Articles | Volume 15, issue 7
https://doi.org/10.5194/essd-15-2827-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/essd-15-2827-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Past and future discharge and stream temperature at high spatial resolution in a large European basin (Loire basin, France)
Hanieh Seyedhashemi
CORRESPONDING AUTHOR
INRAE, UR RiverLy, 5 rue de la Doua CS 20244, 69625 Villeurbanne, France
EA 6293 GéoHydrosystèmes COntinentaux, Université François-Rabelais de Tours, Parc de Grandmont, 37200 Tours, France
Florentina Moatar
INRAE, UR RiverLy, 5 rue de la Doua CS 20244, 69625 Villeurbanne, France
Jean-Philippe Vidal
INRAE, UR RiverLy, 5 rue de la Doua CS 20244, 69625 Villeurbanne, France
Dominique Thiéry
BRGM, Bureau de Recherches Géologiques et Minières, BP 6009 45060 Orléans CEDEX 2, France
Related authors
Hanieh Seyedhashemi, Jean-Philippe Vidal, Jacob S. Diamond, Dominique Thiéry, Céline Monteil, Frédéric Hendrickx, Anthony Maire, and Florentina Moatar
Hydrol. Earth Syst. Sci., 26, 2583–2603, https://doi.org/10.5194/hess-26-2583-2022, https://doi.org/10.5194/hess-26-2583-2022, 2022
Short summary
Short summary
Stream temperature appears to be increasing globally, but its rate remains poorly constrained due to a paucity of long-term data. Using a thermal model, this study provides a large-scale understanding of the evolution of stream temperature over a long period (1963–2019). This research highlights that air temperature and streamflow can exert joint influence on stream temperature trends, and riparian shading in small mountainous streams may mitigate warming in stream temperatures.
Guillaume Evin, Benoit Hingray, Guillaume Thirel, Agnès Ducharne, Laurent Strohmenger, Lola Corre, Yves Tramblay, Jean-Philippe Vidal, Jérémie Bonneau, François Colleoni, Joël Gailhard, Florence Habets, Frédéric Hendrickx, Louis Héraut, Peng Huang, Matthieu Le Lay, Claire Magand, Paola Marson, Céline Monteil, Simon Munier, Alix Reverdy, Jean-Michel Soubeyroux, Yoann Robin, Jean-Pierre Vergnes, Mathieu Vrac, and Eric Sauquet
EGUsphere, https://doi.org/10.5194/egusphere-2025-2727, https://doi.org/10.5194/egusphere-2025-2727, 2025
This preprint is open for discussion and under review for Hydrology and Earth System Sciences (HESS).
Short summary
Short summary
Explore2 provides hydrological projections for 1,735 French catchments. Using QUALYPSO, this study assesses uncertainties, including internal variability. By the end of the century, low flows are projected to decline in southern France under high emissions, while other indicators remain uncertain. Emission scenarios and regional climate models are key uncertainty sources. Internal variability is often as large as climate-driven changes.
Eric Sauquet, Guillaume Evin, Sonia Siauve, Ryma Aissat, Patrick Arnaud, Maud Bérel, Jérémie Bonneau, Flora Branger, Yvan Caballero, François Colléoni, Agnès Ducharne, Joël Gailhard, Florence Habets, Frédéric Hendrickx, Louis Héraut, Benoît Hingray, Peng Huang, Tristan Jaouen, Alexis Jeantet, Sandra Lanini, Matthieu Le Lay, Claire Magand, Louise Mimeau, Céline Monteil, Simon Munier, Charles Perrin, Olivier Robelin, Fabienne Rousset, Jean-Michel Soubeyroux, Laurent Strohmenger, Guillaume Thirel, Flore Tocquer, Yves Tramblay, Jean-Pierre Vergnes, and Jean-Philippe Vidal
EGUsphere, https://doi.org/10.5194/egusphere-2025-1788, https://doi.org/10.5194/egusphere-2025-1788, 2025
This preprint is open for discussion and under review for Hydrology and Earth System Sciences (HESS).
Short summary
Short summary
The Explore2 project has provided an unprecedented set of hydrological projections in terms of the number of hydrological models used and the spatial and temporal resolution. The results have been made available through various media. Under the high-emission scenario, the hydrological models mostly agree on the decrease in seasonal flows in the south of France, confirming its hotspot status, and on the decrease in summer flows throughout France, with the exception of the northern part of France.
An Truong Nguyen, Gwenaël Abril, Jacob S. Diamond, Raphaël Lamouroux, Cécile Martinet, and Florentina Moatar
EGUsphere, https://doi.org/10.5194/egusphere-2025-1478, https://doi.org/10.5194/egusphere-2025-1478, 2025
Short summary
Short summary
This 32-year study of France’s Loire River shows cleaner water reduced carbon dioxide emissions by 62 %, despite increased contributions from aquatic plant activity. Seasonal emissions were higher in autumn than spring, while long-term declines were driven by reduced external carbon inputs from groundwater and soils. Results highlight how ecosystem changes influence rivers' role in global carbon cycles and climate management.
Louise Mimeau, Annika Künne, Alexandre Devers, Flora Branger, Sven Kralisch, Claire Lauvernet, Jean-Philippe Vidal, Núria Bonada, Zoltán Csabai, Heikki Mykrä, Petr Pařil, Luka Polović, and Thibault Datry
Hydrol. Earth Syst. Sci., 29, 1615–1636, https://doi.org/10.5194/hess-29-1615-2025, https://doi.org/10.5194/hess-29-1615-2025, 2025
Short summary
Short summary
Our study projects how climate change will affect the drying of river segments and stream networks in Europe, using advanced modelling techniques to assess changes in six river networks across diverse ecoregions. We found that drying events will become more frequent and intense and will start earlier or last longer, potentially turning some river sections from perennial to intermittent. The results are valuable for river ecologists for evaluating the ecological health of river ecosystem.
Riccardo Biella, Ansastasiya Shyrokaya, Monica Ionita, Raffaele Vignola, Samuel Sutanto, Andrijana Todorovic, Claudia Teutschbein, Daniela Cid, Maria Carmen Llasat, Pedro Alencar, Alessia Matanó, Elena Ridolfi, Benedetta Moccia, Ilias Pechlivanidis, Anne van Loon, Doris Wendt, Elin Stenfors, Fabio Russo, Jean-Philippe Vidal, Lucy Barker, Mariana Madruga de Brito, Marleen Lam, Monika Bláhová, Patricia Trambauer, Raed Hamed, Scott J. McGrane, Serena Ceola, Sigrid Jørgensen Bakke, Svitlana Krakovska, Viorica Nagavciuc, Faranak Tootoonchi, Giuliano Di Baldassarre, Sandra Hauswirth, Shreedhar Maskey, Svitlana Zubkovych, Marthe Wens, and Lena Merete Tallaksen
EGUsphere, https://doi.org/10.5194/egusphere-2024-2069, https://doi.org/10.5194/egusphere-2024-2069, 2024
Short summary
Short summary
This research by the Drought in the Anthropocene (DitA) network highlights gaps in European drought management exposed by the 2022 drought and proposes a new direction. Using a Europe-wide survey of water managers, we examine four areas: increasing drought risk, impacts, drought management strategies, and their evolution. Despite growing risks, management remains fragmented and short-term. However, signs of improvement suggest readiness for change. We advocate for a European Drought Directive.
Alexandre Devers, Jean-Philippe Vidal, Claire Lauvernet, Olivier Vannier, and Laurie Caillouet
Hydrol. Earth Syst. Sci., 28, 3457–3474, https://doi.org/10.5194/hess-28-3457-2024, https://doi.org/10.5194/hess-28-3457-2024, 2024
Short summary
Short summary
Daily streamflow series for 661 near-natural French catchments are reconstructed over 1871–2012 using two ensemble datasets: HydRE and HydREM. They include uncertainties coming from climate forcings, streamflow measurement, and hydrological model error (for HydrREM). Comparisons with other hydrological reconstructions and independent/dependent observations show the added value of the two reconstructions in terms of quality, uncertainty estimation, and representation of extremes.
Louise Mimeau, Annika Künne, Flora Branger, Sven Kralisch, Alexandre Devers, and Jean-Philippe Vidal
Hydrol. Earth Syst. Sci., 28, 851–871, https://doi.org/10.5194/hess-28-851-2024, https://doi.org/10.5194/hess-28-851-2024, 2024
Short summary
Short summary
Modelling flow intermittence is essential for predicting the future evolution of drying in river networks and better understanding the ecological and socio-economic impacts. However, modelling flow intermittence is challenging, and observed data on temporary rivers are scarce. This study presents a new modelling approach for predicting flow intermittence in river networks and shows that combining different sources of observed data reduces the model uncertainty.
Laurent Strohmenger, Eric Sauquet, Claire Bernard, Jérémie Bonneau, Flora Branger, Amélie Bresson, Pierre Brigode, Rémy Buzier, Olivier Delaigue, Alexandre Devers, Guillaume Evin, Maïté Fournier, Shu-Chen Hsu, Sandra Lanini, Alban de Lavenne, Thibault Lemaitre-Basset, Claire Magand, Guilherme Mendoza Guimarães, Max Mentha, Simon Munier, Charles Perrin, Tristan Podechard, Léo Rouchy, Malak Sadki, Myriam Soutif-Bellenger, François Tilmant, Yves Tramblay, Anne-Lise Véron, Jean-Philippe Vidal, and Guillaume Thirel
Hydrol. Earth Syst. Sci., 27, 3375–3391, https://doi.org/10.5194/hess-27-3375-2023, https://doi.org/10.5194/hess-27-3375-2023, 2023
Short summary
Short summary
We present the results of a large visual inspection campaign of 674 streamflow time series in France. The objective was to detect non-natural records resulting from instrument failure or anthropogenic influences, such as hydroelectric power generation or reservoir management. We conclude that the identification of flaws in flow time series is highly dependent on the objectives and skills of individual evaluators, and we raise the need for better practices for data cleaning.
Alexandre Devers, Jean-Philippe Vidal, Claire Lauvernet, Olivier Vannier, and Laurie Caillouet
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2023-78, https://doi.org/10.5194/hess-2023-78, 2023
Publication in HESS not foreseen
Short summary
Short summary
The recent development of the a new meteorological dataset providing precipitation and temperature over France – FYRE Climate – has been transformed to streamflow time series over 1871–2012 through the used of a hydrological model. This led to the creation of the daily hydrological reconstructions called HyDRE and HyDRE. These two reconstructions are evaluated allow to better understand the variability of past hydrology over France.
Eva Sebok, Hans Jørgen Henriksen, Ernesto Pastén-Zapata, Peter Berg, Guillaume Thirel, Anthony Lemoine, Andrea Lira-Loarca, Christiana Photiadou, Rafael Pimentel, Paul Royer-Gaspard, Erik Kjellström, Jens Hesselbjerg Christensen, Jean Philippe Vidal, Philippe Lucas-Picher, Markus G. Donat, Giovanni Besio, María José Polo, Simon Stisen, Yvan Caballero, Ilias G. Pechlivanidis, Lars Troldborg, and Jens Christian Refsgaard
Hydrol. Earth Syst. Sci., 26, 5605–5625, https://doi.org/10.5194/hess-26-5605-2022, https://doi.org/10.5194/hess-26-5605-2022, 2022
Short summary
Short summary
Hydrological models projecting the impact of changing climate carry a lot of uncertainty. Thus, these models usually have a multitude of simulations using different future climate data. This study used the subjective opinion of experts to assess which climate and hydrological models are the most likely to correctly predict climate impacts, thereby easing the computational burden. The experts could select more likely hydrological models, while the climate models were deemed equally probable.
Aurélien Beaufort, Jacob S. Diamond, Eric Sauquet, and Florentina Moatar
Hydrol. Earth Syst. Sci., 26, 3477–3495, https://doi.org/10.5194/hess-26-3477-2022, https://doi.org/10.5194/hess-26-3477-2022, 2022
Short summary
Short summary
We developed one of the largest stream temperature databases to calculate a simple, ecologically relevant metric – the thermal peak – that captures the magnitude of summer thermal extremes. Using statistical models, we extrapolated the thermal peak to nearly every stream in France, finding the hottest thermal peaks along large rivers without forested riparian zones and groundwater inputs. Air temperature was a poor proxy for the thermal peak, highlighting the need to grow monitoring networks.
Veit Blauhut, Michael Stoelzle, Lauri Ahopelto, Manuela I. Brunner, Claudia Teutschbein, Doris E. Wendt, Vytautas Akstinas, Sigrid J. Bakke, Lucy J. Barker, Lenka Bartošová, Agrita Briede, Carmelo Cammalleri, Ksenija Cindrić Kalin, Lucia De Stefano, Miriam Fendeková, David C. Finger, Marijke Huysmans, Mirjana Ivanov, Jaak Jaagus, Jiří Jakubínský, Svitlana Krakovska, Gregor Laaha, Monika Lakatos, Kiril Manevski, Mathias Neumann Andersen, Nina Nikolova, Marzena Osuch, Pieter van Oel, Kalina Radeva, Renata J. Romanowicz, Elena Toth, Mirek Trnka, Marko Urošev, Julia Urquijo Reguera, Eric Sauquet, Aleksandra Stevkov, Lena M. Tallaksen, Iryna Trofimova, Anne F. Van Loon, Michelle T. H. van Vliet, Jean-Philippe Vidal, Niko Wanders, Micha Werner, Patrick Willems, and Nenad Živković
Nat. Hazards Earth Syst. Sci., 22, 2201–2217, https://doi.org/10.5194/nhess-22-2201-2022, https://doi.org/10.5194/nhess-22-2201-2022, 2022
Short summary
Short summary
Recent drought events caused enormous damage in Europe. We therefore questioned the existence and effect of current drought management strategies on the actual impacts and how drought is perceived by relevant stakeholders. Over 700 participants from 28 European countries provided insights into drought hazard and impact perception and current management strategies. The study concludes with an urgent need to collectively combat drought risk via a European macro-level drought governance approach.
Hanieh Seyedhashemi, Jean-Philippe Vidal, Jacob S. Diamond, Dominique Thiéry, Céline Monteil, Frédéric Hendrickx, Anthony Maire, and Florentina Moatar
Hydrol. Earth Syst. Sci., 26, 2583–2603, https://doi.org/10.5194/hess-26-2583-2022, https://doi.org/10.5194/hess-26-2583-2022, 2022
Short summary
Short summary
Stream temperature appears to be increasing globally, but its rate remains poorly constrained due to a paucity of long-term data. Using a thermal model, this study provides a large-scale understanding of the evolution of stream temperature over a long period (1963–2019). This research highlights that air temperature and streamflow can exert joint influence on stream temperature trends, and riparian shading in small mountainous streams may mitigate warming in stream temperatures.
Manuel Fossa, Bastien Dieppois, Nicolas Massei, Matthieu Fournier, Benoit Laignel, and Jean-Philippe Vidal
Hydrol. Earth Syst. Sci., 25, 5683–5702, https://doi.org/10.5194/hess-25-5683-2021, https://doi.org/10.5194/hess-25-5683-2021, 2021
Short summary
Short summary
Hydro-climate observations (such as precipitation, temperature, and river discharge time series) reveal very complex behavior inherited from complex interactions among the physical processes that drive hydro-climate viability. This study shows how even small perturbations of a physical process can have large consequences on some others. Those interactions vary spatially, thus showing the importance of both temporal and spatial dimensions in better understanding hydro-climate variability.
Alexandre Devers, Jean-Philippe Vidal, Claire Lauvernet, and Olivier Vannier
Clim. Past, 17, 1857–1879, https://doi.org/10.5194/cp-17-1857-2021, https://doi.org/10.5194/cp-17-1857-2021, 2021
Short summary
Short summary
This article presents FYRE Climate, a dataset providing daily precipitation and temperature spanning the 1871–2012 period at 8 km resolution over France. FYRE Climate has been obtained through the combination of daily and yearly observations and a gridded reconstruction already available through a statistical technique called data assimilation. Results highlight the quality of FYRE Climate in terms of both long-term variations and reproduction of extreme events.
Stella Guillemot, Ophelie Fovet, Chantal Gascuel-Odoux, Gérard Gruau, Antoine Casquin, Florence Curie, Camille Minaudo, Laurent Strohmenger, and Florentina Moatar
Hydrol. Earth Syst. Sci., 25, 2491–2511, https://doi.org/10.5194/hess-25-2491-2021, https://doi.org/10.5194/hess-25-2491-2021, 2021
Short summary
Short summary
This study investigates the drivers of spatial variations in stream water quality in poorly studied headwater catchments and includes multiple elements involved in major water quality issues, such as eutrophication. We used a regional public dataset of monthly stream water concentrations monitored for 10 years over 185 agricultural catchments. We found a spatial and seasonal opposition between carbon and nitrogen concentrations, while phosphorus concentrations showed another spatial pattern.
Nicolas Massei, Daniel G. Kingston, David M. Hannah, Jean-Philippe Vidal, Bastien Dieppois, Manuel Fossa, Andreas Hartmann, David A. Lavers, and Benoit Laignel
Proc. IAHS, 383, 141–149, https://doi.org/10.5194/piahs-383-141-2020, https://doi.org/10.5194/piahs-383-141-2020, 2020
Short summary
Short summary
This paper presents recent thoughts by members of EURO-FRIEND Water project 3 “Large-scale-variations in hydrological characteristics” about research needed to characterize and understand large-scale hydrology under global changes. Emphasis is put on the necessary efforts to better understand 1 – the impact of low-frequency climate variability on hydrological trends and extremes, 2 – the role of basin properties on modulating the climate signal producing hydrological responses on the basin scale.
Kerstin Stahl, Jean-Philippe Vidal, Jamie Hannaford, Erik Tijdeman, Gregor Laaha, Tobias Gauster, and Lena M. Tallaksen
Proc. IAHS, 383, 291–295, https://doi.org/10.5194/piahs-383-291-2020, https://doi.org/10.5194/piahs-383-291-2020, 2020
Short summary
Short summary
Numerous indices exist for the description of hydrological drought, some are based on absolute thresholds of overall streamflows or water levels and some are based on relative anomalies with respect to the season. This article discusses paradigms and experiences with such index uses in drought monitoring and drought analysis to raise awareness of the different interpretations of drought severity.
Cited articles
Allen, R. G., Pereira, L. S., Raes, D., and Smith, M.: Crop
Evapotranspiration – Guidelines for computing crop water requirements,
FAO Irrigation and Drainage Paper 56, FAO,
https://appgeodb.nancy.inra.fr/biljou/pdf/Allen_FAO1998.pdf (last access: 3 July 2023), 1998. a
Arevalo, E., Lassalle, G., Tétard, S., Maire, A., Sauquet, E., Lambert, P.,
Paumier, A., Villeneuve, B., and Drouineau, H.: An innovative bivariate
approach to detect joint temporal trends in environmental conditions:
Application to large French rivers and diadromous fish, Sci. Total
Environ., 748, 141260, https://doi.org/10.1016/j.scitotenv.2020.141260, 2020. a, b
Arismendi, I., Safeeq, M., Johnson, S. L., Dunham, J. B., and Haggerty, R.:
Increasing synchrony of high temperature and low flow in western North
American streams: double trouble for coldwater biota?, Hydrobiologia, 712,
61–70, https://doi.org/10.1007/s10750-012-1327-2, 2013. a
Arora, R., Tockner, K., and Venohr, M.: Changing river temperatures in northern
Germany: trends and drivers of change, Hydrol. Process., 30,
3084–3096, https://doi.org/10.1002/hyp.10849, 2016. a, b
Bador, M., Terray, L., Boe, J., Somot, S., Alias, A., Gibelin, A.-L., and
Dubuisson, B.: Future summer mega-heatwave and record-breaking temperatures
in a warmer France climate, Environ. Res. Lett., 12, 074025,
https://doi.org/10.1088/1748-9326/aa751c, 2017. a
Beaufort, A., Curie, F., Moatar, F., Ducharne, A., Melin, E., and Thiéry, D.:
T-NET, a dynamic model for simulating daily stream temperature at the
regional scale based on a network topology, Hydrol. Process., 30,
2196–2210, https://doi.org/10.1002/hyp.10787, 2016a. a
Beaufort, A., Moatar, F., Curie, F., Ducharne, A., Bustillo, V., and
Thiéry, D.: River temperature modelling by Strahler order at the regional
scale in the Loire River basin, France, River Res. Appl., 32,
597–609, https://doi.org/10.1002/rra.2888, 2016b. a
Bustillo, V., Moatar, F., Ducharne, A., Thiéry, D., and Poirel, A.: A
multimodel comparison for assessing water temperatures under changing climate
conditions via the equilibrium temperature concept: case study of the Middle
Loire River, France, Hydrol. Process., 28, 1507–1524,
https://doi.org/10.1002/hyp.9683, 2014. a
Carlson, A. K., Taylor, W. W., Hartikainen, K. M., Infante, D. M., Beard,
T. D., and Lynch, A. J.: Comparing stream-specific to generalized temperature
models to guide salmonid management in a changing climate,
Rev. Fish Biol. Fisher., 27, 443–462,
https://doi.org/10.1007/s11160-017-9467-0, 2017. a
Colin, J., Déqué, M., Radu, R., and Somot, S.: Sensitivity study of
heavy precipitation in Limited Area Model climate simulations: influence of
the size of the domain and the use of the spectral nudging technique, Tellus
A, 62, 591–604,
https://doi.org/10.1111/j.1600-0870.2010.00467.x, 2010. a
Core Writing Team, Pachauri, R. K., and Meyer, L. A. (Eds.): Climate change
2014: synthesis report. Contribution of Working Groups I, II and III to the
fifth assessment report of the Intergovernmental Panel on Climate Change,
IPCC,
https://www.ipcc.ch/site/assets/uploads/2018/02/SYR_AR5_FINAL_full.pdf (last access: 3 July 2023),
2015. a, b
Cox, T. J. and Rutherford, J. C.: Predicting the effects of time-varying
temperatures on stream invertebrate mortality, New Zeal. J. Mar.
Fresh., 34, 209–215, https://doi.org/10.1080/00288330.2000.9516927,
2000. a
Du, X., Shrestha, N. K., and Wang, J.: Assessing climate change impacts on
stream temperature in the Athabasca River Basin using SWAT equilibrium
temperature model and its potential impacts on stream ecosystem, Sci.
Total Environ., 650, 1872–1881,
https://doi.org/10.1016/j.scitotenv.2018.09.344, 2019. a
Dufresne, J.-L., Foujols, M.-A., Denvil, S., Caubel, A., Marti, O., Aumont, O.,
Balkanski, Y., Bekki, S., Bellenger, H., Benshila, R., and and Bony, S.: Climate change
projections using the IPSL-CM5 Earth System Model: from CMIP3 to CMIP5,
Clim. Dynam., 40, 2123–2165,
https://doi.org/10.1007/s00382-012-1636-1, 2013. a
Dugdale, S. J., Hannah, D. M., and Malcolm, I. A.: River temperature modelling:
A review of process-based approaches and future directions, Earth-Sci.
Rev., 175, 97–113, https://doi.org/10.1016/j.earscirev.2017.10.009, 2017. a, b
Elliott, J. and Elliott, J.: Temperature requirements of Atlantic salmon Salmo
salar, brown trout Salmo trutta and Arctic charr Salvelinus alpinus:
predicting the effects of climate change, J. Fish Biol., 77,
1793–1817, https://doi.org/10.1111/j.1095-8649.2010.02762.x, 2010. a
Hannah, D. M. and Garner, G.: River water temperature in the United Kingdom:
changes over the 20th century and possible changes over the 21st century,
Prog. Phys. Geogr., 39, 68–92, https://doi.org/10.1177/0309133314550669,
2015. a
Hourdin, F., Foujols, M.-A., Codron, F., Guemas, V., Dufresne, J.-L., Bony, S.,
Denvil, S., Guez, L., Lott, F., Ghattas, J., and Braconnot, P.: Impact of the LMDZ
atmospheric grid configuration on the climate and sensitivity of the
IPSL-CM5A coupled model, Clim. Dynam., 40, 2167–2192,
https://doi.org/10.1007/s00382-012-1411-3, 2013. a
Jones, C. D., Hughes, J. K., Bellouin, N., Hardiman, S. C., Jones, G. S., Knight, J., Liddicoat, S., O'Connor, F. M., Andres, R. J., Bell, C., Boo, K.-O., Bozzo, A., Butchart, N., Cadule, P., Corbin, K. D., Doutriaux-Boucher, M., Friedlingstein, P., Gornall, J., Gray, L., Halloran, P. R., Hurtt, G., Ingram, W. J., Lamarque, J.-F., Law, R. M., Meinshausen, M., Osprey, S., Palin, E. J., Parsons Chini, L., Raddatz, T., Sanderson, M. G., Sellar, A. A., Schurer, A., Valdes, P., Wood, N., Woodward, S., Yoshioka, M., and Zerroukat, M.: The HadGEM2-ES implementation of CMIP5 centennial simulations, Geosci. Model Dev., 4, 543–570, https://doi.org/10.5194/gmd-4-543-2011, 2011. a
Keuler, K., Radtke, K., Kotlarski, S., and Lüthi, D.: Regional climate
change over Europe in COSMO-CLM: Influence of emission scenario and driving
global model, Meteorol. Z., 25, 121–136,
https://doi.org/10.1127/metz/2016/0662, 2016. a
Kwak, J., St-Hilaire, A., Chebana, F., and Kim, G.: Summer season water
temperature modeling under the climate change: case study for Fourchue River,
Quebec, Canada, Water, 9, 346, https://doi.org/10.3390/w9050346, 2017. a
Le Moal, M., Gascuel-Odoux, C., Ménesguen, A., Souchon, Y., Étrillard,
C., Levain, A., Moatar, F., Pannard, A., Souchu, P., Lefebvre, A., and and Pinay, G.:
Eutrophication: A new wine in an old bottle?, Sci. Total
Environ., 651, 1–11, https://doi.org/10.1016/j.scitotenv.2018.09.139, 2019. a
Lee, S.-Y., Fullerton, A. H., Sun, N., and Torgersen, C. E.: Projecting
spatiotemporally explicit effects of climate change on stream temperature: A
model comparison and implications for coldwater fishes, J. Hydrol.,
588, 125066, https://doi.org/10.1016/j.jhydrol.2020.125066, 2020. a, b, c
Michel, A., Brauchli, T., Lehning, M., Schaefli, B., and Huwald, H.: Stream temperature and discharge evolution in Switzerland over the last 50 years: annual and seasonal behaviour, Hydrol. Earth Syst. Sci., 24, 115–142, https://doi.org/10.5194/hess-24-115-2020, 2020. a
Michel, A., Schaefli, B., Wever, N., Zekollari, H., Lehning, M., and Huwald, H.: Future water temperature of rivers in Switzerland under climate change investigated with physics-based models, Hydrol. Earth Syst. Sci., 26, 1063–1087, https://doi.org/10.5194/hess-26-1063-2022, 2022. a, b
Minaudo, C., Curie, F., Jullian, Y., Gassama, N., and Moatar, F.: QUAL-NET, a high temporal-resolution eutrophication model for large hydrographic networks, Biogeosciences, 15, 2251–2269, https://doi.org/10.5194/bg-15-2251-2018, 2018. a
Ministère de la Transition Écologique: DRIAS Les futurs du climat, Ministère de la Transition Écologique [data set], http://www.drias-climat.fr/commande, last access: 3 July 2023. a
Moatar, F. and Gailhard, J.: Water temperature behaviour in the River Loire
since 1976 and 1881, Comptes Rendus Geoscience, 338, 319–328,
https://doi.org/10.1016/j.crte.2006.02.011, 2006. a, b
Morales-Marín, L., Rokaya, P., Sanyal, P., Sereda, J., and Lindenschmidt,
K.: Changes in streamflow and water temperature affect fish habitat in the
Athabasca River basin in the context of climate change, Ecol. Model.,
407, 108718, https://doi.org/10.1016/j.ecolmodel.2019.108718, 2019. a
Nelson, K. C. and Palmer, M. A.: Stream temperature surges under urbanization
and climate change: data, models, and responses 1,
J. Am. Water Resour. A., 43, 440–452,
https://doi.org/10.1111/j.1752-1688.2007.00034.x, 2007. a
Orr, H. G., Simpson, G. L., des Clers, S., Watts, G., Hughes, M., Hannaford,
J., Dunbar, M. J., Laizé, C. L., Wilby, R. L., Battarbee, R. W., and and Evans, R.:
Detecting changing river temperatures in England and Wales, Hydrol.
Process., 29, 752–766, https://doi.org/10.1002/hyp.10181, 2015.
a
Ouellet, V., St-Hilaire, A., Dugdale, S. J., Hannah, D. M., Krause, S., and
Proulx-Ouellet, S.: River temperature research and practice: Recent
challenges and emerging opportunities for managing thermal habitat conditions
in stream ecosystems, Sci. Total Environ., 736, 139679,
https://doi.org/10.1016/j.scitotenv.2020.139679, 2020. a
Picard, C., Floury, M., Seyedhashemi, H., Morel, M., Pella, H., Lamouroux, N.,
Buisson, L., Moatar, F., and Maire, A.: Direct habitat descriptors improve
the understanding of the organization of fish and macroinvertebrate
communities across a large catchment, PloS one, 17, e0274167,
https://doi.org/10.1371/journal.pone.0274167, 2022. a, b
Piotrowski, A. P., Osuch, M., and Napiorkowski, J. J.: Influence of the choice
of stream temperature model on the projections of water temperature in
rivers, J. Hydrol., 601, 126629,
https://doi.org/10.1016/j.jhydrol.2021.126629, 2021. a
Quintana-Segui, P., Le Moigne, P., Durand, Y., Martin, E., Habets, F., Baillon,
M., Canellas, C., Franchisteguy, L., and Morel, S.: Analysis of near-surface
atmospheric variables: Validation of the SAFRAN analysis over France, J. Appl. Meteorol. Climatol., 47, 92–107,
https://doi.org/10.1175/2007JAMC1636.1, 2008. a
Seixas, G. B., Beechie, T. J., Fogel, C., and Kiffney, P. M.: Historical and
Future Stream Temperature Change Predicted by a Lidar-Based Assessment of
Riparian Condition and Channel Width, J. Ame. Water
Resour. A., 54, 974–991,
https://doi.org/10.1111/1752-1688.12655, 2018. a
Seyedhashemi, H., Moatar, F., Vidal, J.-P., Diamond, J. S., Beaufort, A.,
Chandesris, A., and Valette, L.: Thermal signatures identify the influence of
dams and ponds on stream temperature at the regional scale, Sci.
Total Environ., 766, 142667, https://doi.org/10.1016/j.scitotenv.2020.142667, 2021. a
Seyedhashemi, H., Moatar, F., Vidal, J.-P., and Thiéry, D.: Past and future
discharge and stream temperature at high spatial resolution in a large
European basin (Loire basin, France), Data INRAE [data set], https://doi.org/10.57745/LBPGFS,
2022a. a, b
Seyedhashemi, H., Vidal, J.-P., Diamond, J. S., Thiéry, D., Monteil, C., Hendrickx, F., Maire, A., and Moatar, F.: Regional, multi-decadal analysis on the Loire River basin reveals that stream temperature increases faster than air temperature, Hydrol. Earth Syst. Sci., 26, 2583–2603, https://doi.org/10.5194/hess-26-2583-2022, 2022b. a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t
Seyedhashemi, H., Drouineau, H., Maire, A., and Moatar, F.: Joint temporal trends in river discharge and temperature over the past 57 years in a large European basin: implications for diadromous fish, EGU General Assembly 2023, Vienna, Austria, 24–28 Apr 2023, EGU23-7598, https://doi.org/10.5194/egusphere-egu23-7598, 2023. a
Sinokrot, B., Stefan, H., McCormick, J., and Eaton, J.: Modeling of climate
change effects on stream temperatures and fish habitats below dams and near
groundwater inputs, Climatic Change, 30, 181–200, https://doi.org/10.1007/BF01091841,
1995. a
Skamarock, W. C., Klemp, J. B., Dudhia, J., Gill, D. O., Barker, D. M., Wang,
W., and Powers, J. G.: A description of the Advanced Research WRF version 3.
NCAR Technical note-475+ STR,
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.484.3656&rep=rep1&type=pdf (last access: 3 July 2023),
2008.
a
Soubeyroux, J.-M. Bernus, S., Corre, L., Drouin, A., Dubuisson, B., Etchevers, P., Gouget, V., Josse, P., Kerdoncuff, M.,Samacoits, R., and Tocque, F.: Les nouvelles projections climatiques de référence
DRAIS 2020 pour la Métropole, Tech. rep., Météo France,
http://www.drias-climat.fr/document/rapport-DRIAS-2020-red3-2.pdf (last access: 3 July 2023),
2020. a, b, c
Steel, E. A., Beechie, T. J., Torgersen, C. E., and Fullerton, A. H.:
Envisioning, quantifying, and managing thermal regimes on river networks,
BioScience, 67, 506–522, https://doi.org/10.1093/biosci/bix047, 2017. a
van Vliet, M. T., Franssen, W. H., Yearsley, J. R., Ludwig, F., Haddeland, I.,
Lettenmaier, D. P., and Kabat, P.: Global river discharge and water
temperature under climate change, Glob. Environ. Change, 23, 450–464,
https://doi.org/10.1016/j.gloenvcha.2012.11.002, 2013. a
Verfaillie, D., Déqué, M., Morin, S., and Lafaysse, M.: The method ADAMONT v1.0 for statistical adjustment of climate projections applicable to energy balance land surface models, Geosci. Model Dev., 10, 4257–4283, https://doi.org/10.5194/gmd-10-4257-2017, 2017. a
Vidal, J.-P., Martin, E., Franchistéguy, L., Baillon, M., and Soubeyroux,
J.-M.: A 50-year high-resolution atmospheric reanalysis over France with the
Safran system, Int. J. Climatol., 30, 1627–1644,
https://doi.org/10.1002/joc.2003, 2010.
a
Voldoire, A., Sanchez-Gomez, E., y Mélia, D. S., Decharme, B., Cassou, C.,
Sénési, S., Valcke, S., Beau, I., Alias, A., Chevallier, M., and and Déqué, M.:
The CNRM-CM5. 1 global climate model: description and basic evaluation,
Clim. Dynam., 40, 2091–2121,
https://doi.org/10.1007/s00382-011-1259-y, 2013. a
Webb, B. and Walling, D.: Complex summer water temperature behaviour below a UK
regulating reservoir, Regulated Rivers: Research & Management: An
International Journal Devoted to River Research and Management, 13, 463–477,
https://doi.org/10.1002/(SICI)1099-1646(199709/10)13:5<463::AID-RRR470>3.0.CO;2-1,
1997. a
Webb, B. W., Hannah, D. M., Moore, D. R., Brown, L. E., and Nobilis, F.: Recent
advances in stream and river temperature research, Hydrol. Process., 22, 902–918, https://doi.org/10.1002/hyp.6994, 2008. a
Yearsley, J. R.: A semi-Lagrangian water temperature model for
advection-dominated river systems, Water Resour. Res., 45,
https://doi.org/10.1029/2008WR007629, 2009. a
Zhao, F., Zhan, X., Xu, H., Zhu, G., Zou, W., Zhu, M., Kang, L., Guo, Y., Zhao,
X., Wang, Z., and and Tang, W.: New insights into eutrophication management: Importance
of temperature and water residence time, J. Environ. Sci.,
111, 229–239, https://doi.org/10.1016/j.jes.2021.02.033, 2022. a
Short summary
This paper presents a past and future dataset of daily time series of discharge and stream temperature for 52 278 reaches over the Loire River basin (100 000 km2) in France, using thermal and hydrological models. Past data are provided over 1963–2019. Future data are available over the 1976–2100 period under different future climate change models (warm and wet, intermediate, and hot and dry) and scenarios (optimistic, intermediate, and pessimistic).
This paper presents a past and future dataset of daily time series of discharge and stream...
Altmetrics
Final-revised paper
Preprint