Articles | Volume 15, issue 6
https://doi.org/10.5194/essd-15-2547-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/essd-15-2547-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
MOPREDAScentury: a long-term monthly precipitation grid for the Spanish mainland
Santiago Beguería
CORRESPONDING AUTHOR
Estación Experimental Aula Dei, Consejo Superior de
Investigaciones Científicas (EEAD-CSIC), 50059 Zaragoza, Spain
Dhais Peña-Angulo
Departamento de Geografía y Ordenación del Territorio,
Universidad de Zaragoza, 50009 Zaragoza, Spain
Víctor Trullenque-Blanco
Departamento de Geografía y Ordenación del Territorio,
Universidad de Zaragoza, 50009 Zaragoza, Spain
Carlos González-Hidalgo
Departamento de Geografía y Ordenación del Territorio,
Universidad de Zaragoza, 50009 Zaragoza, Spain
IUCA, Universidad de Zaragoza, 50009 Zaragoza, Spain
Related authors
Soledad Collazo, David Barriopedro, Ricardo García-Herrera, and Santiago Beguería
Nat. Hazards Earth Syst. Sci., 25, 3221–3238, https://doi.org/10.5194/nhess-25-3221-2025, https://doi.org/10.5194/nhess-25-3221-2025, 2025
Short summary
Short summary
In 2023, Rio de Janeiro experienced record-breaking heat waves linked to climate change and El Niño. Our study shows that global warming made these extreme temperatures at least 2 °C hotter than in pre-industrial times. Heat-related deaths surged, with climate change contributing to one in three fatalities during the peak event. Without adaptation, future heat waves will claim even more lives. This underscores the urgent need for policies to mitigate climate impacts from escalating heat threats.
Magí Franquesa, Fergus Reig, Manuel Arretxea, Maria Adell-Michavila, Amar Halifa-Marín, Daniel Vilas, Santiago Beguería, and Sergio Martín Vicente-Serrano
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-351, https://doi.org/10.5194/essd-2024-351, 2025
Preprint under review for ESSD
Short summary
Short summary
Our study created a unique database that tracks vegetation health across Spain and the Balearic Islands from 1981 to now, updated every two weeks. By using satellite images from multiple sources, we provide accurate and consistent data that helps detect changes in vegetation due to factors like fires. This tool is crucial for farmers, environmental managers, and policymakers to monitor and protect plant life, ensuring better management of natural resources and agricultural productivity.
Soledad Collazo, David Barriopedro, Ricardo García-Herrera, and Santiago Beguería
Nat. Hazards Earth Syst. Sci., 25, 3221–3238, https://doi.org/10.5194/nhess-25-3221-2025, https://doi.org/10.5194/nhess-25-3221-2025, 2025
Short summary
Short summary
In 2023, Rio de Janeiro experienced record-breaking heat waves linked to climate change and El Niño. Our study shows that global warming made these extreme temperatures at least 2 °C hotter than in pre-industrial times. Heat-related deaths surged, with climate change contributing to one in three fatalities during the peak event. Without adaptation, future heat waves will claim even more lives. This underscores the urgent need for policies to mitigate climate impacts from escalating heat threats.
Magí Franquesa, Fergus Reig, Manuel Arretxea, Maria Adell-Michavila, Amar Halifa-Marín, Daniel Vilas, Santiago Beguería, and Sergio Martín Vicente-Serrano
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-351, https://doi.org/10.5194/essd-2024-351, 2025
Preprint under review for ESSD
Short summary
Short summary
Our study created a unique database that tracks vegetation health across Spain and the Balearic Islands from 1981 to now, updated every two weeks. By using satellite images from multiple sources, we provide accurate and consistent data that helps detect changes in vegetation due to factors like fires. This tool is crucial for farmers, environmental managers, and policymakers to monitor and protect plant life, ensuring better management of natural resources and agricultural productivity.
Cited articles
Beguería, S.: Bias in the variance of gridded data sets leads to misleading conclusions about changes in climate variability, Int. J. Climatol., 36, 3413–3422, 2016.
Beguería, S., Peña-Angulo, D., Trullenque-Blanco, V., and
González-Hidalgo, C.: MOPREDAScentury: a long-term monthly precipitation
grid for the Spanish mainland, digitalCSIC [dataset], https://doi.org/10.20350/digitalCSIC/15136,
2023.
Damianou, A. C. and Lawrence, N. D.: Deep Gaussian Processes,
arXiv [preprint], https://doi.org/10.48550/arXiv.1211.0358, 2012.
Deitch, M. J., Sapundjieff, M. J., and Feirer, S.T.: Characterizing
Precipitation Variability and Trends in the World's Mediterranean-Climate
Areas, Water, 9, 259, https://doi.org/10.3390/W9040259, 2017.
Caloiero, T., Caloiero, P., and Frustaci, F.: Long-term precipitation trend
analysis in Europe and in the Mediterranean basin, Water Environ. J., 32, 433–445, https://doi.org/10.1111/wej.12346, 2018.
González-Hidalgo, J. C., Brunetti, M., and De Luis, M.: A new tool for
monthly precipitation analysis in Spain: MOPREDAS database (Monthly
precipitation trends December 1945 – November 2005), Int. J. Climatol., 31, 715–731, https://doi.org/10.1002/joc.2115, 2011.
Gonzalez-Hidalgo, J. C, Peña-Angulo, D., Brunetti, M., and Cortesi, C.:
MOTEDAS: a new monthly temperature database for mainland Spain and the trend
in temperature (1951–2010), Int. J. Climatol., 35, 4444–4463, https://doi.org/10.1002/joc.4298, 2015.
Gonzalez-Hidalgo, J. C, Peña-Angulo, D., Beguería, S., and Brunetti,
M.: MOTEDAS Century: A new high resolution secular monthly maximum and
minimum temperature grid for the Spanish mainland (1916–2015), Int. J. Climatol., 40,
5308–5328, https://doi.org/10.1002/JOC.6520, 2020.
Goovaerts, P.: Geostatistics for natural resources evaluation, Oxford University Press on Demand, New York (N.Y.), ISBN 0195115384, 1997.
Gräler, B., Pebesma, E. J., and Heuvelink, G. B.: Spatio-temporal
interpolation using gstat, R Journal, 8, 204–217, https://doi.org/10.32614/RJ-2016-014, 2016.
Harris, I., Jones, P. D., Osborn, T. J., and Lister, D. H.: Up-dated
high-resolution grids of monthly climatic observations – the CRU TS3.10
Dataset, Int. J. Climatol., 34, 623–642, https://doi.org/10.1002/joc.3711, 2014.
Harris, I., Osborn, T. J., Jones, P., and Lister, D.: Version 4 of the CRU
TS monthly high-resolution gridded multivariate climate dataset, Sci. Data, 7, 109,
https://doi.org/10.1038/s41597-020-0453-3, 2020.
Herrera, S., Gutieìrrez, J. M., Ancell, R., Pons, M. R., Friìas, M. D., and
Fernaìndez, J.: Development and analysis of a 50 year high-resolution daily
gridded precipitation dataset over Spain (Spain02), Int. J. Climatol., 32, 74–85, https://doi.org/10.1002/joc.2256, 2012.
Herrera, S., Cardoso, R. M., Soares, P. M., Espírito-Santo, F., Viterbo, P., and Gutiérrez, J. M.: Iberia01: a new gridded dataset of daily precipitation and temperatures over Iberia, Earth Syst. Sci. Data, 11, 1947–1956, https://doi.org/10.5194/essd-11-1947-2019, 2019.
Hiemstra, P. H., Pebesma, E. J., Twenhöfel, C. J., and Heuvelink, G. B.:
Real-time automatic interpolation of ambient gamma dose rates from the Dutch
radioactivity monitoring network, Comput. Geosci., 35, 1711–1721, https://doi.org/10.1016/j.cageo.2008.10.011, 2009.
Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G., and Jarvis, A.:
Very high resolution interpolated climate sur- faces for global land areas,
Int. J. Climatol., 25, 1965–1978, https://doi.org/10.1002/joc.1276, 2005.
Hoerling, M., Eischeid, J., Perlwitz, J., Quan, X., Zhang, T., and Pegion,
P.: On the Increased Frequency of Mediterranean Drought, J. Climate, 25,
2146–2161, https://doi.org/10.1175/JCLI-D-11-00296.1, 2012.
Hwang, Y., Clark, M., Rajagopalan, B., and Leavesley, G.: Spatial
interpolation schemes of daily precipitation for hydrologic
modelling, Stoch. Env. Res. Risk A., 26, 295–320, https://doi.org/10.1007/s00477-011-0509-1, 2012.
Mariotti, A., Pan, Y., Zeng, N., and Alessandri, A.: Long-term climate change in
the Mediterranean region in the midst of decadal variability, Clim. Dynam., 44,
1437–1456, https://doi.org/10.1007/s00382-015-2487-3, 2015.
New, M., Lister, D., Hulme, M., and Makin, I.: A high-resolution data set of
surface climate over global land areas, Clim. Res., 21, 1–25, https://doi.org/10.3354/cr021001,
2002.
Pebesma, E. J.: Multivariable geostatistics in S: the gstat package,
Comput. Geosci., 30, 683–691, https://doi.org/10.1016/j.cageo.2004.03.012, 2004.
Peña-Angulo, D., Vicente-Serrano, S. M., Domínguez-Castro, F.,
Murphy, C., Reig, F., Tramblay, Y., Trigo, R. M., Luna, M. Y., Turco, M.,
Noguera, I., Aznárez-Balta, M., García-Herrera, R., Tomas-Burguera,
M., and El Kenawy, A.: Long-term precipitation in Southwestern Europe reveals no
clear trend attributable to anthropogenic forcing, Environ. Res. Lett., 15, 094070, https://doi.org/10.1088/1748-9326/ab9c4f, 2020.
Quintana-Seguí, P. Peral, C., Turco, M., Llasat, M. C., and Martin, E.:
Meteorological analysis systems in north-east Spain. Validation of SAFRAN
and SPAN, J. Environ. Inform., 27, 116–130, https://doi.org/10.3808/jei.201600335, 2016.
Quintana-Seguí, P., Turco, M., Herrera, S., and Miguez-Macho, G.: Validation of a new SAFRAN-based gridded precipitation product for Spain and comparisons to Spain02 and ERA-Interim, Hydrol. Earth Syst. Sci., 21, 2187–2201, https://doi.org/10.5194/hess-21-2187-2017, 2017.
Roth, C.: Is lognormal kriging suitable for local estimation?, Math. Geol., 30,
999–1009, https://doi.org/10.1023/A:1021733609645, 1998.
Peral, C., Navascués, B., and Ramos, P.: Serie de precipitación diaria en rejilla con fines climáticos, Nota técnica 24, Ministerio de Agricultura y Pesca,
Alimentacioìn y Medio Ambiente Agencia Estatal de Meteorologiìa, Madrid,
https://doi.org/10.31978/014-17-009-5, 2017.
Schamm, K., Ziese, M., Becker, A., Finger, P., Meyer-Christoffer, A., Schneider, U., Schröder, M., and Stender, P.: Global gridded precipitation over land: a description of the new GPCC First Guess Daily product, Earth Syst. Sci. Data, 6, 49–60, https://doi.org/10.5194/essd-6-49-2014, 2014.
Serrano-Notivoli, R., Beguería, S., Saz, M. Á., Longares, L. A., and de Luis, M.: SPREAD: a high-resolution daily gridded precipitation dataset for Spain – an extreme events frequency and intensity overview, Earth Syst. Sci. Data, 9, 721–738, https://doi.org/10.5194/essd-9-721-2017, 2017.
Serrano-Notivoli, R., Beguería, S., and de Luis, M.: STEAD: a high-resolution daily gridded temperature dataset for Spain, Earth Syst. Sci. Data, 11, 1171–1188, https://doi.org/10.5194/essd-11-1171-2019, 2019.
Sherman, M.: Spatial statistics and spatio-temporal data: covariance functions and directional properties, John Wiley & Sons, ISBN 978-0-470-69958-4, 2011.
Strangeways, I.: Precipitation. Theory, Measurement and Distribution, Cambridge University Press, ISBN 1139460013, 2007.
Zittis, G.: Observed rainfall trends and precipitation uncertainty in the
vicinity of the Mediterranean, Middle East and North Africa, Theor. Appl. Climatol., 134,
1207–1230, https://doi.org/10.1007/s00704-017-2333-0, 2018.
Short summary
A gridded dataset on monthly precipitation over mainland Spain between spans 1916–2020. The dataset combines ground observations from the Spanish National Climate Data Bank and new data rescued from meteorological yearbooks published prior to 1951, which almost doubled the number of weather stations available during the first decades of the 20th century. Geostatistical techniques were used to interpolate a regular 10 x 10 km grid.
A gridded dataset on monthly precipitation over mainland Spain between spans 1916–2020. The...
Altmetrics
Final-revised paper
Preprint