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Abstract. Surface air temperature (SAT) is a key indicator of global warming and plays an important role in
glacier melting. On the Tibetan Plateau (TP), there exists a large number of glaciers. However, station SAT
observations on these glaciers are extremely scarce, and moreover the available ones are characterized by short
time series, which substantively hinder our deep understanding of glacier dynamics due to climate changes on
the TP. In this study, an ensemble learning model is constructed and trained to estimate glacial SATs with a
spatial resolution of 1 km× 1 km from 2002 to 2020 using monthly MODIS land surface temperature products
and many auxiliary variables, such as vegetation index, satellite overpass time, and near-surface air pressure.
The satellite-estimated glacial SATs are validated against SAT observations at glacier validation stations. Then,
long-term (1961–2020) glacial SATs on the TP are reconstructed by temporally extending the satellite SAT
estimates through a Bayesian linear regression. The long-term glacial SAT estimates are validated with root mean
squared error, mean bias error, and determination coefficient being 1.61 ◦C, 0.21 ◦C, and 0.93, respectively. The
comparisons are conducted with other satellite SAT estimates and ERA5-Land reanalysis data over the validation
glaciers, showing that the accuracy of our satellite glacial SATs and their temporal extensions are both higher.
The preliminary analysis illustrates that the glaciers on the TP as a whole have been undergoing fast warming,
but the warming exhibits a great spatial heterogeneity. Our dataset can contribute to the monitoring of glaciers’
warming, analysis of their evolution, etc. on the TP. The dataset is freely available from the National Tibetan
Plateau Data Center at https://doi.org/10.11888/Atmos.tpdc.272550 (Qin, 2022).

1 Introduction

Surface air temperature (SAT) represents the thermal state of
the lower atmosphere and serves to regulate the earth sur-
face energy and water budgets and thus impacts the land–
atmosphere interaction (Pratap et al., 2019; Huang et al.,
2019) and is one of the most important variables in ecology,
hydrology, climatology, and environmental sciences (Rasouli
et al., 2022; Trebicki, 2020; Box et al., 2019; Huang et al.,
2019; Tong et al., 2018). SAT, as a key indicator of global

climate change, has been rising rapidly since the industrial
revolution, inducing global glacier mass losses (Radić et al.,
2014; Hock et al., 2019). The Tibetan Plateau (TP) is the
highest plateau in the world, with an average altitude greater
than 3500 m and is designated as the roof of the world and
the third pole (Yao et al., 2019). At the same time, the TP
accommodates the maximum number of glaciers, harboring
the largest solid water reserves in the world apart from the
polar regions, and is thus named the Asian water tower (Pf-
effer et al., 2014; Rounce et al., 2020a; Yao et al., 2012).
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Similarly, the TP has also been undergoing a warming (Peng
et al., 2021) and even exhibits a more intense warming than
its surrounding areas (Nie et al., 2021; Lalande et al., 2021;
Bhattacharya et al., 2021). This accelerates glacier melt and
retreat on the TP (Pratap et al., 2019; Rounce et al., 2020a;
Brun et al., 2017; Bhattacharya et al., 2021; Shean et al.,
2020; Farinotti et al., 2020), inducing a series of glacial
catastrophes, such as glacier lake outburst floods and threat-
ening the neighboring community and infrastructure (Miles
et al., 2021; Immerzeel et al., 2020; Kraaijenbrink et al.,
2017). So, an extensive monitoring of glacial SATs on the
TP is significant for deeply understanding the response of
glaciers to climate change and securing the local residents
from possible glacial hazards (Guo et al., 2019).

However, knowledge of the spatial patterns of glacial
SATs and their changes on the TP has still been full of great
uncertainties due to the lack of observations (Rounce et al.,
2020b). Almost no station SAT observations were available
on the glaciers of the TP in the past, owing to both poor lo-
gistics and limited funding (Qin et al., 2009). Many scientists
have recently tried to deploy automatic weather stations on
the glaciers of the TP to collect meteorological variables in-
cluding SAT and publicized these field observations (Yang,
2021; Zhang, 2018a, b; Zhao, 2021). On the other hand, it
is almost impossible to regularly maintain these instruments
due to harsh natural conditions on the glaciers. Thus, the du-
ration of glacial SAT observations is usually relatively short.
Moreover, the surface topography of mountain glaciers is of-
ten highly uneven, and the weather stations on them are usu-
ally set up at their lower parts. Thus, the representativeness of
these SAT observations on glaciers is limited, and the thermal
status in their other parts is still unclear (Kang et al., 2022;
Yang et al., 2014). As to the problem of representativeness, if
there are several automatic weather stations in some glacier-
ized basins, the temperature lapse rate (TLR) with respect to
increasing elevation is introduced to interpolate station SAT
observations to areas on glaciers without stations (Zhang et
al., 2021; Rounce et al., 2020a). However, the TLR is un-
stable and variant in space and time (Li et al., 2013). So,
the interpolated SATs via the TLR on the glaciers are full of
nontrivial uncertainties (Rounce et al., 2020b). Well known,
gridded reanalysis (or simulation) data usually have a long
span of time and are thus often taken to address problems of
short-term duration (or the nonexistence) of station SAT ob-
servations on glaciers (Munoz-Sabater et al., 2021; Harris et
al., 2014; Hersbach et al., 2020). However, since the spatial
extent of mountain glaciers is normally smaller than that of
the grid (about several tens of kilometers), spatial downscal-
ing has to be performed on these gridded data to obtain the
distribution of SAT on glaciers, such as through the TLR. In
fact, it is reported in many studies that the quality of reanaly-
sis data on the TP is worse, and therefore the reliability of the
downscaled SATs based on them is dubious (Li et al., 2013;
Wang et al., 2019; You et al., 2010).

Given the strong association between SATs and land sur-
face temperatures (LSTs), attempts have been made to con-
vert satellite LSTs to satellite SATs (Zhang et al., 2016;
Shen et al., 2020; Benali et al., 2012; Rao et al., 2019). The
methods can generally be divided into four types. The first
one is to construct a statistical relationship between SATs
and LSTs, as well as other ancillary variables (such as so-
lar zenith angle, elevation, etc.), via a multiple linear regres-
sion. This kind of method is simple and can be calibrated
with few data. But the relationship between SATs and LSTs
is nonlinear, and thus their reliability cannot be guaranteed in
some situations. The second kind is called the temperature-
vegetation-index method, which is based on the assumption
that LST gradually approaches SAT with vegetation cover-
age increasing. This kind of method is more accurate than
the simple linear regression but is susceptible to noise and is
inapplicable during the vegetation growing season. The third
kind of method constructs a quantitative relationship between
SATs and LSTs through a surface energy balance equation,
whose advantages are its solid physical basis. However, their
accuracy depends strongly on the quality of the inputs, such
as soil porosity, which is often difficult to obtain. The fourth
one exploits the strong ability of machine learning to capture
the nonlinear relationship between SATs and LSTs, as well
as other ancillary variables (Xu et al., 2018; Noi et al., 2017;
Zeng et al., 2021; Hooker et al., 2018). This kind of method
is successfully applied in many regions due to its high ac-
curacy and usability. The machine learning method has also
been used to estimate SATs based on satellite LSTs over the
TP (Shen et al., 2020; Xu et al., 2018; Zhang et al., 2016).
However, the accuracy of these SATs on glaciers is question-
able, because the data-driven method needs a huge number
of data samples to train them, but the number of station SAT
observations on glaciers is rather limited. Furthermore, satel-
lite LSTs of high quality have only been available for the last
two decades. Even if the high-quality SATs were estimated
on the TP, it would be difficult to use them to analyze climate
change on glaciers due to their short-term duration.

In order to address the aforementioned problems, we
firstly glean SAT observations from tens of stations on
glaciers of the TP, secondly construct a quantitative relation-
ship between station SATs and satellite SATs to obtain short-
term glacial SAT estimates through an ensemble learning al-
gorithm, thirdly develop a reconstruction algorithm to tem-
porally extend these satellite SATs to long-term (1961–2020)
glacial SATs via a Bayesian linear regression, and finally
implement these reconstructed SATs to analyze the glacial
warming trends on the TP to illustrate their utility. This ar-
ticle is organized as follows. In Sect. 2, the data sources are
shown. Both the method to estimate satellite SATs and the
approach to extend them are described in Sect. 3. The results
and discussion are given in Sect. 4. Finally, the data avail-
ability and the conclusions are presented.
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Figure 1. Distribution of used ground observation stations. (a) Meteorological stations from the CMA (black) and stations on glaciers (red)
and (b) meteorological stations from the National Centers for Environmental Information of the United States.

2 Data

2.1 Remote sensing data

A variety of Terra and Aqua MODIS products are used in this
study, which are available from the National Aeronautics and
Space Administration’s (NASA) website (https://earthdata.
nasa.gov/, last access: 14 November 2022). The first is the
MOD11A1/MYD11A1 product, which provides the daytime
and nighttime 1 km LST, satellite overpass time, and qual-
ity control indicators for each pixel. Its temporal resolution
is 1 d, and the spatial resolution is about 1 km. The second
is the enhanced vegetation index (EVI) extracted from the
MOD13A3 product. Its temporal and spatial resolutions are
1 month and 1 km, respectively. The third is the shortwave
white-sky albedo from the MCD43A3 product, whose tem-
poral and spatial resolutions are 1 d and 500 m, respectively.

2.2 Station products and ancillary data

The station SAT observation datasets used in this study come
from three sources. The first one is the 60 years of daily near-
surface air temperatures at a total of 145 weather stations
on the TP, which are managed by the China Meteorological
Administration (CMA), homogenized by Cao et al. (2016),
and available from its website (http://data.cma.cn/, last ac-
cess: 14 November 2022). Their spatial distribution is shown
in Fig. 1a (marked by the solid circles). These daily SATs
are averaged to obtain monthly ones that match the MODIS
monthly LSTs on the time scale. The second one is the glacial
SAT observations at 35 automatic weather stations deployed
on various glaciers of the TP (marked by the solid triangles
in Fig. 1a), including the Naimona’Nyi Glacier in the south-
western part of the TP (Zhang, 2018a), the Kunsha Glacier in
the western part of the TP (Zhang, 2018b), the Xiao Dongke-
madi Glacier in the central part of the TP (Xu, 2018), and
several glaciers in the southeastern part of the TP (Yang,
2021). As aforementioned, a machine learning model is taken
to convert LSTs to SATs. Generally, this type of model has a
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strong capacity. Although approximately a few hundred sta-
tions are available over the TP, this number of stations is
rather limited in contrast to the vast area of the TP. Thus, the
problem of overfitting is likely to occur. In order to mitigate
this possible issue, a large number of weather stations in the
Northern Hemisphere (outside the TP), which have similar
surface conditions to the TP, is selected to enrich the above
two data sources. The selection criterion is that the annual
mean albedo at these stations is greater than 0.4, because
the land on the TP is typically covered by sparse vegetation
and ice (snow). The spatial distribution of these selected sta-
tions outside the TP is illustrated in Fig. 1b and available
from the National Center for Environmental Information of
the United States (https://www.ncei.noaa.gov/, last access:
14 November 2022). The most conspicuous feature of the
TP is its extremely high elevation. So, the digital elevation
model (DEM) data with a spatial resolution of 30 m, which
are from the Shuttle Radar Topography Mission (SRTM),
are used to reflect this feature. This DEM data can be made
available from the United States Geological Survey (USGS)
website (https://srtm.csi.cgiar.org/, last access: 14 Novem-
ber 2022). The extent of glaciers on the TP comes from
the Randolph Glacier Inventory provided by the National Ti-
betan Plateau Data Center of China (http://data.tpdc.ac.cn/,
last access: 14 November 2022).

3 Methods

3.1 Data preprocessing

Since the purpose of this study is to estimate and reconstruct
monthly SATs on glaciers of the TP, both the daily station
SAT observations and satellite LSTs are averaged to obtain
monthly ones. For weather and glacier stations, all daily SAT
observations are simply averaged in 1 calendar month. As
to MODIS LST products, the averaging procedure is a little
complicated. It is well known that satellite signals are of-
ten contaminated by clouds, leading to no LST retrievals or
low-quality ones. So, the quality control is conducted on the
four daily MODIS LSTs (Terra daytime LST, Terra night-
time LST, Aqua daytime LST, and Aqua nighttime LST) and
only the LSTs, whose uncertainties are less than 1 K, are re-
garded as valid. Then, the averaging procedure is only per-
formed on these LST values for each 1 km pixel on the TP
even though only one LST is available in 1 month. There-
fore, four monthly MODIS LSTs are calculated. At the same
time, the total number of valid daily LSTs in 1 month is used
to reflect the cloud information for one pixel and normalized
into the range of 0–1. Moreover, four monthly mean satellite
overpass times are computed in the same manner and then
normalized into the range of 0–1 through being divided by
the length of 1 d (24 h). As to MODIS 500 m daily albedos,
they are aggregated into a monthly scale by simply averag-
ing, and then they are resampled to a 1 km spatial scale in
order to match with the spatial and temporal scales of the

other satellite products. For the same reason, the USGS 30 m
DEM data are also resampled to a 1 km spatial scale on the
TP. As a matter of fact, the DEM data are not used directly
but converted into normalized near-surface air pressure be-
longing to the range of 0–1 as follows:

η = 10
(
−Z

18 400 ·
LST
273

)
, (1)

where η denotes the normalized near-surface air pressure, Z
the altitude above sea level (i.e., DEM), and LST the land
surface temperature. As pointed out in many studies, both
sunrise and sunset times have an impact on the minimum and
maximum SATs and their timing. So, these two times are
calculated on a daily basis; the monthly averaged ones are
simply evaluated in a calendar month and added to the list of
input variables for the ensemble learning method.

3.2 Method to convert LSTs to SATs

As aforementioned, a stacking ensemble learning algorithm
is constructed to estimate short-term satellite SATs, and then
Bayesian linear regression is used to reconstruct long-term
glacial SATs. The whole procedure is illustrated in Fig. 2. For
estimation, a random forest model, which has been proved
effective in many scenarios (Belgiu and Dragut, 2016; Xu
et al., 2018), is taken as the base learner and meta learner
for ensemble learning. Random forest regression is a super-
vised machine learning algorithm to merge multiple regres-
sion trees to make a more accurate prediction than any indi-
vidual tree. Its key thought is to perform bootstrap aggrega-
tion in both sample and feature dimensions in the learning
course. The base learner can be represented as

SAT= RF (X) , (2)

where SAT denotes the monthly mean SATs and X the inde-
pendent variable vector. There are four base learners, corre-
sponding to four MODIS LSTs, and thus there are four input
vectors, which can be expressed as follows:

Xterra
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LSTterra

day ,τ
terra
day , t

terra
day ,p

terra
day ,vi,α, tsunrise, tsunset,cosθsun

]
,
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[
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night, t

terra
night,p

terra
night,vi,α, tsunrise, tsunset,cosθsun

]
,

X
aqua
day =

[
LSTaqua

day ,τ
aqua
day , t

aqua
day ,p

aqua
day ,vi,α, tsunrise, tsunset,cosθsun

]
,

X
aqua
night =

[
LSTaqua

night,τ
aqua
night, t

aqua
night,p

aqua
night,vi,α, tsunrise, tsunset,cosθsun

]
. (3)

Here, the first four terms in the four input vectors (LST, τ ,
t , and p) denote the MODIS land surface temperature, the
clear-sky days, the satellite overpass time, and the air pres-
sure during the daytime and nighttime for the Terra and Aqua
satellites, respectively. The other five terms in the vectors
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Figure 2. Procedure to reconstruct 60-year (1961–2020) near-surface air temperature on glaciers.

(vi, α, tsunrise, tsunset, and cosθsun) represent the MODIS en-
hanced vegetation index, the MODIS surface albedo, the sun-
rise time, the sunset time, and the cosine of sun zenith an-
gle, respectively. Four estimated monthly surface air temper-

atures SATest
=

[
SATterra

day ,SATterra
night,SATaqua

day ,SATaqua
night

]T
can

be procured by plugging the four input vectors (Xterra
day ,Xterra

night,
X

aqua
day , andXaqua

night) into Eq. (2). The combined surface air tem-
perature SATcom can be computed through the meta learner
as

SATcom
= RF

(
SATest) . (4)

3.3 Temporal reconstruction algorithm

After the satellite SATs have been retrieved by the above
ensemble learning algorithm, the temporal extension is per-
formed for each glacial pixel on the TP based on a Bayesian
linear regression and can be expressed as

SAText
h,i = β

T
i ·SATobs

h , (5)

where h denotes the time index for the historical period of
1961–2020, SAText

h,i the reconstructed historical SATs at pixel

i, SATobs
t =

[
1,SATobs

t,1 ,SATobs
t,2 , . . .,SATobs

t,N

]T
the monthly

mean surface air temperature observation atN basis stations,
and βi the vector of extension coefficients. The extension
weights are estimated by minimization of the following cost
function:

J =

Ti∑
t=1

(
SATcom

t,i −β
T
i ·SATobs

t

)
σ−2
i

·

(
SATcom

t,i −β
T
i ·SATobs

t

)
+ λiβ

T
i βi, (6)

where t denotes the month in the period of 1961–2020,
SATcom

t,i the combined SAT for pixel i at time t , σi the stan-
dard deviation of SATcom

t,i , λi the regularization parameter to
avoid overfitting, and Ti the number of the estimated SATs
for pixel i. The specification of σi and λi has a definitive
impact on the estimate of βi . Here, the variational Bayes
method is utilized to optimize the cost function J in order to
simultaneously estimate βi , σi , and λi (see Qin et al. (2013)
for more details).

3.4 Evaluation indicators

In this study, three error metrics are selected to validate the
glacial SAT estimates, which are root mean square error
(RMSE), mean bias error (MBE), and determination coef-
ficient (R2). They are expressed as follows:

RMSE=

√
1
M

M∑
i=1

(
yest
i − y

obs
i

)2
,

MBE= 1
M

M∑
i=1

(
yest
i − y

obs
i

)
,

R2
= 1−

M∑
i=1

(
yest
i −y

obs
i

)2
M∑
i=1

(yest
i −y,)

2

y = 1
M

M∑
i=1
yobs
i ,

(7)

where yest denotes the estimated SATs (including estimated
satellite SATs and reconstructed glacial SATs), y the aver-
aged station SAT observations, and M the number of station
observations. When the evaluation is performed according to
RMSE, MBE, and R2, it often happens that RMSE, MBE,
and R2 exhibit inconsistencies. For example, the RMSE of
one dataset is larger than the RMSE of the other dataset, but
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Figure 3. Comparison of observed station SATs with estimated satellite SATs (a) for training and (b) for validation on the whole training
and validation datasets.

Figure 4. Comparison of observed station SATs with estimated satellite SATs for validation (a) at regular stations in the Northern Hemisphere
beyond the Tibetan Plateau, (b) at regular stations on the Tibetan Plateau, and (c) at glacier stations.

R2 is also larger than R2 of the other dataset. Here, a com-
prehensive error metric (DISO) is introduced to handle this
and can be formulated as (Zhou et al., 2021)

DISO=
√

(R− 1)2
+ (RMSE/y)2

+ (RMSE/y)2. (8)

Overall, the smaller DISO is, the better estimates are.

4 Results and discussion

4.1 Evaluation of satellite SATs

Figure 3a shows the overall training results for the presented
ensemble learning algorithm. There is a total of 17 901 sam-
ples from July 2002 to December 2020 in the training dataset
(in synchronization with the time span of MODIS). As can be
seen, the training accuracy can attain an extremely high level
with RMSE, MBE, and R2 being equal to 0.17 ◦C, 0.00 ◦C,
and 1.00 ◦C, respectively. This indicates the strong capabil-
ity of the ensemble leaning algorithm to capture the variation

in the samples. As a matter of fact, more attention should
be paid to the validation results. Figure 3b shows the over-
all validation results with RMSE, MBE, and R2 being equal
to 1.47 ◦C, 0.11 ◦C, and 0.98 ◦C, respectively. Although the
overall validation accuracy is inferior to the overall training
accuracy, the validation results are fairly favorable. More-
over, the validation results are illustrated in three groups of
stations in Fig. 4. As shown in Fig. 4a, the validation re-
sults at global regular stations outside the TP are similar to
the overall validation results with RMSE, MBE, and R2 be-
ing equal to 1.60 ◦C, −0.03 ◦C, and 0.97 ◦C, respectively.
For regular stations in the TP, RMSE, MBE, and R2 are
equal to 1.35 ◦C, 0.11 ◦C, and 0.97 ◦C, respectively. For only
glaciers, the validation results are slightly worse than those
at regular stations, with RMSE, MBE, and R2 being equal to
1.61 ◦C, 0.21 ◦C, and 0.93 ◦C, respectively. The total number
of glacier stations for validation is 18, and the validation re-
sults for each station are listed in Table 1. It can be seen that
most of the glacier stations were set up in 2018, and their
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Figure 5. Comparison between station SAT observations and satellite SAT estimates over glaciers for (a) our products and (b) Xu’s products
(Xu et al., 2018). There is a total of 182 sample points, since the overlay period of these two datasets is from 2002 to 2015.

Figure 6. Comparison between station SAT observations and satellite SAT estimates over glaciers for (a) our products and (b) Chen’s
products (Chen et al., 2021). There is a total of 291 sample points, since the overlay period of these two datasets is from 2002 to 2019.

observation periods lasted less than 2 years. Moreover, the
number of high-quality monthly SAT observations is rather
limited, and only one observation sample is available at two
stations (SETP12 and SETP13; see Table 1) due to harsh nat-
ural conditions. Only SETP1 has a long observation period
lasting for approximately 15 years.

To further examine the reliability of the satellite SAT esti-
mates on glaciers, comparisons with three other SAT datasets
are performed. Two of them are the satellite SAT datasets
based on MODIS LST products compared with machine
learning methods (Xu et al., 2018; Chen et al., 2021), which
cover the periods of 2001–2015 and 2001–2019, respec-
tively, with a spatial resolution of 1 km× 1 km. As can be
seen in Fig. 5, Xu’s SAT product has a RMSE, MBE, and
R2 of 3.11 ◦C, 0.84 ◦C, and 0.81 ◦C, respectively, over the
glaciers. However, three error metrics for our glacial satellite
SAT product are equal to 1.34 ◦C,−0.13 ◦C, and 0.96 ◦C, ob-
viously being superior to those of Xu’s SAT products. As for
Chen’s product, the error metrics are 3.67 ◦C, 1.19 ◦C, and
0.67 ◦C, respectively, being inferior to ours as indicated in
Fig. 6.

The other comparison is the ERA5-Land reanalysis
dataset. It has a spatial resolution of 0.1◦ and a time span
from 1951 to the present. As can be seen in Fig. 7a and c,
the performance of our SAT products significantly surpasses
the one of ERA5-Land, since RMSE, MBE, and R2 deterio-
rate from 1.32 ◦C, −0.31 ◦C, 0.96 to 3.60 ◦C, −0.71 ◦C, and
0.81 ◦C. At the same time, the satellite SAT estimates at a
1 km× 1 km resolution are aggregated to the ones at a 0.1◦

resolution and then compared with the corresponding ERA5-
Land products in order to investigate whether or not the in-
feriority of ERA5-Land SATs over the glaciers is caused by
the difference in the spatial scale. It is illustrated in Fig. 7b
that the aggregated SATs are also superior to the ERA5-Land
ones over the glaciers with RMSE, MBE, and R2 equal to
2.46 ◦C, −0.52 ◦C, and 0.88 ◦C. This proves the advantage
of the presented satellite SAT retrieval algorithm itself after
adding the samples over glaciers into the estimation model.
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Table 1. Validation results for each glacier station on the TP.

Station Latitude Longitude Elevation RMSE R2 MBE Number of Start and end time
(◦) (◦) (m) (◦C) (◦C) samples

SETP1 29.3184 96.9563 4602 1.495 0.94 0.638 125 Jul 2006–Oct 2020
SETP2 29.3481 97.0227 5095 2.956 0.793 −0.730 7 Jul 2018–Sep 2019
SETP3 29.352 97.0209 5168 2.788 0.821 −0.090 7 Jul 2018–Sep 2019
SETP4 29.355 97.0202 5258 2.833 0.826 0.115 7 Jul 2018–Sep 2019
SETP5 29.3568 97.0201 5310 1.231 0.951 0.393 8 Jul 2018–Sep 2019
SETP6 29.3576 97.0194 5335 1.349 0.943 0.779 8 Jul 2018–Sep 2019
SETP7 29.4133 96.9661 4965 0.423 0.996 −0.294 7 Jul 2018–Sep 2019
SETP8 29.3961 96.9726 5138 0.554 0.991 0.135 4 Jul 2018–Sep 2019
SETP9 29.3939 96.9727 5174 1.486 0.95 −0.570 6 Jul 2018–Sep 2019
SETP10 29.3883 96.9701 5302 1.472 0.951 −0.065 6 Jul 2018–Sep 2019
SETP11 29.3864 96.9735 5280 1.586 0.943 −0.544 6 Jul 2018–Sep 2019
SETP12 29.3142 96.9557 4588 0.564 / −0.564 1 Jul 2018–Sep 2019
SETP13 29.265 96.9379 4649 1.118 / 1.118 1 Jul 2018–Sep 2019
SETP14 29.2436 96.9258 4909 0.564 0.990 −0.074 10 Jul 2018–Sep 2019
MTP1 32.0191 79.9505 5100 1.450 1.267 0.951 17 Oct 2015–Sep 2017
SWTP1 33.0571 92.0525 5255 1.194 0.96 0.272 7 Nov 2018–Oct 2019
SWTP2 33.0689 92.0733 5627 1.207 0.953 0.581 19 May 2012–Aug 2015
MTP2 30.4922 81.3138 5543 1.794 0.866 −0.890 77 Oct 2011–Nov 2018

Figure 7. Comparison between station SAT observations and satellite SAT estimates over glaciers for (a) our SAT products at a spatial
resolution of 1 km× 1 km, (b) our products aggregated to a resolution of ERA5-Land at 0.1◦, and (c) ERA5-Land SATs. There is a total of
323 sample points, since the overlay period of these two datasets is from 2002 to 2020.

Figure 8. Surface air temperature time series from 1961 to 2020 at 18 stations selected as basis functions for reconstruction.
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Figure 9. Validation of reconstructed SATs at glacier station SETP1 in five ideal experiments with various specified periods in which satellite
SAT estimates are available. (a) For the periods of 2013 to 2020, (b) 2011 to 2020, (c) 2009 to 2020, (d) 2007 to 2020, and (e) 2005 to 2020.

https://doi.org/10.5194/essd-15-331-2023 Earth Syst. Sci. Data, 15, 331–344, 2023



340 J. Qin et al.: Long-term 1 km monthly near-surface air temperature dataset over the Tibetan glaciers

Figure 10. Comparison between observed SATs and reconstructed SATs in the period of 2006 to 2020 at glacier station SETP1 in five ideal
experiments with various specified periods in which satellite SAT estimates are available. (a) For the periods of 2013 to 2020, (b) 2011 to
2020, (c) 2009 to 2020, (d) 2007 to 2020, and (e) 2005 to 2020 and (f) for the error metric DISO in the five experiments.

4.2 Evaluation of reconstructed glacial SATs

The primary goal of this study is to reconstruct long-term
glacial SATs to deepen our understanding of the glacial
warming status on the TP. As mentioned in Sect. 3.3, long-
term continuous SAT observations at some stations need to
be selected as basis functions. In principle, the more the num-
ber of basis functions, the better the reconstructed results.
In fact, the number of such basis functions is scant, because
harsh natural conditions often cause failure of measuring in-
struments and thus observations are missed. So, a total of 18
regular weather stations, at which there are no missing obser-
vations in 1961–2020, are selected out of 145 stations as ba-
sis functions (Fig. 8). It is notable that the temporal extension
is performed on a monthly basis, and the annually averaged
values are just presented for illustration. As can be seen, the
spatial variabilities of these basis functions are rather strik-
ing (Fig. 1), but the temporal variabilities show similarities
to some degree. For example, the SAT differences between
stations 52 062 and 56 034 can attain more than 12.0 ◦C due
to their distinct elevations and long distance. Before the re-
construction is performed for every glacier pixel, five ideal
experiments are conducted at the pixel, where the glacier sta-
tion SETP1 is located, in order to substantiate the efficacy
of the reconstruction algorithm. The procedure for each ex-

periment consists of three steps. Firstly, the observation pe-
riod (2006–2020) is partitioned into two parts. Secondly, the
glacial satellite SAT estimates in the later part are used to
evaluate the extension coefficients β in Eq. (5). Thirdly, the
glacial station SAT observations in the earlier part are used to
validate the reconstructed SATs. The difference among these
five experiments lies in the various years to separate the ob-
servation period. The separation years are 2013, 2011, 2009,
2007, and 2005. As can be seen in Fig. 9a1, b1, c1, c1, and
e1, the number of satellite SAT estimates, which is used to
compute the extension coefficients, increases with the sepa-
ration year moving forward, and accordingly the number of
station SAT observations declines. At the same time, the val-
idation accuracy (RMSE, MBE, and R2) gradually improves
in the first four experiments as shown in Fig. 9a2, b2, c2, and
d2. It is notable that no validation is performed for the fifth
experiment, since the separation year of 2005 means that all
satellite SAT estimates in the observation period are used in
evaluating the extension coefficients.

As a matter of fact, in the five ideal experiments, the
temporal extension process can produce not only the recon-
structed SATs in the time period in which no satellite SAT
estimates exist but also the ones in the period when satellite
SATs are available. These reconstructed SATs in the latter
period can be regarded as being smoothed. Figure 10a–e il-
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Figure 11. Warming trends over glaciers of the Tibetan Plateau from 1961–2020. (a) Annual anomalies of surface air temperatures over all
glaciers and (b) spatial pattern of glacial warming trends.

lustrates the comparison between all reconstructed SATs and
observed SATs for the five ideal experiments. As shown in
Fig. 10f, the comprehensive error metric (DISO) becomes
better with the number of satellite SAT estimates rising. The
ideal experiments are performed only at one glacier station
with a long-term series of observations, and such experi-
ments cannot be done at other glacier stations due to the
lack of SAT observations. However, these ideal experiments
demonstrate that the presented reconstruction algorithm can
restore the historical SATs on glaciers with high accuracy.

4.3 Glacial warming pattern

Both annual means and anomalies of reconstructed SATs at
each glaciated pixel are calculated for the period of 1961 to
2020. Then, the anomalies are averaged over all glaciated
pixels to obtain the holistic warming trend of the glaciated
area on the TP. As can be seen in Fig. 11a, the glaciated areas
on the TP have undergone rapid warming in the past 60 years
with a warming rate of 0.024 ◦C yr−1 at the 95 % confidence
level. It is also found that the coldest and warmest SATs oc-
cur in 1967 and 2016 with averaged values of−11.20 ◦C and

−9.33 ◦C, respectively. In order to obtain a complete under-
standing of the warming pattern in space, the warming trends
for each glaciated pixel are illustrated in Fig. 11b. Except for
a few glaciers in the southeast, the warming happens over
almost all glaciers on the TP but at the same time exhibits
a spatial heterogeneity, being more pronounced in the north.
The maximum warming rate reaches 0.07◦C yr−1, appearing
over the glaciers in the central Karakorum Mountains located
in the northwestern part of the TP. The cooling occurs over
the glaciers of the western Himalayas in the southwest of the
TP and the glaciers of the Nyainqentanglha Mountains in the
south of the TP, but the cooling trends are not significant.

5 Data availability

The 60-year (1961–2020) glacial near-surface air tem-
perature dataset on the Tibetan Plateau is freely avail-
able from the National Tibetan Plateau Data Center
at https://doi.org/10.11888/Atmos.tpdc.272550 (Qin, 2022).
The dataset provides monthly estimates of near-surface air
temperature within 67.67–104.67◦ E and 26.01–40.00◦ N at
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a spatial resolution of 1 km in units of ◦C. All files are stored
in GeoTIFF format with a datum of WGS84. Each file is
named “yyyymm.tif”, where “yyyy” and “mm” denote year
and month, respectively. For example, the file “196101.tif”
stores the glacial monthly near-surface air temperature on the
Tibetan Plateau in January 1961.

6 Summary

The shortage of long-term glacial SATs with high spatial res-
olution has seriously hindered a deep understanding of the
glacial warming status on the TP. On the basis of MODIS
LST products and station SAT observations, we develop
an ensemble learning algorithm with a random forest be-
ing the base learner to convert MODIS LSTs to SATs over
the glaciers of the TP from 2002 to 2020. The glacial satel-
lite SAT estimates are validated against glacial station SAT
observations with RMSE, MBE, and R2 equal to 1.61 ◦C,
0.21 ◦C, and 0.93 ◦C, respectively. At the same time, a series
of experiments are conducted to corroborate the effectiveness
of the temporal extension algorithm. Afterwards, long-term
SATs between 1961 and 2020 are reconstructed for all the
glacier pixels over the TP. Based on the reconstructed SATs,
the warming trend from 1961 to 2020 over all the glaciers
of the TP is equal to 0.024 ◦C yr−1 in the past 60 years. The
spatial warming pattern indicates that most of the glaciers
are undergoing a warming process with a maximum warm-
ing rate of 0.07 ◦C yr−1, and only a few glaciers in the south-
eastern part of the TP exhibit an insignificant cooling trend.
Overall, this study alleviates the problem of being short of
long-term SAT data over the glaciers of the TP. The recon-
structed SAT dataset can strongly underpin climate change
and modeling research on glaciers of the TP. In the future,
we intend to enhance the temporal resolution of the glacial
SAT dataset to a daily scale and implement the spatial exten-
sion outside of the TP to other ice-covered areas in the world,
such as the North and South poles.
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