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Abstract. This article describes the development of a monthly precipitation dataset for the Spanish mainland,
covering the period between December 1915 and December 2020. The dataset combines ground observational
data from the National Climate Data Bank (NCDB) of the Spanish meteorological service (AEMET) and new
data rescued from meteorological yearbooks published prior to 1951 that were never incorporated into the
NCDB. The yearbooks’ data represented a significant improvement of the dataset, as it almost doubled the
number of weather stations available during the first decades of the 20th century, the period when the data were
more scarce. The final dataset contains records from 11 312 stations, although the number of stations with data
in a given month varies largely between 674 in 1939 and a maximum of 5234 in 1975. Spatial interpolation was
used on the resulting dataset to create monthly precipitation grids. The process involved a two-stage process:
estimation of the probability of zero precipitation (dry month) and estimation of precipitation magnitude. Inter-
polation was carried out using universal kriging, using anomalies (ratios with respect to the 1961–2000 monthly
climatology) as dependent variables and several geographic variates as independent variables. Cross-validation
results showed that the resulting grids are spatially and temporally unbiased, although the mean error and the
variance deflation effect are highest during the first decades of the 20th century, when the observational data
were more scarce. The dataset is available at https://doi.org/10.20350/digitalCSIC/15136 under an open license
and can be cited as Beguería et al. (2023).

1 Introduction

Sea and land weather station records are crucial informa-
tion sources to study the evolution of climate over the last
century and beyond and are the result of the sustained ef-
fort of many volunteers and climate and weather agencies
around the world (see Strangeways, 2007). A large number
of projects have focused on collecting and curating data from
different sources in order to improve the spatial and tempo-
ral coverage of the datasets and even rescue old data that had
not been digitized and remain unknown to the broad public.
These efforts are particularly required in regions with large
spatial variability and heterogeneous precipitation regimes,

such as Mediterranean climate regions of the world. Espe-
cially in those areas, however, research does not provide
unanimous results; for example, trend analyses show dif-
ferences according to the period selected, dataset, or study
area (Hoerling et al., 2012; Mariotti et al., 2015; Zittis, 2018;
Deitch et al., 2017; Caloiero et al., 2018; Peña-Angulo et al.,
2020; among many others).

In parallel with these efforts, many research groups have
focused on developing spatial and temporal complete grids
that override the fragmentary character of observational
(station-based) datasets. The development of gridded cli-
matic datasets from point observations has experienced a
fast development in the first decades of the 21st century,
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aided by the tremendous improvement of computing capabil-
ities and the implementation of complex interpolation meth-
ods in standard statistical packages and programming lan-
guages (New et al., 2002; Hijmans et al., 2005; Harris et al.,
2014, 2020; Schamm et al., 2014). Gridded datasets offer nu-
merous advantages over point-based observational data that
make them best suited to climate and environmental studies.
While observational datasets are limited to the locations of
climatic stations and the time series are often fragmentary in
time, gridded datasets offer a continuous spatial and tempo-
ral coverage. Having a continuous coverage is most relevant
for computing regional or even global averages, which are
crucial in climate change studies. Gridded data are also often
a necessity as simulation model inputs, which usually require
continuous climatic forcing data.

Users of gridded data, however, must not forget that grids
are in fact models and not directly observed data, and as such
they are not devoid of issues. Interpolation methods are not
perfect, and they have inherent problems such as the deflation
of (spatial and temporal) variance, as we discussed in Be-
guería (2016). Also, since the spatial and temporal coverage
of observational datasets is often not homogeneous (some ar-
eas and time periods are over-represented, while others may
lack any data), there are potential sources of bias. Despite
this, gridded datasets are currently used in the vast majority
of studies that make use of climate data.

In a previous work we described the development of a
gridded dataset of monthly precipitation for Spain, MO-
PREDAS, spanning 1946–2005 (González-Hidalgo et al.,
2011). Other gridded precipitation datasets have later been
developed for Spain with a daily temporal resolution,
such as Spain02 for 1950–2003 (Herrera et al., 2012),
SAFRAN-Spain (1979–2014; Quintana-Seguí et al., 2016,
2017), SPREAD (1950–2012; Serrano-Notivoli et al., 2017),
AEMET-Spain (1951–2017; Peral et al., 2017), or Iberia01
(1971–2015; Herrera et al., 2019). Currently, no dataset ex-
ists spanning back to the first decades of the 20th century.
This is due in part to the drastic decrease in the number of
available observations prior to 1950. The objective of this
article is to describe the development of the MOPREDAS-
century dataset, a gridded dataset of monthly precipitation
over mainland Spain covering the period 1916–2020, aimed
at becoming a reference spatial–temporal dataset to assess
changes in the spatial and temporal patterns of precipitation
over Spain. The process includes the rescue of old records
not included in the National Climate Data Bank (NCDB) of
the Spanish meteorological service (AEMET) which allow
the observational sample to be increased and are critical for
developing a gridded dataset. The text describes this data res-
cue process and the spatial interpolation, presents the main
results of a cross-validation assessment, and discusses sev-
eral issues related to the development of the dataset.

2 Data and methods

The development of the MOPREDAScentury dataset encom-
passed two distinctive steps: (i) improving the observational
dataset available in digital format, especially for the first half
of the 20th century, and (ii) using spatial interpolation tech-
niques to create the gridded dataset. This section describes
both steps, as well as the procedure used for evaluating the
resulting dataset.

2.1 Data rescue (yearbooks)

The MOPREDAScentury dataset combines land-based
weather station data digitized and stored in the National Cli-
mate Data Bank (NCDB) and newly digitized records from
meteorological yearbooks (YB) that were published by dif-
ferent government offices until 1950 such as Ministerio de
Fomento, Servicio Meteorológico (a part then of the Instituto
Geográfico y Catastral) and Ministerio del Aire. The data res-
cue process from the yearbooks was carried out in two main
steps: (a) digitization and (b) matching with the data series in
the NCDB. Digitization was carried out by manual reading
and typing the data into digital files, using the scanned ver-
sion of the YB collection stored at AEMET’s public reposi-
tory (https://repositorio.aemet.es, last access: 12 June 2021).
Matching the digitized data series with those in the NCDB
proved to be a laborious task, as the identification of the
weather stations in the YB was not consistent across the
books and did not always coincide with the NCDB. Similar
difficulties were found when rescuing temperature data to de-
velop the MOTEDAScentury dataset (Gonzalez-Hidalgo et
al., 2015, 2020; a detailed description of the matching pro-
cess can be found in these references). The rescued year-
books’ data had a fair level of overlapping with the NCDB,
but they allowed us to fill in gaps and extend many time series
back into the first decades of the 20th century. There were
also a number of data series that were completely new.

The augmented dataset resulting from the combination
of the NCDB and the YB rescued data was subjected to a
quality control. Thus, the observations were automatically
flagged as suspicious in the following cases:

– sequences of 12 identical monthly values occurring in
different years in the same station, or in the same year
in different stations;

– sequences of 7 or more consecutive months with zero
precipitation in the same station;

– individual months with precipitation equal to or greater
than 1000 mm.

The flagged data (suspicious values) were then manually
checked in their original sources (books) to discard digitiza-
tion errors, in which case they were corrected, and if not they
were compared against three or four neighbouring stations to
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Table 1. Example of an anomalous value discarded by comparison
with their nearest neighbours (December of 1920).

Suspicious data Neighbour stations

ID 0311A ID 0320 ID 0395 ID 0390 ID0336A
6680 mm 960 mm 668 mm 1332 mm 512 mm

decide whether to maintain or discard them. An example of
data rejection is provided in Table 1.

2.2 Spatial interpolation (two-step method)

We use geostatistical techniques for the interpolation of
monthly precipitation. Geostatistics is now a well-known
field, and it has been presented in a wide range of introduc-
tory texts (Goovaerts, 1997), so we should provide only a
brief summary here. The key element in geostatistics is the
variogram (or, more commonly, the semivariogram), which
is a function that relates the semi-variance γ between any
pair of measurements to the spatial distance between them,
h:

γ (h) =
1
2
E
[
{Z (x)−Z(x+h)}2

]
. (1)

An empirical semivariogram can be constructed from a set
of geographically explicit measurements by analysing all the
possible paired observations, and a mathematical model can
then be fit to provide a continuous estimation of the rela-
tionship between any pair of points. This function can then
be used to derive interpolation weights, being the basis of
a family of interpolation methods known as Gaussian pro-
cess regression or, in the geostatistical literature, kriging.
Kriging interpolation yields best linear unbiased predictions
(BLUPs) at unsampled locations, being a major reason for its
widespread use.

The most frequently used form of kriging is ordinary
kriging (OK), in which the interpolated values are linear
weighted averages of the n available observations, z(x), and
an unknown constant value, Z (x0):

ẑ (x)=
∑n

i=0
λiz (xi)−Z (x0) , (2)

where λi are the interpolation weights, with the condition
that they sum to 1 (

∑n
i=0λi), so the interpolation is unbiased.

Although kriging does not require any distribution assump-
tions on the data, OK relies on second-order stationarity. That
is, it is assumed that the expected value of Z (x0) is constant
over the spatial domain (E [Z (x0)]= µ (x)=m) and that the
covariance for any pair of observations depends only on the
distance between them (E [{Z (x)−m}{Z (x+h)−m}]=
c (h)).

Here we used two extensions of OK, universal kriging
(UK) and indicator kriging (IK). Universal kriging relaxes
the first assumption and allows a spatially non-stationary

mean to be dealt with, sometimes called a spatial trend. The
interpolated values thus consist of a deterministic part (the
trend), µ(x), and a stochastic part or residual, ρ(x):

ẑ (x)= µ (x)+ ρ (x)=
∑m

k=0
αkfk(x)+

∑n

i=0
λiz(xi), (3)

where fk(x) are spatially varying variables and αk are un-
known regression coefficients. Therefore, UK allows for the
inclusion of co-variables as predictors for the interpolation
and can therefore be viewed as a mixed-effect model or a
combination of regression and interpolation.

Indicator kriging, on the other hand, is useful for binary
variables (event/no event) and provides an estimation of the
transition probability. It uses an indicator function to trans-
form the variable into a binary outcome instead of working
with the original variable, yielding event probabilities as a
result, p̂(x)= p̂ (z(x)= 0). IK can be based on either OK or
UK, accepting co-variables as spatial predictors in the latter
case.

Here we adopted a two-step approach, consisting of using
IK for predicting precipitation occurrence and UK for pre-
dicting the precipitation magnitude. This is an approach most
commonly used for the interpolation of daily precipitation
(Hwang et al., 2012; Serrano-Notivoli et al., 2019) and less
so for monthly data. In the case of our study area, as we will
see later on, the frequency of zero-precipitation months is
not irrelevant, so a two-step approach was advisable. There-
fore, in a first step we used the following indicator function
to transform the observed variable in millimetres into zero-
precipitation events:

I (x)=
{

1 if z (x)= 0
0 otherwise . (4)

Then, we used indicator kriging to obtain estimated zero-
precipitation probabilities, p̂(x). In a second step we used
universal kriging for estimating precipitation magnitude,
ẑ (x). Once the two predictions were performed, we com-
bined them into a single estimated precipitation field z′ (S)
according to the following rule:

z′ (x)=
{

0 if p̂ (x)≤ pt
ẑ (x) otherwise , (5)

where pt ∈ (0, 1) is a classification threshold. Determining
the classification threshold is a complex task, since different
values can be used that lead to better performance on the
event of interest (zero monthly precipitation, in our case) at
the cost of allowing more false negatives, or the opposite.
We shall discuss the classification in the Discussion section
of this article.

We used five co-variables for the deterministic part: the
easting and northing coordinates, the altitude, the distance to
the coastline (Fig. A1), and the monthly climatology: zero-
precipitation probability for IK (Fig. A2) and mean precip-
itation for UK (Fig. A3). To obtain the climatologies we
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computed spatial fields of monthly mean precipitation using
UK and the geographic covariates mentioned above, based
on data from a sample of 1698 observatories with at least
35 years of data over the period 1961–2000. This period was
selected because it contained the highest number of serially
complete data series, while encompassing a long enough pe-
riod (40 years) to allow for stable average values of the two
variables of interest. In the Discussion section we provide a
comparison of this approach using the original data and us-
ing a full normalization. All co-variables were re-scaled to a
common range between 0 and 1 to facilitate model parameter
fitting.

One peculiarity of the variable of interest (monthly pre-
cipitation) is that it can only take non-negative values. Also,
when a number of observations are considered over a suf-
ficiently large area, the data often show a skewed distribu-
tion. One common solution to both issues is to use a loga-
rithmic transformation of the data, i.e. interpolating on ln(x)
instead of x, an approach that is sometimes known as log-
normal kriging in the geostatistics literature. This generates
additional issues, though, as this approach tends to overes-
timate lower precipitation and underestimate high precipita-
tion (Roth, 1998). Another drawback is that it does not allow
us to interpolate observations of zero precipitation, which is
sometimes solved by adding a small offset, for example, in-
terpolating on ln(x+ 1), although this has other undesired
effects, and it does not provide a good estimation of zero ob-
servations. Here we opted for using the original variable, i.e.
without a log transformation, although we compare both op-
tions in the discussion section.

Another transformation that is often applied when interpo-
lating precipitation fields, especially with weighted averag-
ing methods, is to transform the original values to anomalies.
This is in fact a way of normalizing the data in space, as it
eliminates the differences that occur between locations that
systematically tend to receive much higher or lower precip-
itation. As new observatories appear and disappear around a
given point, this could lead to biases in the interpolation that
could introduce anomalies in the interpolated series. Here we
decided to use anomalies computed as ratios to the long-term
climatologies (mean values) computed above.

Selection of the semivariogram model and parameter fit-
ting are fundamental steps for kriging. There are many differ-
ent semivariogram models available, and there is no general
rule as to how to choose one over the other but the mod-
eller’s experience. While some models offer greater flexibil-
ity to adapt to the empirical semivariogram, parameter esti-
mation can become a problem in some cases because there
are no exact solutions, and the iterative algorithms used do
not always yield good results. This is usually not a prob-
lem when performing one interpolation as the analyst often
tries different options and checks that there are no substan-
tial differences between the results, but it can be an issue
when a large number of interpolations need to be done and
an automatic process needs to be designed, as was the case

here. We used the function krige from the gstat package for
R (Pebesma, 2004; Gräler et al., 2016) to perform the krig-
ing interpolations and autofitVariogram from the package au-
tomap (Hiemstra et al., 2009) to compute the semivariogram
coefficients. The Matérn semivariogram model was the most
frequently selected one, both for indicator and universal krig-
ing. It is a highly flexible model that often yields optimum re-
sults. In some cases, though, a Gaussian model was preferred
by the automated procedure, and in a few cases the automatic
process was not able to converge to good parameter values,
so a spherical or an exponential (less flexible but more ro-
bust) model was enforced. The frequency of each semivari-
ogram model over the whole time period is provided, for IK
and UK, in the additional material (Table A1).

Best linear unbiased predictions (BLUPs), characterized
by their mean and standard deviation, were then cast over
a point grid at regular distance over longitude and latitude,
with a mean distance of 10 km between points.

2.3 Evaluation

Evaluation of the interpolation results is fundamental to fully
understand the benefits of the interpolated dataset, the lim-
itations, and the best use cases. Here we performed a thor-
ough evaluation based on several statistics and checks, for
both the IK (probability of zero precipitation) and the UK
(precipitation magnitude) interpolations. To evaluate the per-
formance of the interpolation method to estimate values at
unmeasured locations, we followed a leave-one-out cross-
validation (LOOCV) approach. This is an iterative process
in which the interpolation is repeated as many times as there
are data, each time removing one observation from the train-
ing dataset that is later used to compare the estimated and
observed values. Although this is a time-consuming process,
it allows us to obtain an independent sample that better repre-
sents the ability of the model to estimate values when no data
are available. By not removing other observations that the
one being used for evaluation, we could also test the effect of
having a varying number of observations in the vicinity.

There is no consensus about the most appropriate statistic
to evaluate binary classifications and their associated confu-
sion matrices. A confusion matrix, also known as an error
matrix, has four categories: true positives, TP (pred = 0, obs
= 0); true negatives, TN (pred > 0, obs > 0); false positives,
FP (pred = 0, obs > 0); and false negatives, FN (pred > 0,
obs= 0); and the total positive (P) and negative (N) observa-
tions and the positive and negative predicted totals (PP = TP
+ FP and PN = TN + FN, respectively). A variety of statis-
tics can be calculated based on these quantities, of which here
we focused on the following ones.

– The positive prediction value (PPV) is the fraction
of positive predictions that are true positive: PPV=
PP/TP.
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– The negative predictive value (NPV) is the fraction
of negative predictions that are true negative: NPV=
NP/TN.

– The true positive rate (TPR) is the fraction of positive
cases correctly predicted: TPR= TP/(TP+FN). It can
be considered the probability of detection (if a case is
positive, the probability that it would be predicted as
such).

– The true negative rate (TNR) is the fraction of negative
cases that were correctly predicted: TNR= TN/(TN+
FP). It can be considered a measure of how specific the
test is (if a case is negative, the probability that it would
be predicted as such).

The PPV and NPV are not intrinsic to the test as they also de-
pend on the event’s prevalence (fraction of positive cases in
the observed sample). In a highly un-balanced sample, such
as the case of zero precipitation in our dataset in which the
proportion of station/months with zero precipitation is very
low, these two statistics will be highly affected. The TPR
and TNR, on the contrary, do not depend on prevalence, so
they are intrinsic to the test. In diagnostic testing the TPR
and TNR are the most used and are known as sensitivity and
specificity, respectively. In informational retrieval, the main
ratios are the PPV and TPR, where they are known as preci-
sion and recall.

We also computed two metrics that summarize the ele-
ments of the confusion matrix, so they can be considered
overall measures of the quality of the binary classification.
The F1 score is computed as

F1 =
2TP

2TP+FN+FP
. (6)

As it can be seen, the F1 ignores the count of true nega-
tives, so it places more emphasis on the positive cases (zero-
precipitation months, in our case). The Matthews correlation
coefficient (MCC), on the other hand, produces a high score
only when the prediction results are good in all the four con-
fusion matrix categories. It is equivalent to chi-square statis-
tics for 2×2 contingency tables. Its value ranges between−1
and 1, with values close to zero meaning a bad performance
(not higher than a random classifier), while 1 represents a
perfect classification.

MCC=
(TP×TN)− (FP×FN)

√
(TP+FP)(TP+FN)(TN+FP)(TN+FN)

(7)

All these statistics vary between 0 and 1, where a high value
(close to 1) is interpreted as indicating a high accuracy.

For the evaluation of the magnitude we used the following
metrics:

– the mean absolute error (MAE) and the relative MAE
(RMAE), as global error measures;

– the mean error (ME) and the relative ME (RME), as
global bias measures;

– the ratio of standard deviations (RSD), as a measure of
variance deflation;

– the Kling–Gupta efficiency (KGE), as an overall
goodness-of-fit measure.

Model evaluation was performed globally considering the
whole dataset but also for each month individually to make
it possible to analyse the temporal evolution of the perfor-
mance statistics.

Finally, in order to determine the benefits of the data res-
cue process, we compared the original (NCDB) and aug-
mented (NCDB+YB) datasets. We used the same cross-
validation scheme described above, but in this case the val-
idation was restricted to the period covered by the year-
books (1916–1950). Another important difference is that we
only used the observations present in both the NCDB and
NCDB+YB datasets for computing cross-validation statis-
tics, although the whole datasets were used for performing
the interpolation.

3 Results

3.1 Data rescue and quality control

The annual weather yearbooks proved to be an outstanding
source of climate data over the 1916–1950 period, as it con-
tained 369 286 observations from 4248 stations, compared to
281 951 observations from 2732 stations for the NCDB in
the same period. As expected, there was a significant overlap
between the two sources, so the augmented dataset result-
ing from their combination contained 432 183 observations
from 4414 stations. Figure 1 shows the temporal evolution
of the two datasets and their combination over 1916–1950.
With the exception of a few years (1932, 1933, and 1937–
1941), the yearbooks vastly surpassed the NCDB in number
of active stations. The improvement of the combined dataset
with respect to the NCDB ranged between more than 100 %
before 1920 and between 80 % and 20 % in the remaining of
the period.

A striking characteristic of the dataset during this first pe-
riod was the abundance of short-lived time series and even
more so in the yearbooks’ data (Table 2). The highest fre-
quency (43 %) corresponds to series with less than 5 years of
data, while 65 % of the series had no more than 10 years. On
the other hand, less than 5 % of stations cover the complete
period 1916–1950.

The complete dataset, spanning 1916–2020, contained
more than 3.3 million records from 11 008 weather stations.
The number of stations currently active in any given year was
much lower, though, and it varied significantly (Fig. 2). After
a first decade (1916–1925) with no large variation at around
800 active stations, the number of active stations increased
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Figure 1. Temporal evolution of the number of active weather stations in the dataset: national digital data bank (NCDB), newly digitized
yearbook (YB) datasets, and their combination (NCDB+YB).

Figure 2. Temporal evolution of the number of active weather stations in the dataset over the whole study period.

Table 2. Number and percentage of stations according to the length
of the record, for the period 1916–1950.

Length NCDB YB NCDB+YB
(years)

5 1095 (40 %) 1903 (45 %) 1884 (43 %)
10 660 (24 %) 1146 (27 %) 1082 (24 %)
15 334 (12 %) 541 (13 %) 524 (12 %)
20 334 (12 %) 306 (7 %) 450 (10 %)
25 124 (5 %) 156 (4 %) 221 (5 %)
30 61 (2 %) 115 (3 %) 105 (2 %)
35 78 (3 %) 68 (2 %) 98 (2 %)
40 46 (2 %) 18 (< 1%) 62 (1 %)

steadily, reaching approximately 2500 stations in 1950 and
peaking at 5237 in 1975. The number of active stations has
progressively decreased since, reaching 2615 in 2020. The
most notable exception to this general trend was the Spanish
Civil War period between 1936 and 1939 and the immediate
post-war years, when the dataset was severely reduced and
reached its lowest count at 675 active stations in 1939.

As a consequence of this variation, the information spatial
density has greatly changed over time, too (Fig. 3). Also, and
in particular in the first half of the 20th century, the spatial
coverage of the dataset is not homogeneous as some regions
have a notably lower information density. Regarding the spa-
tial coverage, the image illustrates that the addition of the
rescued data (YB dataset) improved the data density in some
regions that were severely under-represented in the original
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Figure 3. Spatial distribution of the weather stations in selected years, with indication of the data origin.

dataset (NCDB), such as the south-west (Guadalquivir River
basin), in a significant way.

As temporal changes in data availability can have an im-
pact in the interpolation results and in any ulterior analysis,
we assessed them in more depth. Figure 4 informs on the
evolution of the distance to the closest neighbouring station
(mean and standard deviation). Since the random component
of kriging is essentially a distance-based weighting scheme,
this is a relevant statistic that is related to the degree of spatial
smoothing introduced by the interpolation. Prior to 1940 the
mean distance ranged between 10 and 12 km, rapidly decay-
ing to less than 6 km after 1960. The minimum average dis-
tance (5.9 km) was achieved in 1973, with a slight increase
since then up to the present. Interestingly, the increase of the
closest neighbour distance in recent years has been slower
than the reduction in the number of observatories, evidenc-
ing a more even spatial distribution of the observation net-
work that is also apparent when the spatial distribution of
the stations in 2015 and 1955 are compared. The effect of

the reduction of stations is perhaps more evident in the dis-
tance variances. The variability of the number and density of
observations during the study period is a potential source of
undesired effects in the interpolated dataset, reinforcing the
need for a thorough validation.

Another potential source of bias arises from the altitudi-
nal distribution of the stations, since there is usually a good
correlation between monthly precipitation and elevation, so
ideally the observations should sample evenly all the altitu-
dinal ranges on the study area. In our case, the areas below
500 m a.s.l. tended to be over-represented when the propor-
tion of observations per altitude ranges was compared to that
of the study area, while higher areas were slightly under-
represented (Fig. 5). Strong temporal changes in the altitu-
dinal distribution of the stations could be an additional prob-
lem as it could generate temporal bias in the resulting grids.
However, in our case the altitudinal distribution of the obser-
vations changed only slightly, with the average elevation os-
cillating between 575 (first quartile) and 614 (third quartile)
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Figure 4. Temporal evolution of the distance to the closest station: mean (black dots) and 2 standard deviation range (vertical grey lines).

Figure 5. Frequency histogram of weather stations per elevation class, as compared to the whole study area.

m a.s.l., values that correspond approximately to the mean el-
evation of mainland Spain (Fig. 6). The relative composition
of the dataset by altitudinal classes has not changed signifi-
cantly over the study period, so no temporal bias was to be
expected due to elevation shifts (Fig. A4).

Regarding the length of the data series, the frequency of
observatories with less than 5 years of data is 22 %. A total
of 34 % of the series cover more than 30 years, while only a
few (0.1 %) cover the complete period (Table 3).

While this heterogeneity of record lengths is not uncom-
mon in observational datasets, it imposes an important de-
cision that conditions the development of gridded dataset:
whether to use all the information available at any given
moment, even if the data availability changes over time, or
to restrict the analysis to a reduced set of stations that do
not change over time. The last option implies selecting the

largest and most complete data series and then undergoing a
gap-filling and reconstruction process, in order to make all
the series cover the whole period of study, at the cost of re-
jecting a large amount of valid data and the risk of introduc-
ing statistical artefacts during the reconstruction process. The
first option, on the other hand, has the advantage of making
use of all the information available but the risk of introducing
statistical biases in the dataset since the number of observa-
tions change largely over time. We shall discuss this issue
later in the article.

Figure 7 shows the time series of data discarded during the
quality control process. Discarded data amounted to 0.5 %–
1 % of the records prior to 1940, between 0.25 %–0.5 % dur-
ing 1940–1985, and lower than 0.2 % since ∼ 1985. The
largest part of the rejections was due to repeated sequences
in the same station or between different stations in the same
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Figure 6. Temporal evolution of the station network’s elevation: mean (dots) and 2 standard deviation range (vertical lines).

Table 3. Number and fraction of stations according to the length of the record, for the period 1916–2015.

Length 1 5 10 15 20 25 30 35 40 45 50 60 70 80 90 100 105

Number 419 2221 1244 1286 1061 827 808 701 573 517 544 746 569 286 128 48 14
Percentage 3.5 % 18.5 % 10.4 % 10.7 % 8.8 % 6.9 % 6.7 % 5.8 % 4.8 % 4.3 % 4.5 % 6.2 % 4.7 % 2.4 % 1.1 % 0.4 % 0.1 %

year, while anomalous data (sequences of zeros or extremely
high values) amounted for a much lower proportion or rejec-
tions. Discarded data are distributed evenly across the year
(Table 4), with a certain lower prevalence in July and August
that might be due to the higher difficulty to detect anoma-
lies during those months given the more irregular character
of precipitation.

3.2 Gridded dataset

The result of the interpolation process was a gridded database
of mean and standard deviation fields of the best linear unbi-
ased predictions (BLUPS) of monthly precipitation between
January 1916 and December 2020 (1272 time steps). As an
example of the dataset, mean and standard deviation fields
are shown for April 1916 and 1975 (Fig. 8). The figures il-
lustrate the probabilistic nature of the Gaussian process inter-
polation, as the mean and standard deviation fully describe
the probability distribution of estimated precipitation at each
point of the grid. There is a noticeable difference in the ob-
servational data density leading to each interpolated grid (as
seen in Fig. 3), which had an impact mainly on the magni-
tude of the standard deviation field. In fact, despite a similar
range of the mean predicted values, the standard deviation
field value ranges were very different between the two dates,
being almost double in 1916 than in 1975, revealing a higher
uncertainty of the estimated values.

This is further illustrated in Fig. 9 (left panel), which
shows time series of estimated monthly precipitation

(BLUPs) with their uncertainty levels (±1 standard devia-
tion) at four random grid points. In addition, time series of
the standard deviation and of the distance to the closest obser-
vation are also provided. Two facts are apparent upon inspec-
tion of the plots: (i) there is a linear relationship between the
predicted precipitation and the uncertainty range (i.e. there is
a larger uncertainty for higher precipitation), and (ii) there is
a reduction of the uncertainty range with time, which can be
related to the progressive addition of new information.

3.3 Validation: probability of zero precipitation

The MCC statistic was used to determine the classification
threshold for the interpolation of precipitation occurrence,
since it provides a good balance between the prediction of
positive and negative cases (Fig. 10). Classification thresh-
olds were computed for each month and were applied glob-
ally (i.e. the same thresholds applied for the whole spatial
and temporal domains). The threshold values were lower in
winter (close to 0.25) and higher in summer (close to 0.50),
reflecting the seasonal variation of the prevalence of zero
precipitation. The thresholds offered a good balance as they
tended to maximize the individual metrics of the confusion
matrix (Figs. A5 and A6).

As a result, a reasonably good prediction of zero-
precipitation cases was obtained in the summer months,
when the prevalence is higher and thus more important, while
during the rest of the year, when the prevalence is lower and
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Table 4. Monthly distribution of anomalous data discarded during the quality control: number of observations and percent over the whole
data.

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Anomalies 197 189 171 174 169 175 97 90 169 220 229 234
(%) 9.3 8.9 8.1 8.2 8.0 8.3 4.6 4.3 8.0 10.4 10.8 11.0

Figure 7. Temporal evolution of the observations discarded during quality control (percent per year), according to the reason: duplicated
data, anomalous values, and total discarded.

therefore less relevant, there was a slight underestimation of
zero-precipitation cases (Fig. 11).

A detailed inspection of the evaluation statistics for the
prediction of zero precipitation (Table 5) reveals that the in-
terpolation was better at predicting negative cases (precipita-
tion higher than zero) than positive cases (zero precipitation),
as shown by higher TNR and NPV values over TPR and PPV.
This is also reflected by the F1 score, which focuses on the
ability to predict positive cases and had values in the 0.50–
0.65 range for most months. Only during the summer months
(especially July and August) was the skill higher.

3.4 Validation: magnitude

Cross-validation results of precipitation magnitude (consid-
ering the combined result of the two interpolations by ap-
plication of Eq. 5) can be considered good. The probability
density of the interpolated values matched that of the obser-
vations quite well (Fig. 12), although the predicted values
tended to be slightly more concentrated around the mode
of the distribution, while under-representing the lower and
higher tails of the distribution. Such variance contraction
should be expected in any interpolation process, and it is
more important to check for biases and temporal inconsis-
tencies.

This can be seen in more detail when comparing the quan-
tiles of the observed and predicted sets (Table 6). Starting by

the median (50 % percentile), there was a very good match
between both sets, albeit a slight overestimation can be found
in most months. When considering the lower quantiles (25 %
and, especially, 10 %), the overestimation is more evident,
while the higher quantiles (75 % and, especially, 90 %) show
a closer match.

Cross-validation statistics for the magnitude interpolation
are given in Table 7, and an example scatter plot of pre-
dicted against observed values for a 12-month period is pro-
vided in Fig. 13. The MAE over the whole dataset ranged
between slightly less than 7 mm in July and 17 mm in De-
cember. These might seem to be quite high error values, but
it must be kept in mind that the distribution of the variable of
interest is highly skewed, so a relatively low number of very
high observations contributes a lot to the statistic. In fact, vi-
sual inspection of the scatter plots in Fig. 13 reveals a good
match between observations and predictions, in all months.

The ME, very close to 0 mm, indicates no significant bias
in the predictions. The RSD was in general close to 0.9,
which can be considered a good result and implies only a
slight reduction of the spatial variance in the predicted pre-
cipitation fields. The KGE, finally, was quite good, too, with
values ranging between 0.79 in May (worst case) and 0.85 in
December–January (best months). In general, the validation
results were better in winter and worse during the summer
months.

Earth Syst. Sci. Data, 15, 2547–2575, 2023 https://doi.org/10.5194/essd-15-2547-2023



S. Beguería et al.: A long-term monthly precipitation grid for the Spanish mainland 2557

Figure 8. Example grids: mean and standard deviation of monthly precipitation (PCP) best linear unbiased predictions (BLUPS) for
April 1916 (up) and April 1975 (bottom). Black dots and numbers identify the location of four random points selected for further anal-
ysis.

Table 5. Cross-validation statistics for zero-precipitation estimation: true positive ratio (TPR), true negative ratio (TNR), positive predictive
value (PPV), negative predictive value (NPV), F1 score (F1), and Matthew’s correlation coefficient (MCC). Median values across all the
stations.

Month TPR TNR PPV NPV F1 MCC

January 0.660 0.984 0.695 0.982 0.660 0.677
February 0.658 0.984 0.671 0.983 0.648 0.665
March 0.528 0.994 0.727 0.985 0.609 0.611
April 0.485 0.989 0.448 0.990 0.455 0.466
May 0.509 0.987 0.532 0.985 0.506 0.520
June 0.627 0.971 0.699 0.961 0.628 0.661
July 0.806 0.923 0.823 0.914 0.733 0.814
August 0.764 0.939 0.795 0.928 0.713 0.779
September 0.629 0.979 0.733 0.967 0.652 0.677
October 0.608 0.982 0.535 0.986 0.555 0.569
November 0.587 0.994 0.748 0.987 0.653 0.658
December 0.615 0.981 0.544 0.986 0.562 0.578
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Figure 9. Time series of best linear unbiased predictions (BLUPs) of April precipitation at four random grid points (left column): means
(black dots) and 2 standard deviation range (vertical lines), standard deviation of the predictions (central column), and mean distance to the
nearest observation (right column).

A very important issue when constructing gridded datasets
over an extended period, as was the case here, is to consider
potential biases that may arise from the substantial change in
the number of observations available at different times. Large
temporal variation in the size of the observational dataset can
potentially impact several aspects of the interpolated grids,
mostly their spatial variance, and even might be a source of
bias. Here we checked for such changes by computing cross-
validation statistics for each monthly grid independently and
then inspecting the time series of said statistics, looking for
temporal trends (Fig. 14). Ideally, validation statistics should
be time-stationary, although some effects are inevitable due
to the changes in the size of the observational dataset.

The first and most obvious consequence of the variation in
the number of observations is the effect on the overall accu-
racy, as expressed by the MAE. As the size of the observed

dataset increased over time, the absolute error of the inter-
polation also decreased. A similar result would be obtained
by inspecting the evolution of other goodness-of-fit statistic,
such as the R2, and is an inevitable consequence of having
more data to interpolate. In our case, the reduction of the
MAE was approximately 2-fold; that is, the error was 2 times
higher during the first decades of the 20th century, when the
observational data were scarcest, than during the last decades
of the study period.

More relevant than the absolute error is the evolution of
the mean error, as it informs about possible systematic tem-
poral biases that could affect, for instance, the computation
of temporal trends using the interpolated grid. In principle,
the unbiasedness of the kriging interpolation is independent
of the size of the dataset, so no temporal bias should be ex-
pected. However, other factors related to the normalization
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Figure 10. Selection of zero-precipitation prediction thresholds based on the MCC statistic (cross-validation results).

Figure 11. Empirical density functions of zero-precipitation frequency in the observed (grey) and cross-validation (red) datasets.

of the data or other steps of the process could introduce un-
desired effects. In our case, the ME was stationary or only
exhibited very limited temporal trend, with close-to-zero val-
ues and mostly random oscillations. Only for some months
(April and July being the most conspicuous) was a slight in-
creasing trend of the ME apparent, albeit the magnitude of
the difference between the start and the end of the study pe-
riod (less than 0.5 mm) was very low in comparison with the
magnitude of the variable.

Another well-known effect of the sample size is that it is
related to the variance shrinkage of the interpolation. This
can be inspected by the RSD statistic, which showed an in-
creasing trend as the size of the available data increased. The
magnitude of the difference between the start and the end
of the study period ranged around 0.1, indicating that later
grids had larger variability (and much closer to that of the
observed sample) than earlier grids. Despite the magnitude
of the effect not being too high, it is something that should
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Table 6. Mean monthly observed (obs) and predicted (pred) percentiles and mean values (cross-validation results).

10 % 25 % 50 % 75 % 90 % Mean

Month obs pre obs pre obs pre obs pre obs pre obs pre

January 9.94 12.45 21.17 24.45 41.35 43.10 74.60 73.48 135.20 132.33 62.34 62.23
February 10.65 13.75 21.60 24.44 39.48 41.68 69.94 69.58 124.30 120.63 55.80 55.82
March 13.31 16.40 26.39 29.64 47.80 50.29 79.67 78.12 127.54 122.41 63.86 63.97
April 15.90 19.81 27.85 30.51 47.12 48.74 75.22 74.03 115.04 109.86 58.46 58.39
May 12.50 16.19 27.00 31.22 47.30 49.08 73.36 72.81 113.37 109.27 55.04 55.02
June 2.10 4.81 10.39 13.25 26.45 29.15 50.00 49.68 77.33 73.12 34.57 34.60
July 0.00 0.00 0.00 0.00 7.10 9.63 25.20 25.18 48.04 44.83 17.64 17.48
August 0.00 0.00 0.90 3.18 10.95 12.44 30.19 30.36 59.11 55.24 21.48 21.26
September 5.81 9.34 14.71 18.54 32.27 35.10 59.17 57.64 95.62 89.85 44.89 44.94
October 16.05 18.72 28.82 31.09 48.55 50.04 87.44 87.18 138.85 134.71 65.91 65.72
November 17.20 20.41 32.70 35.08 54.77 57.19 95.01 94.79 156.67 152.81 74.66 74.64
December 13.07 16.52 26.90 29.20 51.55 52.94 88.20 87.33 151.39 150.29 69.99 69.92

Figure 12. Density of observed (grey) and predicted (red) monthly precipitation (cross-validation results).

be considered, for instance, if the interpolated grid was to be
used for assessing variability or extreme values changes over
time.

As a final result, indicative of the overall goodness of fit
of the interpolation and considering the error, the bias, and
the variability, the KGE statistic showed a steady increase
during the study period ranging between values in the 0.65–
0.7 range at the beginning of the period and close to 0.9 at
the end.

A spatial evaluation of the quality of the interpolation, fo-
cusing on the KGE statistic, shows that the worst results were
obtained in the summer months and towards the south of the
study area (Fig. 15).

3.5 Evaluation of the combined dataset

The addition of new observational data digitized from the
yearbooks improved the prediction of zero precipitation and
precipitation magnitude in all months, as shown by the cross-
validation statistics computed over the period 1916–1950
(Table 8). The most notable improvement of the augmented
dataset (NCDB+YB) over the original one (NCDB) was the
stabilization of the mean error during the first decades of the
study period, which exhibited large variability in the original
dataset (Fig. 16).
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Figure 13. Predicted and observed monthly precipitation values for the year 2015 (cross-validation results). Each dot represents one weather
station.

Table 7. Cross-validation statistics for precipitation magnitude es-
timation: mean absolute error (MAE; mm), mean error (ME; mm),
ratio of standard deviations (RSD), Kling–Gupta efficiency (KGE).
Median values across all the stations.

Month MAE ME RSD KGE

January 11.43 0.60 0.96 0.817
February 10.76 0.59 0.96 0.814
March 10.91 0.57 0.95 0.812
April 11.28 0.55 0.94 0.818
May 11.72 0.48 0.93 0.806
June 9.98 0.22 0.91 0.762
July 6.33 −0.08 0.88 0.679
August 6.97 0.00 0.89 0.703
September 10.57 0.25 0.92 0.794
October 12.55 0.50 0.96 0.838
November 12.79 0.60 0.96 0.83
December 13.01 0.62 0.97 0.83

4 Discussion

In the following paragraphs, we discuss various aspects of
our spatial interpolation approach and evaluate the perfor-
mance of alternative model choices. We used a geostatistical
approach, universal kriging (also known as Gaussian process
regression), over other well-known and used approaches such
as global or local regression, and weighted averaging meth-
ods or splines, due a number of reasons. On the one hand,
and similar to other regression methods, kriging performs a
probabilistic prediction, as it allows not only best predictions
at unsampled locations to be obtained but also their standard
deviation, allowing us to determine uncertainty ranges. Un-
der appropriate assumptions, kriging yields best linear un-
biased predictions (BLUPs), unlike other weighted averag-
ing methods that do not guarantee unbiasedness. Standard
regression methods, on the other hand, only consider fixed
effects and result in best linear unbiased estimations, ignor-
ing the random part. In a preliminary phase we found that
kriging resulted in better cross-validation statistics than, for
instance, angular-weighting interpolation.
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Figure 14. Temporal evolution of the mean absolute error (MAE), mean error (ME), ratio of standard deviations (RSD), and Kling–Gupta
efficiency (KGE) for each month (cross-validation results).

In order to make the best use of the data, we used all the
observations available at each time step. As a result, the in-
terpolation sample varied largely on time, as the number of
weather stations available was 5 times higher at their peak in
the middle 1970s than at the beginning on the period (1916–
1940). Such a strong variation in the observational dataset is
not uncommon when analysing large temporal periods and
may have non-desired effects on the interpolated dataset, ad-

vising a thorough temporal validation. It is evident that a big-
ger sample would result in reduced prediction uncertainty
but should not result in systematic bias. We found that to
be correct, as only the MAE but not the ME was affected
by temporal changes in the sample size. This implies that
the interpolated dataset can be safely used for climatolog-
ical analyses involving the calculation of means or trends
in the mean values, over the whole temporal range or over
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Figure 15. Location of station/months with negative KGE over the period 1916–2020 (cross-validation results).

shorter time spans. However, some unexpected temporal bias
was found related to certain variable transformations, which
were discarded (more on that later). Also, as it was expected,
smaller samples resulted in a reduced variance (as shown by
the RSD). As a result, caution is recommended when using
the dataset for climatological assessments of spatial or tem-
poral variability, extremes, or quantiles other than the mean.

A common concern that is often expressed against using
a time-varying sample for interpolation is that it might in-
troduce biases (inhomogeneities) in the predicted time series
at given locations as new weather stations appear (or disap-
pear) in the vicinity of the point, due to possible systematic
differences between the two points. Although this is more
problematic with weighted averaging methods than with re-
gression or kriging approaches, we decided to use a vari-
able transformation in order to eliminate such differences.

Therefore, we transformed the original data in millimetres
into anomalies (ratios to the point’s long-term climatology).
Although this is not a strict requirement of kriging, interpo-
lating the anomalies and transforming back to the original
units resulted in slightly better cross-validation results (Ta-
ble A3) and helped ensuring the statistical continuity of the
predicted time series at any given point of the grid as new ob-
servations (weather stations) appeared in the vicinity of the
point.

We tried other variable transformations than the ratios to
the climatology, with not quite as good results. One of the
most promising approaches was performing a full standard-
ization of the variable by converting the original values into
standardized variates. In fact, converting the observed values
into Standardized Precipitation Index anomalies improved
the error statistics slightly (MAE), albeit it yielded worse
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Table 8. Cross-validation statistics for zero precipitation and magnitude in the original (NCDB) and augmented (NCDB+YB) datasets: F1
score (F1), Matthew’s correlation coefficient (MCC), mean absolute error (MAE; mm), and Kling–Gupta efficiency (KGE) median values
across the stations, period 1916–1950.

NCDB NCDB+YB

Month F1 MCC MAE KGE F1 MCC MAE KGE

January 0.975 0.521 12.080 0.682 0.974 0.552 11.663 0.707
February 0.973 0.548 12.886 0.721 0.975 0.587 12.380 0.747
March 0.985 0.251 13.993 0.687 0.991 0.226 13.187 0.716
April 0.983 0.454 12.379 0.718 0.980 0.475 12.101 0.743
May 0.986 0.266 15.722 0.673 0.989 0.251 14.882 0.701
June 0.950 0.541 11.496 0.572 0.952 0.575 10.826 0.608
July 0.907 0.662 6.540 0.487 0.904 0.672 6.292 0.523
August 0.926 0.640 8.725 0.443 0.917 0.653 7.970 0.493
September 0.973 0.572 13.938 0.644 0.971 0.606 13.338 0.681
October 0.985 0.516 14.100 0.648 0.984 0.532 13.360 0.690
November 0.985 0.713 13.737 0.687 0.985 0.720 13.417 0.717
December 0.985 0.375 16.252 0.690 0.985 0.389 15.243 0.716

Figure 16. Time series of the mean error in the NCDB and combined (NCDB+YB) datasets.

bias statistics (ME) and overall accuracy (KGE; Table A4).
The worse ME of the full standardization might be a result
of the transformation of the variable, but the most preoccu-
pying effect was that it introduced a strong temporal compo-
nent in the ME (Fig. A8), with a bias magnitude that could no
longer be considered irrelevant as it could appreciably alter,
for instance, the computation of temporal trends based on the
interpolated grid.

Another important aspect of our approach is that it con-
sisted of two steps, where the final precipitation prediction
is the result of independent estimation of the probability
of zero precipitation and precipitation magnitude. This al-
lowed a better representation of zero-precipitation areas to
be attained, which was especially relevant for the summer
months. As a comparison, a single-step approach (that is,
direct interpolation of precipitation magnitude) resulted in
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a severe underestimation of zero precipitation: if the preva-
lence of zero-precipitation cases was 8.24 % in the observa-
tional dataset, using a single-step approach this value got re-
duced to 1.64 %. Our two-step approach, on the other hand,
yielded a much closer estimation at 8.07 %. Underestimation
was especially important during the summer, when the preva-
lence of zero-precipitation months is higher (Fig. A7). Using
a single-step approach did not have such a remarkable im-
pact on the prediction of precipitation magnitude, leading to
similar or marginally poorer cross-validation statistics (Ta-
ble A2). This came as no surprise due to the low contribu-
tion of low-precipitation values to validation statistics in gen-
eral and highlights the importance of performing a thorough
validation of the interpolation results that goes beyond the
mere computation of error (deviation) statistics and consid-
ers other important aspects of the data, such as the prediction
of zero precipitation.

We also checked the added information of using covari-
ates, i.e. using a universal kriging approach, against a simpler
ordinary kriging with no covariates. We found that the covari-
ates resulted in better cross-validation statistics, both for the
probability of zero precipitation and for magnitude, although
the magnitude of the difference was not too big (Table A5).

Our variable of interest, precipitation, can only take posi-
tive values (once zero precipitation has been ruled out), and
its distribution is typically skewed. In order to deal with
these characteristics in a regression context, usually a loga-
rithmic transformation of the variable is advised or the use
of a logarithmic link function. However, this implies that
the method’s unbiasedness properties might not apply to the
original variable under certain circumstances, recommend-
ing caution (Roth, 1998). Here we found that applying a
log transformation to the data yielded slightly worse cross-
validation results (Table A6), and, similarly to applying full-
standardization, it introduced a temporal bias in the mean er-
ror. Therefore, we opted to not using this transformation.

Our approach has a number of drawbacks and potential
improvements. The kriging properties rely on a proper esti-
mation of the semivariogram model, which needs to be es-
timated for each time step. We found that under certain cir-
cumstances the automatically derived semivariograms were
flawed (either the parameter search did not converge, or the
parameters were too low or too high), so we had to put extra
care into designing automated checks and solutions, as de-
scribed in the methodology. Also, we found that under cer-
tain circumstances the method could be too sensitive to out-
lier observations.

Another important limitation is the kriging assumption of
spatial stationarity, as the semivariogram model is supposed
to be valid across the whole spatial domain. This is clearly a
sub-optimal approach for climate variables with often com-
plex spatial behaviour such as abrupt changes and variations
in the correlation range, spatial anisotropies, etcetera. One
possible solution, not explored here, is the implementation
of deep Gaussian process (deepGP) regression. Unlike “shal-

low” kriging, as used here, deepGP introduces more than one
layer of Gaussian processes and therefore allows for spatial
non-stationarities to be modelled (Damianou and Lawrence,
2012), providing a promising method for the interpolation of
climate variables.

Another drawback of the our approach is that, as only the
information of the month being interpolated is used, a good
wealth of useful information is not used. Spatio-temporal
variogram models have been proposed to leverage the self-
correlation properties of climatic variables (Sherman, 2011;
Gräler, 2016), especially over short time periods, but other
possible approaches include the use of principal components
fields, weather types or k-means field classification as covari-
ates for universal kriging. All these approaches merit explo-
ration and will be the subject of future work.

5 Data availability

The MOPREDAScentury (Monthly Precipitation
Dataset of Spain) gridded dataset can be accessed
on the project’s website at https://clices.unizar.es
(last access: 14 June 2023) and has been reposited at
https://doi.org/10.20350/digitalCSIC/15136. It is distributed
under the Open Data Commons Attribution (ODC-BY)
license and can be cited as Beguería et al. (2023).

6 Conclusions

We created a century-long (1916–2020) dataset of monthly
precipitation over mainland Spain to serve as a basis for
further climatologic analysis. To achieve that, we first aug-
mented the current observational information in the Spanish
National Climate Data Bank with new data digitized from cli-
matic yearbooks during the period 1916–1950. This allowed
the information available in the first decades of the 20th cen-
tury to be almost doubled, a crucial task due to the general
data scarcity during that period, especially over certain re-
gions such as the north- and south-west of the study area.
The new data helped reduce the uncertainty of the interpo-
lated dataset and stabilized its mean error. We further used
a two-step kriging method to interpolate monthly precipita-
tion fields (grids) based on all the data available in the obser-
vational record. Each month was interpolated independently;
i.e. no information from the previous or posterior months was
used besides the computed climatology that was used as a
co-variable. Other co-variables were the spatial coordinates,
the elevation, and the distance to the sea. The raw data in
millimetres were converted to anomalies (ratios to the long-
term monthly climatology) prior to interpolation. The main
advantages of our approach were that (i) it is a relatively fast
computation of the model’s coefficients and predictions, es-
pecially compared to machine learning methods; (ii) it pro-
vides the best linear unbiased predictions, unlike other meth-
ods such as global or local regression (which provide esti-
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mations, i.e. considering only the fixed effects and not the
random component), splines or weighted means (which do
not consider co-variables and do not guarantee lowest error
or unbiasedness); and (iii) it has a probabilistic nature, al-
lowing us to estimate uncertainty ranges. A thorough cross-
validation of the resulting gridded dataset revealed a good
estimation of precipitation values at unmeasured locations,
with a slight overestimation of low values and underestima-
tion of high values. No systematic biases were found, espe-
cially along the temporal dimension. The effects of the strong
variation in the sample size due to changes in the observa-
tional network were only apparent in the uncertainty of the
gridded predictions and in the grid spatial variability but in-
troduced no temporal bias. The resulting dataset is available
to download with an open license. We have devised further
means of improving the approach, which would be imple-
mented in further versions of the dataset.

Appendix A: Additional figures and tables

Figure A1. Fixed covariates used for universal kriging interpolation: easting and northing coordinates, elevation, and distance to the coastline.
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Figure A2. Mean monthly zero-precipitation probability over 1961–2000.
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Figure A3. Mean monthly precipitation over 1961–2000.

Figure A4. Time evolution of the frequency of observations according to altitudinal classes.
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Figure A5. Positive prediction value and true positive rate vs. classification threshold obtained by cross-validation. The selected threshold is
shown by vertical black lines.

Figure A6. Negative prediction value and true negative rate vs. classification threshold obtained by cross-validation. The selected threshold
is shown by vertical black lines.
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Figure A7. Empirical density functions of zero-precipitation frequency in the observed (grey) and cross-validation (red) datasets, using a
single-step approach.
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Figure A8. Time series of cross-validation mean error, performing a full standardization of the variable.
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Table A1. Semivariogram models used in the interpolation of zero-precipitation probability and precipitation magnitude: exponential (Exp),
Gaussian (Gau), spherical (Sph) and Matérn (Mat). Number of months.

Zero precipitation Magnitude

Exp Sph Gau Mat Exp Sph Gau Mat

39 454 44 735 35 89 11 1137

Table A2. Cross-validation statistics for zero precipitation and precipitation magnitude, using a single-step approach.

Month TPR TNR PPV NPV F1 MCC MAE ME RSD KGE

January 0.190 0.997 0.748 0.958 0.302 0.362 11.443 0.662 0.961 0.816
February 0.178 0.997 0.741 0.960 0.287 0.350 10.778 0.672 0.957 0.814
March 0.149 0.999 0.798 0.973 0.251 0.338 10.912 0.594 0.953 0.812
April 0.068 0.999 0.614 0.982 0.122 0.200 11.259 0.639 0.940 0.817
May 0.078 0.999 0.691 0.973 0.140 0.226 11.715 0.574 0.924 0.805
June 0.136 0.997 0.828 0.916 0.233 0.314 9.988 0.381 0.901 0.760
July 0.203 0.991 0.913 0.736 0.332 0.355 6.405 0.196 0.873 0.672
August 0.183 0.993 0.895 0.798 0.303 0.349 7.041 0.252 0.879 0.697
September 0.139 0.998 0.840 0.928 0.239 0.324 10.590 0.387 0.920 0.793
October 0.078 0.999 0.682 0.969 0.140 0.223 12.550 0.654 0.953 0.837
November 0.171 0.999 0.786 0.974 0.281 0.359 12.816 0.632 0.953 0.827
December 0.125 0.997 0.642 0.969 0.209 0.274 13.005 0.715 0.964 0.824

Table A3. Cross-validation statistics for precipitation magnitude, without variable transformation.

Month MAE ME RSD KGE

January 11.692 0.599 0.960 0.813
February 10.957 0.547 0.958 0.812
March 11.120 0.581 0.952 0.809
April 11.370 0.538 0.942 0.817
May 11.834 0.475 0.926 0.805
June 10.062 0.222 0.902 0.758
July 6.359 −0.085 0.875 0.678
August 7.072 −0.023 0.876 0.698
September 10.670 0.248 0.917 0.791
October 12.668 0.471 0.955 0.836
November 13.033 0.558 0.952 0.824
December 13.218 0.542 0.966 0.822
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Table A4. Cross-validation statistics for precipitation magnitude, performing a full standardization of the variable.

Month MAE ME RSD KGE

January 11.317 −0.618 0.948 0.813
February 10.675 −0.475 0.946 0.812
March 10.818 −0.608 0.941 0.810
April 11.152 −0.750 0.934 0.815
May 11.757 −0.885 0.917 0.793
June 9.843 −1.115 0.887 0.752
July 6.088 −0.738 0.850 0.660
August 6.917 −0.930 0.854 0.673
September 10.350 −1.173 0.908 0.791
October 12.453 −0.987 0.943 0.833
November 12.738 −0.780 0.941 0.822
December 12.884 −0.684 0.953 0.819

Table A5. Cross-validation statistics for zero precipitation and precipitation magnitude, using interpolation with no covariates (ordinary
kriging). Median values across all the stations.

Month TPR TNR PPV NPV F1 MCC MAE ME RSD KGE

January 0.679 0.982 0.668 0.983 0.655 0.982 11.619 0.701 0.959 0.809
February 0.658 0.984 0.671 0.983 0.648 0.984 10.943 0.627 0.957 0.808
March 0.552 0.992 0.687 0.986 0.604 0.992 11.021 0.620 0.950 0.808
April 0.441 0.990 0.467 0.989 0.444 0.990 11.419 0.592 0.938 0.810
May 0.517 0.986 0.522 0.985 0.505 0.986 11.835 0.555 0.921 0.799
June 0.626 0.971 0.694 0.961 0.626 0.971 10.013 0.230 0.898 0.756
July 0.800 0.925 0.828 0.912 0.733 0.925 6.288 −0.068 0.872 0.674
August 0.773 0.934 0.783 0.930 0.710 0.934 6.987 −0.024 0.881 0.698
September 0.627 0.979 0.733 0.967 0.652 0.979 10.593 0.255 0.919 0.789
October 0.546 0.986 0.577 0.984 0.547 0.986 12.753 0.584 0.952 0.833
November 0.591 0.993 0.735 0.987 0.649 0.993 13.048 0.655 0.951 0.818
December 0.575 0.984 0.566 0.984 0.554 0.984 13.230 0.682 0.964 0.819

Table A6. Cross-validation statistics for precipitation magnitude, using a logarithmic variable transformation.

Month MAE ME RSD KGE

January 11.692 0.599 0.960 0.813
February 10.957 0.547 0.958 0.812
March 11.120 0.581 0.952 0.809
April 11.370 0.538 0.942 0.817
May 11.834 0.475 0.926 0.805
June 10.062 0.222 0.902 0.758
July 6.359 −0.085 0.875 0.678
August 7.072 −0.023 0.876 0.698
September 10.670 0.248 0.917 0.791
October 12.668 0.471 0.955 0.836
November 13.033 0.558 0.952 0.824
December 13.218 0.542 0.966 0.822
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Table A7. Cross-validation statistics for precipitation magnitude,
without the small offset.

Month MAE ME RSD KGE

January 11.591 0.591 0.961 0.814
February 10.958 0.548 0.958 0.812
March 11.110 0.581 0.952 0.810
April 11.298 0.531 0.942 0.817
May 11.834 0.475 0.926 0.805
June 10.062 0.222 0.902 0.758
July 6.353 −0.086 0.875 0.678
August 7.047 −0.022 0.878 0.699
September 10.671 0.256 0.917 0.790
October 12.668 0.471 0.955 0.836
November 12.960 0.562 0.952 0.824
December 13.085 0.552 0.966 0.822
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