Articles | Volume 15, issue 7
https://doi.org/10.5194/essd-15-3095-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/essd-15-3095-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Measurements and modeling of water levels, currents, density, and wave climate on a semi-enclosed tidal bay, Cádiz (southwest Spain)
Departamento de Ingeniería Aeroespacial y Mecánica de Fluidos, Universidad de Sevilla, Camino de los Descubrimientos s/n, 41092, Seville, Spain
Alejandro López-Ruiz
Departamento de Ingeniería Aeroespacial y Mecánica de Fluidos, Universidad de Sevilla, Camino de los Descubrimientos s/n, 41092, Seville, Spain
María Bermúdez
Andalusian Institute for Earth System Research, University of Granada, Avda. del Mediterráneo, s/n, 18006 Granada, Spain
Miguel Ortega-Sánchez
Andalusian Institute for Earth System Research, University of Granada, Avda. del Mediterráneo, s/n, 18006 Granada, Spain
Related authors
Francesco Ferrari, Carmen Zarzuelo, Alejandro López-Ruiz, and Andrea Lira-Loarca
Earth Syst. Sci. Data, 17, 4881–4900, https://doi.org/10.5194/essd-17-4881-2025, https://doi.org/10.5194/essd-17-4881-2025, 2025
Short summary
Short summary
A high-resolution, freely available dataset is provided for Deception Island, Antarctica, covering the years 2005 to 2020. It is based on the Weather Research and Forecasting (WRF) atmospheric model and the Delft3D hydrodynamic model. The dataset includes detailed information on weather and ocean conditions, helping to improve understanding of Antarctic coastal changes and their links to climate change.
Francesco Ferrari, Carmen Zarzuelo, Alejandro López-Ruiz, and Andrea Lira-Loarca
Earth Syst. Sci. Data, 17, 4881–4900, https://doi.org/10.5194/essd-17-4881-2025, https://doi.org/10.5194/essd-17-4881-2025, 2025
Short summary
Short summary
A high-resolution, freely available dataset is provided for Deception Island, Antarctica, covering the years 2005 to 2020. It is based on the Weather Research and Forecasting (WRF) atmospheric model and the Delft3D hydrodynamic model. The dataset includes detailed information on weather and ocean conditions, helping to improve understanding of Antarctic coastal changes and their links to climate change.
Cited articles
Alahmed, S., Ross, L., and Smith, S.: Coastal Hydrodynamics and Timescales in
Meso-Macrotidal Estuaries in the Gulf of Maine: a Model Study, Estuar.
Coast., 45, 1888–1908, 2022. a
Asari, N., Suratman, M. N., Mohd Ayob, N. A., and Abdul Hamid, N. H.: Mangrove
as a Natural Barrier to Environmental Risks and Coastal Protection, in:
Mangroves: Ecology, Biodiversity and Management Springer, 305–322, https://doi.org/10.1007/978-981-16-2494-0_13,
2021. a
Baar, A., Boechat Albernaz, M., Van Dijk, W., and Kleinhans, M.: Critical
dependence of morphodynamic models of fluvial and tidal systems on empirical
downslope sediment transport, Nat. Commun., 10, 1–12, 2019. a
Battjes, J. A. and Janssen, J.: Energy loss and set-up due to breaking of
random waves, Coastal Engineering Proceedings, 32–32, https://doi.org/10.1061/9780872621909.034, 1978. a
Besada, V., Bellas, J., Sánchez-Marín, P., Bernárdez, P., and
Schultze, F.: Metal and metalloid pollution in shelf sediments from the Gulf
of Cádiz (Southwest Spain): Long-lasting effects of a historical mining
area, Environ. Pollut., 295, 118675, https://doi.org/10.1016/j.envpol.2021.118675, 2022. a
Booij, N., Ris, R. C., and Holthuijsen, L. H.: A third-generation wave model
for coastal regions: 1. Model description and validation, J.
Geophys. Res.-Oceans, 104, 7649–7666, 1999. a
Chanudet, V., Fabre, V., and van der Kaaij, T.: Application of a three-dimensional hydrodynamic model to the Nam Theun 2 Reservoir (Lao PDR), J. Great Lakes Res., 38, 260–269, https://doi.org/10.1016/j.jglr.2012.01.008, 2012. a
Cisneros-Montemayor, A. M., Moreno-Báez, M., Reygondeau, G., Cheung, W. W., Crosman, K. M., González-Espinosa, P. C., Lam, V. W. Y., Oyinlola, M. A., Singh, G. C., Swartz, W., Zheng, C., and Ota, Y.: Enabling conditions for an equitable and sustainable blue economy, Nature, 591, 396–401,
https://doi.org/10.1038/s41586-021-03327-3, 2021. a
D'Alpaos, A.: The mutual influence of biotic and abiotic components on the
long-term ecomorphodynamic evolution of salt-marsh ecosystems, Geomorphology,
126, 269–278, 2011. a
Del-Rosal-Salido, J., Folgueras, P., Bermudez, M., Ortega-Sanchez, M., and
Losada, M. A.: Flood management challenges in transitional environments:
Assessing the effects of sea-level rise on compound flooding in the 21st
century, Coast. Eng., 167, 103872, https://doi.org/10.1016/j.coastaleng.2021.103872, 2021. a
de Wit, F., Tissier, M., and Reniers, A.: Characterizing wave shape evolution
on an ebb-tidal shoal, J. Mar. Sci. Eng., 7, 367, https://doi.org/10.3390/jmse7100367,
2019. a
Downing, J.: Twenty-five years with OBS sensors: The good, the bad, and the
ugly, Cont. Shelf Res., 26, 2299–2318, 2006. a
Egbert, G. D. andErofeeva, S. Y.: Efficient inverse modeling of barotropic ocean tides, J. Atmos. Ocean. Tech., 19, 183–204, https://doi.org/10.1175/1520-0426(2002)019<0183:EIMOBO>2.0.CO;2, 2002. a
Eldeberky, Y. and Battjes, J. A.: Spectral modeling of wave breaking:
Application to Boussinesq equations, J. Geophys. Res.-Oceans,
101, 1253–1264, 1996. a
Eryani, I. and Nurhamidah, N.: Sedimentation management strategy in river
estuary for control the water damage in downstream of Ayung River,
International Journal on Advanced Science, Engineering and Information
Technology, 10, 743–748, 2020. a
Garel, E. and Ferreira, Ó.: Multi-year high-frequency physical and environmental observations at the Guadiana Estuary, Earth Syst. Sci. Data, 7, 299–309, https://doi.org/10.5194/essd-7-299-2015, 2015. a, b
Gill, A. and Adrian, E.: Atmosphere-ocean dynamics, Academic press, 30, ISBN 978-0-12-283520-9, 1982. a
Gomez, B. and Church, M.: An assessment of bed load sediment transport formulae for gravel bed rivers, Water Resour. Res., 25, 1161–1186, https://doi.org/10.1029/WR025i006p01161, 1989. a
Gracia, F., Alonso, C., and Abarca, J.: Geomorphology and historical evolution
of salt exploitations in salt marshes. Examples from the bay of Cadiz,
Cuaternario y Geomorfologia, 31, 45–72, 2017. a
Haasnoot, M., Brown, S., Scussolini, P., Jimenez, J. A., Vafeidis, A. T., and
Nicholls, R. J.: Generic adaptation pathways for coastal archetypes under
uncertain sea-level rise, Environ. Res. Commun., 1, 071006, https://doi.org/10.1088/2515-7620/ab1871,
2019. a
Haro, S., Jesus, B., Oiry, S., Papaspyrou, S., Lara, M., González, C., and
Corzo, A.: Microphytobenthos spatio-temporal dynamics across an intertidal
gradient using Random Forest classification and Sentinel-2 imagery, Sci.
Total Environ., 804, 149983, https://doi.org/10.1016/j.scitotenv.2021.149983, 2022. a
Hasselmann, K., Barnett, T. P., Bouws, E., Carlson, H., Cartwright, D. E.,
Enke, K., Ewing, J., Gienapp, A., Hasselmann, D., Kruseman, P., Meerburg, A Müller, P., Olber, D. J., Richter, K., Sell, W., and Walden, H.:
Measurements of wind-wave growth and swell decay during the Joint North Sea
Wave Project (JONSWAP), Ergaenzungsheft zur Deutschen Hydrographischen
Zeitschrift, Reihe A, 12, https://doi.org/21.11116/0000-0007-DD3C-E, 1973. a
Hobohm, C., Schaminée, J., and van Rooijen, N.: Coastal habitats, shallow
seas and inland saline steppes: ecology, distribution, threats and
challenges, in: Perspectives for Biodiversity and Ecosystems,
Springer, 279–310, https://doi.org/10.1007/978-3-030-57710-0_12, 2021. a
Hopkinson, C. S., Wolanski, E., Cahoon, D. R., Perillo, G. M., and Brinson,
M. M.: Coastal wetlands: A synthesis, in: Coastal Wetlands,
Elsevier, 1–75, https://doi.org/10.1016/B978-0-444-63893-9.00001-0, 2019. a
Jiménez-Arias, J. L., Morris, E., Rubio-de Inglés, M. J., Peralta, G.,
García-Robledo, E., Corzo, A., and Papaspyrou, S.: Tidal elevation is
the key factor modulating burial rates and composition of organic matter in a
coastal wetland with multiple habitats, Sci. Total Environ.,
724, 138205, https://doi.org/10.1016/j.scitotenv.2020.138205, 2020. a
Kitheka, J. U.: Coastal tidally-driven circulation and the role of water
exchange in the linkage between tropical coastal ecosystems, Estuar.
Coast. Shelf S., 45, 177–187, 1997. a
Komen, G., Hasselmann, S., and Hasselmann, K.: On the existence of a fully
developed wind-sea spectrum, J. Phys. Oceanogr., 14,
1271–1285, 1984. a
Lee, H.-J., Chao, S.-Y., Fan, K.-L., Wang, Y.-H., and Liang, N.-K.: Tidally
induced upwelling in a semi-enclosed basin: Nan Wan Bay, J.
Oceanogr., 53, 467–480, 1997. a
Legaz, M., de León, S. P., and Soares, C. G.: Validation of a spectral wave
model for wave energy assessments in the bay of Cádiz, in: Developments
in Renewable Energies Offshore, CRC Press, 38–44, ISBN 978-0-367-68131-9, 2020. a
Li, P., Li, G., Qiao, L., Chen, X., Shi, J., Gao, F., Wang, N., and Yue, S.:
Modeling the tidal dynamic changes induced by the bridge in Jiaozhou Bay,
Qingdao, China, Cont. Shelf Res., 84, 43–53, 2014. a
Lobo, F., Plaza, F., González, R., Dias, J., Kapsimalis, V., Mendes, I., and
Díaz del Río, V.: Estimations of bedload sediment transport in the
Guadiana Estuary (SW Iberian Peninsula) during low river discharge periods,
J. Coast. Res., 41, 12–26, 2004. a
Miró, J., Megina, C., Donázar-Aramendía, I., Reyes-Martínez,
M., Sánchez-Moyano, J., and García-Gómez, J.: Environmental
factors affecting the nursery function for fish in the main estuaries of the
Gulf of Cadiz (south-west Iberian Peninsula), Sci. Total
Environ., 737, 139614, https://doi.org/10.1016/j.scitotenv.2020.139614, 2020. a
Morales, J., Delgado, I., and Gutierrez-Mas, J.: Sedimentary characterization
of bed types along the Guadiana estuary (SW Europe) before the construction
of the Alqueva dam, Estuar. Coast. Shelf S., 70, 117–131, 2006. a
Newton, A., Icely, J., Cristina, S., Brito, A., Cardoso, A. C., Colijn, F.,
Dalla Riva, S., Gertz, F., Hansen, J. W., Holmer, M., Ivanova, K., Leppäkoski, E., Melaku Canu, D., Mocenni, C., Mudge, S., Murray, C., Pejrup, M., Razinkovas, A., Reizopoulou, S., Pérez-ruzafa, A., Schernewski, G., Schubert, H., Carr, L., Solidoro, C., Viaroli, P., and Zaldívar, J.-M.: An overview of
ecological status, vulnerability and future perspectives of European large
shallow, semi-enclosed coastal systems, lagoons and transitional waters,
Estuar. Coast. Shelf S., 140, 95–122, 2014. a
Nielsen, P.: Analysis of natural waves by local approximations, J.
Waterw. Port C. Ocean Eng., 115, 384–396, 1989. a
O'brien, S.: On Marangoni drying: nonlinear kinematic waves in a thin film,
J. Fluid Mech., 254, 649–670, 1993. a
Olabarrieta, M., Warner, J. C., and Kumar, N.: Wave-current interaction in
Willapa Bay, J. Geophys. Res.-Oceans, 116, C12014, https://doi.org/10.1029/2011JC007387, 2011. a
Purkiani, K., Becherer, J., Klingbeil, K., and Burchard, H.: Wind-induced
variability of estuarine circulation in a tidally energetic inlet with
curvature, J. Geophys. Res.-Oceans, 121, 3261–3277, 2016. a
Reeve, D., Chadwick, A., and Fleming, C.: Coastal engineering: processes,
theory and design practice, CRC Press, ISBN 978-1-138-06042-5, 2018. a
Ris, R., Holthuijsen, L., and Booij, N.: A third-generation wave model for
coastal regions: 2. Verification, J. Geophys. Res.-Oceans,
104, 7667–7681, 1999. a
Schoen, J. H., Stretch, D. D., and Tirok, K.: Wind-driven circulation patterns
in a shallow estuarine lake: St Lucia, South Africa, Estuar. Coast.
Shelf S., 146, 49–59, 2014. a
Schoellhamer, D. H., Ganju, N. K., Mineart, P. R., and Lionberger, M. A.: Sensitivity and spin-up times of cohesive sediment transport models used to simulate bathymetric change, Proc. Mar. Sci., 9, 463–475,
https://doi.org/10.1016/S1568-2692(08)80033-2, 2008. a
Shang, J., Sun, J., Tao, L., Li, Y., Nie, Z., Liu, H., Chen, R., and Yuan, D.:
Combined effect of tides and wind on water exchange in a semi-enclosed
shallow sea, Water, 11, 1762, https://doi.org/10.3390/w11091762, 2019. a
Su, D., Wen, L., Gao, X., Leppäranta, M., Song, X., Shi, Q., and Kirillin, G.: Effects of the largest lake of the Tibetan Plateau on the regional climate, J. Geophys. Res.-Atmos., 125, e2020JD033396,
https://doi.org/10.1029/2020JD033396, 2020. a
van Maren, D. S. and Cronin, K.: Uncertainty in complex three-dimensional
sediment transport models: equifinality in a model application of the Ems
Estuary, the Netherlands, Ocean Dynam., 66, 1665–1679, 2016. a
Van Rijn, L. C.: Unified view of sediment transport by currents and waves. I:
Initiation of motion, bed roughness, and bed-load transport, J.
Hydraul. Eng., 133, 649–667, 2007. a
Weisscher, S. A. H., Boechat-Albernaz, M., Leuven, J. R. F. W., Van Dijk, W. M., Shimizu, Y., and Kleinhans, M. G.: Complementing scale experiments of rivers and estuaries with numerically modelled hydrodynamics, Earth Surf. Dynam., 8, 955–972, https://doi.org/10.5194/esurf-8-955-2020, 2020. a, b
Yang, Z., Wang, T., Voisin, N., and Copping, A.: Estuarine response to river
flow and sea-level rise under future climate change and human development,
Estuar. Coast. Shelf S., 156, 19–30, 2015. a
Zarzuelo, C., D’Alpaos, A., Carniello, L., López-Ruiz, A.,
Díez-Minguito, M., and Ortega-Sánchez, M.: Natural and human-induced
flow and sediment transport within tidal creek networks influenced by
ocean-bay tides, Water, 11, 1493, https://doi.org/10.3390/w11071493, 2019. a
Zarzuelo, C., López-Ruiz, A., Valle-Levinson, A., Díez-Minguito, M.,
and Ortega-Sánchez, M.: Bridge-piling modifications on tidal flows in an
estuary, Coast. Eni., 173, 104093, https://doi.org/10.1016/j.coastaleng.2022.104093, 2022a. a, b
Zarzuelo, C., López-Ruiz, A., Bermúdez, M., and Ortega-Sánchez, M.:
Hydrodynamic data for the Bay of Cádiz (southern Spain), Zenodo [data set],
https://doi.org/10.5281/zenodo.7484187, 2022b. a, b
Short summary
This paper presents a hydrodynamic dataset for the Bay of Cádiz in southern Spain, a paradigmatic example of a tidal bay of complex geometry under high anthropogenic pressure. The dataset brings together measured and modeled data on water levels, currents, density, and waves for the period 2012–2015. It allows the characterization of the bay dynamics from intratidal to seasonal scales. Potential applications include the study of ocean–bay interactions, wave propagation, or energy assessments.
This paper presents a hydrodynamic dataset for the Bay of Cádiz in southern Spain, a...
Altmetrics
Final-revised paper
Preprint