rich,
J., Sharp, M. J., Andeassen, L. M., Bajracharya, S., Barrand, N. E., Beedle,
M. J., Berthier, E., Bhambri, R., Brown, I., Burgess, D. O., Burgess, E. W.,
Cawkwell, F., Chinn, T., Copland, L., Cullen, N. J., Davies, B., De Angelis,
H., Fountain, A. G., Frey, H., Giffen, B. A., Glasser, N. F., Gurney, S. D.,
Hagg, W., Hall, D. K., Haritashya, U. K., Hartmann, G., Herreid, S., Howat,
I., Jiskoot, H., Khromova, T. E., Klein, A., Kohler, J., Konig, M., Kriegel,
D., Kutuzov, S., Lavrentiev, I., Le Bris, R., Li, X., Manley, W. F., Mayer,
C., Menounos, B., Mercer, A., Mool, P., Negrete, A., Nosenko, G., Nuth, C.,
Osmonov, A., Pettersson, R., Racoviteanu, A., Ranzi, R., Sarikaya, M. A.,
Schneider, C., Sigurdsson, O., Sirguey, P., Stokes, C. R., Wheate, R.,
Wolken, G. J., Wu, L. Z., Wyatt, F. R., and Randolph, C.: The Randolph
Glacier Inventory: a globally complete inventory of glaciers, J. Glaciol., 60, 537–552, https://doi.org/10.3189/2014JoG13J176, 2014.
Pratap, B., Sharma, P., Patel, L., Singh, A. T., Gaddam, V. K., Oulkar, S.,
and Thamban, M.: Reconciling High Glacier Surface Melting in Summer with Air
Temperature in the Semi-Arid Zone of Western Himalaya, Water, 11, 1561,
https://doi.org/10.3390/w11081561, 2019.
Qin, J.: Monthly average air temperature data of glacier surface in the
Tibetan Plateau (1961–2020), National Tibetan Plateau Data Center [data set],
https://doi.org/10.11888/Atmos.tpdc.272550, 2022.
Qin, J., Yang, K., Liang, S., and Guo, X.: The altitudinal dependence of
recent rapid warming over the Tibetan Plateau, Clim. Change, 97, 321–327,
https://doi.org/10.1007/s10584-009-9733-9, 2009.
Qin, J., Yang, K., Lu, N., Chen, Y., Zhao, L., and Han, M.: Spatial
upscaling of in-situ soil moisture measurements based on MODIS-derived
apparent thermal inertia, Remote Sens. Environ., 138, 1–9,
https://doi.org/10.1016/j.rse.2013.07.003, 2013.
Radić, V., Bliss, A., Beedlow, A. C., Hock, R., Miles, E., and Cogley,
J. G.: Regional and global projections of twenty-first century glacier mass
changes in response to climate scenarios from global climate models, Clim.
Dynam., 42, 37–58, https://doi.org/10.1007/s00382-013-1719-7, 2014.
Rao, Y., Liang, S., Wang, D., Yu, Y., Song, Z., Zhou, Y., Shen, M., and Xu,
B.: Estimating daily average surface air temperature using satellite land
surface temperature and top-of-atmosphere radiation products over the
Tibetan Plateau, Remote Sens. Environ., 234, 111462, https://doi.org/10.1016/j.rse.2019.111462, 2019.
Rasouli, K., Pomeroy, J. W., and Whitfield, P. H.: The sensitivity of snow
hydrology to changes in air temperature and precipitation in three North
American headwater basins, J. Hydrol., 606, 127460,
https://doi.org/10.1016/j.jhydrol.2022.127460, 2022.
Rounce, D. R., Hock, R., and Shean, D. E.: Glacier Mass Change in High
Mountain Asia Through 2100 Using the Open-Source Python Glacier Evolution
Model (PyGEM), Front. Earth Sci., 7, 331, https://doi.org/10.3389/feart.2019.00331,
2020a.
Rounce, D. R., Khurana, T., Short, M. B., Hock, R., Shean, D. E., and
Brinkerhoff, D. J.: Quantifying parameter uncertainty in a large-scale
glacier evolution model using Bayesian inference: application to High
Mountain Asia, J. Glaciol., 66, 175–187, https://doi.org/10.1017/jog.2019.91,
2020b.
Shean, D. E., Bhushan, S., Montesano, P., Rounce, D. R., Arendt, A., and
Osmanoglu, B.: A systematic, regional assessment of high mountain Asia
glacier mass balance, Front. Earth Sci., 7, 363, https://doi.org/10.3389/feart.2019.00363, 2020.
Shen, H., Jiang, Y., Li, T., Cheng, Q., Zeng, C., and Zhang, L.: Deep
learning-based air temperature mapping by fusing remote sensing, station,
simulation and socioeconomic data, Remote Sens. Environ., 240, 111692,
https://doi.org/10.1016/j.rse.2020.111692, 2020.
Tong, S., Wong, N. H., Jusuf, S. K., Tan, C. L., Wong, H. F., Ignatius, M.,
and Tan, E.: Study on correlation between air temperature and urban
morphology parameters in built environment in northern China, Building and
Environment, 127, 239–249, https://doi.org/10.1016/j.buildenv.2017.11.013,
2018.
Trebicki, P.: Climate change and plant virus epidemiology, Virus Res.,
286, 198059, https://doi.org/10.1016/j.virusres.2020.198059, 2020.
Wang, C., Graham, R. M., Wang, K., Gerland, S., and Granskog, M. A.: Comparison of ERA5 and ERA-Interim near-surface air temperature, snowfall and precipitation over Arctic sea ice: effects on sea ice thermodynamics and evolution, The Cryosphere, 13, 1661–1679, https://doi.org/10.5194/tc-13-1661-2019, 2019.
Xu, B. Q.: Glacier temperature dataset of Xiaodong Kemadi (2012–2015),
National Tibetan Plateau Data Center [data set], https://doi.org/10.11888/Glacio.tpdc.270019,
2018.
Xu, Y., Knudby, A., Shen, Y., and Liu, Y.: Mapping Monthly Air Temperature
in the Tibetan Plateau From MODIS Data Based on Machine Learning Methods,
Ieee J. Sel. Top. Appl. Earth Obs., 11, 345–354, https://doi.org/10.1109/jstars.2017.2787191, 2018.
Yang, K., Wu, H., Qin, J., Lin, C., Tang, W., and Chen, Y.: Recent climate
changes over the Tibetan Plateau and their impacts on energy and water
cycle: A review, Global Planet. Change, 112, 79–91,
https://doi.org/10.1016/j.gloplacha.2013.12.001, 2014.
Yang, W.: Data from automatic weather station at the end of glacier in
Qinghai-Tibet Plateau (2019–2020), National Tibetan Plateau Data Center
[data set], https://doi.org/10.11888/Meteoro.tpdc.271394, 2021.
Yao, T. D., Thompson, L., Yang, W., Yu, W. S., Gao, Y., Guo, X. J., Yang, X.
X., Duan, K. Q., Zhao, H. B., Xu, B. Q., Pu, J. C., Lu, A. X., Xiang, Y.,
Kattel, D. B., and Joswiak, D.: Different glacier status with atmospheric
circulations in Tibetan Plateau and surroundings, Nat. Clim. Change, 2,
663–667, https://doi.org/10.1038/nclimate1580, 2012.
Yao, T. D., Xue, Y. K., Chen, D. L., Chen, F. H., Thompson, L., Cui, P.,
Koike, T., Lau, W. K. M., Lettenmaier, D., Mosbrugger, V., Zhang, R. H., Xu,
B. Q., Dozier, J., Gillespie, T., Gu, Y., Kang, S. C., Piao, S. L.,
Sugimoto, S., Ueno, K., Wang, L., Wang, W. C., Zhang, F., Sheng, Y. W., Guo,
W. D., Ailikun, Yang, X. X., Ma, Y. M., Shen, S. S. P., Su, Z. B., Chen, F.,
Liang, S. L., Liu, Y. M., Singh, V. P., Yang, K., Yang, D. Q., Zhao, X. Q.,
Qian, Y., Zhang, Y., and Li, Q.: Recent Third Pole's Rapid Warming
Accompanies Cryospheric Melt and Water Cycle Intensification and
Interactions between Monsoon and Environment: Multidisciplinary Approach
with Observations, Modeling, and Analysis, B. Am.
Meteorol. Soc., 100, 423–444, https://doi.org/10.1175/bams-d-17-0057.1, 2019.
You, Q. L., Kang, S. C., Pepin, N., Flugel, W. A., Yan, Y. P., Behrawan, H.,
and Huang, J.: Relationship between temperature trend magnitude, elevation
and mean temperature in the Tibetan Plateau from homogenized surface
stations and reanalysis data, Global Planet. Change, 71, 124–133,
https://doi.org/10.1016/j.gloplacha.2010.01.020, 2010.
Zeng, L., Hu, Y., Wang, R., Zhang, X., Peng, G., Huang, Z., Zhou, G., Xiang,
D., Meng, R., Wu, W., and Hu, S.: 8-Day and Daily Maximum and Minimum Air
Temperature Estimation via Machine Learning Method on a Climate Zone to
Global Scale, Remote Sens., 13, 2355, https://doi.org/10.3390/rs13122355, 2021.
Zhang, H., Immerzeel, W. W., Zhang, F., de Kok, R. J., Gorrie, S. J., and
Ye, M.: Creating 1 km long-term (1980–2014) daily average air temperatures
over the Tibetan Plateau by integrating eight types of reanalysis and land
data assimilation products downscaled with MODIS-estimated temperature lapse
rates based on machine learning, Int. J. Appl. Earth
Obs., 97, 102295,
https://doi.org/10.1016/j.jag.2021.102295, 2021.
Zhang, H. B., Zhang, F., Ye, M., Che, T., and Zhang, G. Q.: Estimating daily
air temperatures over the Tibetan Plateau by dynamically integrating MODIS
LST data, J. Geophys. Res.-Atmos., 121, 11425–11441,
https://doi.org/10.1002/2016jd025154, 2016.
Zhang, Y. S.: Meteorological observation data of the terminus of Naimona'nyi
Glacier (2011–2017), National Tibetan Plateau Data Center [data set],
https://doi.org/10.11888/Hydro.tpdc.270081, 2018a.
Zhang, Y. S.: Meteorological observation data of Kunsha Glacier (2015–2017),
National Tibetan Plateau Data Center [data set],
https://doi.org/10.11888/Meteoro.tpdc.270086, 2018b.
Zhao, H. B.: Mass balance (2008–2018) on Naimona'nyi Glacier and related
meteorological data (2011–2018), National Tibetan Plateau Data Center
[data set], https://doi.org/10.11888/Meteoro.tpdc.271606, 2021.
Zhou, Q., Chen, D., Hu, Z., and Chen, X.: Decompositions of Taylor diagram
and DISO performance criteria, Int. J. Climatol., 41,
5726–5732, https://doi.org/10.1002/joc.7149, 2021.
Short summary
To enrich a glacial surface air temperature (SAT) product of a long time series, an ensemble learning model is constructed to estimate monthly SATs from satellite land surface temperatures at a spatial resolution of 1 km, and long-term glacial SATs from 1961 to 2020 are reconstructed using a Bayesian linear regression. This product reveals the overall warming trend and the spatial heterogeneity of warming on TP glaciers and helps to monitor glacier warming, analyze glacier evolution, etc.
To enrich a glacial surface air temperature (SAT) product of a long time series, an ensemble...
Altmetrics
Final-revised paper
Preprint