Articles | Volume 15, issue 6
https://doi.org/10.5194/essd-15-2547-2023
https://doi.org/10.5194/essd-15-2547-2023
Data description paper
 | 
23 Jun 2023
Data description paper |  | 23 Jun 2023

MOPREDAScentury: a long-term monthly precipitation grid for the Spanish mainland

Santiago Beguería, Dhais Peña-Angulo, Víctor Trullenque-Blanco, and Carlos González-Hidalgo

Related authors

Reference crop evapotranspiration database in Spain (1961–2014)
Miquel Tomas-Burguera, Sergio M. Vicente-Serrano, Santiago Beguería, Fergus Reig, and Borja Latorre
Earth Syst. Sci. Data, 11, 1917–1930, https://doi.org/10.5194/essd-11-1917-2019,https://doi.org/10.5194/essd-11-1917-2019, 2019
Short summary
STEAD: a high-resolution daily gridded temperature dataset for Spain
Roberto Serrano-Notivoli, Santiago Beguería, and Martín de Luis
Earth Syst. Sci. Data, 11, 1171–1188, https://doi.org/10.5194/essd-11-1171-2019,https://doi.org/10.5194/essd-11-1171-2019, 2019
Short summary
The impact of drought on the productivity of two rainfed crops in Spain
Marina Peña-Gallardo, Sergio Martín Vicente-Serrano, Fernando Domínguez-Castro, and Santiago Beguería
Nat. Hazards Earth Syst. Sci., 19, 1215–1234, https://doi.org/10.5194/nhess-19-1215-2019,https://doi.org/10.5194/nhess-19-1215-2019, 2019
Short summary
A high-resolution spatial assessment of the impacts of drought variability on vegetation activity in Spain from 1981 to 2015
Sergio M. Vicente-Serrano, Cesar Azorin-Molina, Marina Peña-Gallardo, Miquel Tomas-Burguera, Fernando Domínguez-Castro, Natalia Martín-Hernández, Santiago Beguería, Ahmed El Kenawy, Iván Noguera, and Mónica García
Nat. Hazards Earth Syst. Sci., 19, 1189–1213, https://doi.org/10.5194/nhess-19-1189-2019,https://doi.org/10.5194/nhess-19-1189-2019, 2019
Short summary
High-spatial-resolution probability maps of drought duration and magnitude across Spain
Fernando Domínguez-Castro, Sergio M. Vicente-Serrano, Miquel Tomás-Burguera, Marina Peña-Gallardo, Santiago Beguería, Ahmed El Kenawy, Yolanda Luna, and Ana Morata
Nat. Hazards Earth Syst. Sci., 19, 611–628, https://doi.org/10.5194/nhess-19-611-2019,https://doi.org/10.5194/nhess-19-611-2019, 2019
Short summary

Cited articles

Beguería, S.: Bias in the variance of gridded data sets leads to misleading conclusions about changes in climate variability, Int. J. Climatol., 36, 3413–3422, 2016. 
Beguería, S., Peña-Angulo, D., Trullenque-Blanco, V., and González-Hidalgo, C.: MOPREDAScentury: a long-term monthly precipitation grid for the Spanish mainland, digitalCSIC [dataset], https://doi.org/10.20350/digitalCSIC/15136, 2023. 
Damianou, A. C. and Lawrence, N. D.: Deep Gaussian Processes, arXiv [preprint], https://doi.org/10.48550/arXiv.1211.0358, 2012. 
Deitch, M. J., Sapundjieff, M. J., and Feirer, S.T.: Characterizing Precipitation Variability and Trends in the World's Mediterranean-Climate Areas, Water, 9, 259, https://doi.org/10.3390/W9040259, 2017. 
Caloiero, T., Caloiero, P., and Frustaci, F.: Long-term precipitation trend analysis in Europe and in the Mediterranean basin, Water Environ. J., 32, 433–445, https://doi.org/10.1111/wej.12346, 2018. 
Download
Short summary
A gridded dataset on monthly precipitation over mainland Spain between spans 1916–2020. The dataset combines ground observations from the Spanish National Climate Data Bank and new data rescued from meteorological yearbooks published prior to 1951, which almost doubled the number of weather stations available during the first decades of the 20th century. Geostatistical techniques were used to interpolate a regular 10 x 10 km grid.
Altmetrics
Final-revised paper
Preprint