Articles | Volume 15, issue 5
https://doi.org/10.5194/essd-15-2081-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/essd-15-2081-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
The CoralHydro2k database: a global, actively curated compilation of coral δ18O and Sr ∕ Ca proxy records of tropical ocean hydrology and temperature for the Common Era
Rachel M. Walter
School of Earth and Atmospheric Sciences, Georgia Institute of
Technology, Georgia, Atlanta, 30332, USA
present address: Langan Engineering and Environmental Inc, Parsippany, New Jersey, 07054, USA
School of Earth and Atmospheric Sciences, Georgia Institute of
Technology, Georgia, Atlanta, 30332, USA
present address: Langan Engineering and Environmental Inc, Parsippany, New Jersey, 07054, USA
Thomas Felis
MARUM – Center for Marine Environmental Sciences, University of
Bremen, 28359 Bremen, Germany
Kim M. Cobb
School of Earth and Atmospheric Sciences, Georgia Institute of
Technology, Georgia, Atlanta, 30332, USA
Nerilie J. Abram
ARC Centre of Excellence for Climate Extremes, The Australian National University, Canberra, 2601, Australia
Research School of Earth Sciences, The Australian National University, Canberra, 2601, Australia
Ariella K. Arzey
School of Earth, Atmospheric and Life Sciences, University of
Wollongong, Wollongong, 2522, Australia
Alyssa R. Atwood
Department of Earth, Ocean and Atmospheric Science, Florida State
University, Tallahassee, Florida, 32306, USA
Logan D. Brenner
Department of Environmental Science, Barnard College, New York, New York, 10027, USA
Émilie P. Dassié
UMR 5805 EPOC – CNRS – OASU – Université de Bordeaux, Pessac, 33615, France
Kristine L. DeLong
Department of Geography and Anthropology and Coastal Studies
Institute, Louisiana State University, Baton Rouge, Louisiana, 70803, USA
Bethany Ellis
Research School of Earth Sciences, The Australian National University, Canberra, 2601, Australia
New South Wales Department of Primary Industries, Orange, 2800,
Australia
Julien Emile-Geay
Department of Earth Sciences, University of Southern California, Los Angeles, California, 90089, USA
Matthew J. Fischer
NST Environment, ANSTO, Lucas Heights, 2234, Australia
Nathalie F. Goodkin
Department of Earth and Planetary Sciences, American Museum of
Natural History, New York, New York, 10021, USA
Jessica A. Hargreaves
MARUM – Center for Marine Environmental Sciences, University of
Bremen, 28359 Bremen, Germany
ARC Centre of Excellence for Climate Extremes, The Australian National University, Canberra, 2601, Australia
Research School of Earth Sciences, The Australian National University, Canberra, 2601, Australia
K. Halimeda Kilbourne
Chesapeake Biological Laboratory, University of Maryland Center for Environmental Science, Solomons, Maryland, 20657, USA
Hedwig Krawczyk
School of Geography, Geology and the Environment, University of
Leicester, Leicester, LE1 7RH, UK
Nicholas P. McKay
School of Earth and Sustainability, Northern Arizona University,
Flagstaff, Arizona, 86011, USA
Andrea L. Moore
Department of Earth, Ocean and Atmospheric Science, Florida State
University, Tallahassee, Florida, 32306, USA
Sujata A. Murty
Department of Atmospheric and Environmental Sciences, University at Albany, State University of New York, Albany, New York, 12222, USA
Maria Rosabelle Ong
Lamont-Doherty Earth Observatory, Columbia University, Palisades, New York, 10964, USA
Riovie D. Ramos
Department of Environmental Science, William Paterson University of New Jersey, Wayne, New Jersey, 07470, USA
Department of Geosciences, University of Arizona, Tucson, Arizona, 85721, USA
Emma V. Reed
Department of Geosciences, University of Arizona, Tucson, Arizona, 85721, USA
Dhrubajyoti Samanta
Earth Observatory of Singapore, Nanyang Technological University,
Singapore, 639798, Singapore
Sara C. Sanchez
Department of Atmospheric and Oceanic Sciences, University of
Colorado, Boulder, Colorado, 80309, USA
Jens Zinke
School of Geography, Geology and the Environment, University of
Leicester, Leicester, LE1 7RH, UK
A full list of authors appears at the end of the paper.
Related authors
No articles found.
Christopher L. Hancock, Michael P. Erb, Nicholas P. McKay, Sylvia G. Dee, and Ruza F. Ivanovic
Clim. Past, 20, 2663–2684, https://doi.org/10.5194/cp-20-2663-2024, https://doi.org/10.5194/cp-20-2663-2024, 2024
Short summary
Short summary
We reconstruct global hydroclimate anomalies for the past 21 000 years using a data assimilation methodology blending observations recorded in lake sediments with the climate dynamics simulated by climate models. The reconstruction resolves data–model disagreement in east Africa and North America, and we find that changing global temperatures and associated circulation patterns, as well as orbital forcing, are the dominant controls on global precipitation over this interval.
Andrea L. Moore, Alyssa R. Atwood, and Raquel E. Pauly
EGUsphere, https://doi.org/10.5194/egusphere-2024-3483, https://doi.org/10.5194/egusphere-2024-3483, 2024
This preprint is open for discussion and under review for Climate of the Past (CP).
Short summary
Short summary
Around 8200 years ago, Earth experienced an abrupt climate event when melting glaciers disrupted Atlantic Ocean circulation, triggering rapid global changes. Using statistical methods that account for dating uncertainties in ancient climate records, we find tropical rainfall patterns shifted dramatically for 150 years. The regional complexity of these changes, verified by model simulations, provides insights for understanding how similar ocean changes could impact rainfall in our warming world.
Zhi Yang Koh, Benjamin S. Grandey, Dhrubajyoti Samanta, Adam D. Switzer, Benjamin P. Horton, Justin Dauwels, and Lock Yue Chew
Ocean Sci., 20, 1495–1511, https://doi.org/10.5194/os-20-1495-2024, https://doi.org/10.5194/os-20-1495-2024, 2024
Short summary
Short summary
Identifying tide–surge interaction (TSI) is a complex task. We enhance existing statistical methods with a more-robust test that accounts for complex tides. We also develop a semi-empirical model to investigate the influence of one mechanism of TSI, tidal-phase alteration. We apply these techniques to tide-gauge records from Singapore and the east coast of Peninsular Malaysia. We find TSI at all studied locations: tidal-phase alteration can change the timing of large surges.
Ariella K. Arzey, Helen V. McGregor, Tara R. Clark, Jody M. Webster, Stephen E. Lewis, Jennie Mallela, Nicholas P. McKay, Hugo W. Fahey, Supriyo Chakraborty, Tries B. Razak, and Matt J. Fischer
Earth Syst. Sci. Data, 16, 4869–4930, https://doi.org/10.5194/essd-16-4869-2024, https://doi.org/10.5194/essd-16-4869-2024, 2024
Short summary
Short summary
Coral skeletal records from the Great Barrier Reef (GBR) provide vital data on climate and environmental change. Presented here is the Great Barrier Reef Coral Skeletal Records Database, an extensive compilation of GBR coral records. The database includes key metadata, primary data, and access instructions, and it enhances research on past, present, and future climate and environmental variability of the GBR. The database will assist with contextualising present-day threats to reefs globally.
Matt J. Fischer
Geosci. Model Dev., 17, 6745–6760, https://doi.org/10.5194/gmd-17-6745-2024, https://doi.org/10.5194/gmd-17-6745-2024, 2024
Short summary
Short summary
In paleoclimate research, proxy system models (PSMs) model chemical or biological systems which receive environmental input and output (e.g., geochemical signals). The environmental inputs are rarely noiseless, which causes problems when calibrating multi-input PSMs. Here a PSM is developed which includes generalized noise in both model inputs and outputs and prior information. A quasi-Bayesian method enhances the stability of the solution of the Measurement Error Proxy System Model.
Alice Paine, Joost Frieling, Timothy Shanahan, Tamsin Mather, Nicholas McKay, Stuart Robinson, David Pyle, Isabel Fendley, Ruth Kiely, and William Gosling
EGUsphere, https://doi.org/10.5194/egusphere-2024-2123, https://doi.org/10.5194/egusphere-2024-2123, 2024
Short summary
Short summary
Few tropical Hg records extend beyond ~12 ka, meaning our current understanding of Hg behaviour may not fully account for the impact of long-term hydroclimate changes on the Hg cycle in these environments. Here, we present a ~96,000-year Hg record from Lake Bosumtwi, Ghana. A coupled response is observed between Hg flux and shifts in sediment composition reflective of changes in lake level, and suggesting that hydroclimate may be a key driver of tropical Hg cycling over millennial-timescales.
Laura Velasquez-Jimenez and Nerilie J. Abram
Clim. Past, 20, 1125–1139, https://doi.org/10.5194/cp-20-1125-2024, https://doi.org/10.5194/cp-20-1125-2024, 2024
Short summary
Short summary
The Southern Annular Mode (SAM) influences climate in the Southern Hemisphere. We investigate the effects of calculation method and data used to calculate the SAM index and how it influences the relationship between the SAM and climate. We propose a method to calculate a natural SAM index that facilitates consistency between studies, including when using different data resolutions, avoiding distortion of SAM impacts and allowing for more reliable results of past and future SAM trends.
Feng Zhu, Julien Emile-Geay, Gregory J. Hakim, Dominique Guillot, Deborah Khider, Robert Tardif, and Walter A. Perkins
Geosci. Model Dev., 17, 3409–3431, https://doi.org/10.5194/gmd-17-3409-2024, https://doi.org/10.5194/gmd-17-3409-2024, 2024
Short summary
Short summary
Climate field reconstruction encompasses methods that estimate the evolution of climate in space and time based on natural archives. It is useful to investigate climate variations and validate climate models, but its implementation and use can be difficult for non-experts. This paper introduces a user-friendly Python package called cfr to make these methods more accessible, thanks to the computational and visualization tools that facilitate efficient and reproducible research on past climates.
Tessa R. Vance, Nerilie J. Abram, Alison S. Criscitiello, Camilla K. Crockart, Aylin DeCampo, Vincent Favier, Vasileios Gkinis, Margaret Harlan, Sarah L. Jackson, Helle A. Kjær, Chelsea A. Long, Meredith K. Nation, Christopher T. Plummer, Delia Segato, Andrea Spolaor, and Paul T. Vallelonga
Clim. Past, 20, 969–990, https://doi.org/10.5194/cp-20-969-2024, https://doi.org/10.5194/cp-20-969-2024, 2024
Short summary
Short summary
This study presents the chronologies from the new Mount Brown South ice cores from East Antarctica, which were developed by counting annual layers in the ice core data and aligning these to volcanic sulfate signatures. The uncertainty in the dating is quantified, and we discuss initial results from seasonal cycle analysis and mean annual concentrations. The chronologies will underpin the development of new proxy records for East Antarctica spanning the past millennium.
Miriam Pfeiffer, Hideko Takayanagi, Lars Reuning, Takaaki Konabe Watanabe, Saori Ito, Dieter Garbe-Schönberg, Tsuyoshi Watanabe, Chung-Che Wu, Chuan-Chou Shen, Jens Zinke, Geert-Jan Brummer, and Sri Yudawati Cahyarini
Clim. Past Discuss., https://doi.org/10.5194/cp-2024-25, https://doi.org/10.5194/cp-2024-25, 2024
Revised manuscript accepted for CP
Short summary
Short summary
A coral reconstruction of past climate shows changes in the seasonal cycle of sea surface temperature in the SE tropical Indian Ocean. An enhanced seasonal cycle suggests that the tropical rainfall belt shifted northwards between 1855–1917. We explain this with greater warming in the NE Indian Ocean relative to the SE, which strengthens surface winds and coastal upwelling, leading to greater cooling in the eastern Indian Ocean south of the Equator.
Georgina M. Falster, Nicky M. Wright, Nerilie J. Abram, Anna M. Ukkola, and Benjamin J. Henley
Hydrol. Earth Syst. Sci., 28, 1383–1401, https://doi.org/10.5194/hess-28-1383-2024, https://doi.org/10.5194/hess-28-1383-2024, 2024
Short summary
Short summary
Multi-year droughts have severe environmental and economic impacts, but the instrumental record is too short to characterise multi-year drought variability. We assessed the nature of Australian multi-year droughts using simulations of the past millennium from 11 climate models. We show that multi-decadal
megadroughtsare a natural feature of the Australian hydroclimate. Human-caused climate change is also driving a tendency towards longer droughts in eastern and southwestern Australia.
Lingwei Zhang, Tessa R. Vance, Alexander D. Fraser, Lenneke M. Jong, Sarah S. Thompson, Alison S. Criscitiello, and Nerilie J. Abram
The Cryosphere, 17, 5155–5173, https://doi.org/10.5194/tc-17-5155-2023, https://doi.org/10.5194/tc-17-5155-2023, 2023
Short summary
Short summary
Physical features in ice cores provide unique records of past variability. We identified 1–2 mm ice layers without bubbles in surface ice cores from Law Dome, East Antarctica, occurring on average five times per year. The origin of these bubble-free layers is unknown. In this study, we investigate whether they have the potential to record past atmospheric processes and circulation. We find that the bubble-free layers are linked to accumulation hiatus events and meridional moisture transport.
Benjamin S. Grandey, Zhi Yang Koh, Dhrubajyoti Samanta, Benjamin P. Horton, Justin Dauwels, and Lock Yue Chew
Geosci. Model Dev., 16, 6593–6608, https://doi.org/10.5194/gmd-16-6593-2023, https://doi.org/10.5194/gmd-16-6593-2023, 2023
Short summary
Short summary
Global climate models are susceptible to spurious trends known as drift. Fortunately, drift can be corrected when analysing data produced by models. To explore the uncertainty associated with drift correction, we develop a new method: Monte Carlo drift correction. For historical simulations of thermosteric sea level rise, drift uncertainty is relatively large. When analysing data susceptible to drift, researchers should consider drift uncertainty.
Sarah L. Jackson, Tessa R. Vance, Camilla Crockart, Andrew Moy, Christopher Plummer, and Nerilie J. Abram
Clim. Past, 19, 1653–1675, https://doi.org/10.5194/cp-19-1653-2023, https://doi.org/10.5194/cp-19-1653-2023, 2023
Short summary
Short summary
Ice core records are useful tools for reconstructing past climate. However, ice cores favour recording climate conditions at times when snowfall occurs. Large snowfall events in Antarctica are often associated with warmer-than-usual temperatures. We show that this results in a tendency for the Mount Brown South ice core record to preserve a temperature record biased to the climate conditions that exist during extreme events, rather than a temperature record that reflects the mean annual climate.
Walid Naciri, Arnoud Boom, Matthew Payne, Nicola Browne, Noreen J. Evans, Philip Holdship, Kai Rankenburg, Ramasamy Nagarajan, Bradley J. McDonald, Jennifer McIlwain, and Jens Zinke
Biogeosciences, 20, 1587–1604, https://doi.org/10.5194/bg-20-1587-2023, https://doi.org/10.5194/bg-20-1587-2023, 2023
Short summary
Short summary
In this study, we tested the ability of massive boulder-like corals to act as archives of land use in Malaysian Borneo to palliate the lack of accurate instrumental data on deforestation before the 1980s. We used mass spectrometry to measure trace element ratios in coral cores to use as a proxy for sediment in river discharge. Results showed an extremely similar increase between our proxy and the river discharge instrumental record, demonstrating the use of these corals as reliable archives.
Nicola Maher, Robert C. Jnglin Wills, Pedro DiNezio, Jeremy Klavans, Sebastian Milinski, Sara C. Sanchez, Samantha Stevenson, Malte F. Stuecker, and Xian Wu
Earth Syst. Dynam., 14, 413–431, https://doi.org/10.5194/esd-14-413-2023, https://doi.org/10.5194/esd-14-413-2023, 2023
Short summary
Short summary
Understanding whether the El Niño–Southern Oscillation (ENSO) is likely to change in the future is important due to its widespread impacts. By using large ensembles, we can robustly isolate the time-evolving response of ENSO variability in 14 climate models. We find that ENSO variability evolves in a nonlinear fashion in many models and that there are large differences between models. These nonlinear changes imply that ENSO impacts may vary dramatically throughout the 21st century.
Jan Petřík, Katarína Adameková, Sándor Kele, Rastislav Milovský, Libor Petr, Peter Tóth, and Nicholas McKay
EGUsphere, https://doi.org/10.5194/egusphere-2023-118, https://doi.org/10.5194/egusphere-2023-118, 2023
Preprint archived
Short summary
Short summary
Our analysis of the Santovka sedimentary record in Slovakia uncovered two major climate shifts at 8.2 and 7.4 ka BP. These shifts likely impacted temperature and humidity, and/or air mass circulation, and were caused by the drying of the lake at 7.4 ka BP. The sedimentary infill provides important information on the region's past climate, and future research must focus on its impact on the last hunter gatherers and first farmers in the context of spreading agriculture in Europe.
Michael P. Erb, Nicholas P. McKay, Nathan Steiger, Sylvia Dee, Chris Hancock, Ruza F. Ivanovic, Lauren J. Gregoire, and Paul Valdes
Clim. Past, 18, 2599–2629, https://doi.org/10.5194/cp-18-2599-2022, https://doi.org/10.5194/cp-18-2599-2022, 2022
Short summary
Short summary
To look at climate over the past 12 000 years, we reconstruct spatial temperature using natural climate archives and information from model simulations. Our results show mild global mean warmth around 6000 years ago, which differs somewhat from past reconstructions. Undiagnosed seasonal biases in the data could explain some of the observed temperature change, but this still would not explain the large difference between many reconstructions and climate models over this period.
Nicky M. Wright, Claire E. Krause, Steven J. Phipps, Ghyslaine Boschat, and Nerilie J. Abram
Clim. Past, 18, 1509–1528, https://doi.org/10.5194/cp-18-1509-2022, https://doi.org/10.5194/cp-18-1509-2022, 2022
Short summary
Short summary
The Southern Annular Mode (SAM) is a major mode of climate variability. Proxy-based SAM reconstructions show changes that last millennium climate simulations do not reproduce. We test the SAM's sensitivity to solar forcing using simulations with a range of solar values and transient last millennium simulations with large-amplitude solar variations. We find that solar forcing can alter the SAM and that strong solar forcing transient simulations better match proxy-based reconstructions.
Jens Zinke, Takaaki K. Watanabe, Siren Rühs, Miriam Pfeiffer, Stefan Grab, Dieter Garbe-Schönberg, and Arne Biastoch
Clim. Past, 18, 1453–1474, https://doi.org/10.5194/cp-18-1453-2022, https://doi.org/10.5194/cp-18-1453-2022, 2022
Short summary
Short summary
Salinity is an important and integrative measure of changes to the water cycle steered by changes to the balance between rainfall and evaporation and by vertical and horizontal movements of water parcels by ocean currents. However, salinity measurements in our oceans are extremely sparse. To fill this gap, we have developed a 334-year coral record of seawater oxygen isotopes that reflects salinity changes in the globally important Agulhas Current system and reveals its main oceanic drivers.
Stephanie H. Arcusa, Nicholas P. McKay, Charlotte Wiman, Sela Patterson, Samuel E. Munoz, and Marco A. Aquino-López
Geochronology, 4, 409–433, https://doi.org/10.5194/gchron-4-409-2022, https://doi.org/10.5194/gchron-4-409-2022, 2022
Short summary
Short summary
Annually banded lake sediment can track environmental change with high resolution in locations where alternatives are not available. Yet, information about chronology is often affected by poor appearance. Traditional methods struggle with these records. To overcome this obstacle we demonstrate a Bayesian approach that combines information from radiocarbon dating and laminations on cores from Columbine Lake, Colorado, expanding possibilities for producing high-resolution records globally.
Darrell S. Kaufman and Nicholas P. McKay
Clim. Past, 18, 911–917, https://doi.org/10.5194/cp-18-911-2022, https://doi.org/10.5194/cp-18-911-2022, 2022
Short summary
Short summary
Global mean surface temperatures are rising to levels unprecedented in over 100 000 years. This conclusion takes into account both recent global warming and likely future warming, which thereby enables a direct comparison with paleotemperature reconstructions on multi-century timescales.
Tobias Erhardt, Matthias Bigler, Urs Federer, Gideon Gfeller, Daiana Leuenberger, Olivia Stowasser, Regine Röthlisberger, Simon Schüpbach, Urs Ruth, Birthe Twarloh, Anna Wegner, Kumiko Goto-Azuma, Takayuki Kuramoto, Helle A. Kjær, Paul T. Vallelonga, Marie-Louise Siggaard-Andersen, Margareta E. Hansson, Ailsa K. Benton, Louise G. Fleet, Rob Mulvaney, Elizabeth R. Thomas, Nerilie Abram, Thomas F. Stocker, and Hubertus Fischer
Earth Syst. Sci. Data, 14, 1215–1231, https://doi.org/10.5194/essd-14-1215-2022, https://doi.org/10.5194/essd-14-1215-2022, 2022
Short summary
Short summary
The datasets presented alongside this manuscript contain high-resolution concentration measurements of chemical impurities in deep ice cores, NGRIP and NEEM, from the Greenland ice sheet. The impurities originate from the deposition of aerosols to the surface of the ice sheet and are influenced by source, transport and deposition processes. Together, these records contain detailed, multi-parameter records of past climate variability over the last glacial period.
Dominik Jackisch, Bi Xuan Yeo, Adam D. Switzer, Shaoneng He, Danica Linda M. Cantarero, Fernando P. Siringan, and Nathalie F. Goodkin
Nat. Hazards Earth Syst. Sci., 22, 213–226, https://doi.org/10.5194/nhess-22-213-2022, https://doi.org/10.5194/nhess-22-213-2022, 2022
Short summary
Short summary
The Philippines is a nation very vulnerable to devastating typhoons. We investigate if stable isotopes of precipitation can be used to detect typhoon activities in the Philippines based on daily isotope measurements from Metropolitan Manila. We find that strong typhoons such as Rammasun, which occurred in July 2014, leave detectable isotopic signals in precipitation. Besides other factors, the distance of the typhoon to the sampling site plays a key role in influencing the signal.
Karla Rubio-Sandoval, Alessio Rovere, Ciro Cerrone, Paolo Stocchi, Thomas Lorscheid, Thomas Felis, Ann-Kathrin Petersen, and Deirdre D. Ryan
Earth Syst. Sci. Data, 13, 4819–4845, https://doi.org/10.5194/essd-13-4819-2021, https://doi.org/10.5194/essd-13-4819-2021, 2021
Short summary
Short summary
The Last Interglacial (LIG) is a warm period characterized by a higher-than-present sea level. For this reason, scientists use it as an analog for future climatic conditions. In this paper, we use the World Atlas of Last Interglacial Shorelines database to standardize LIG sea-level data along the coasts of the western Atlantic and mainland Caribbean, identifying 55 unique sea-level indicators.
Camilla K. Crockart, Tessa R. Vance, Alexander D. Fraser, Nerilie J. Abram, Alison S. Criscitiello, Mark A. J. Curran, Vincent Favier, Ailie J. E. Gallant, Christoph Kittel, Helle A. Kjær, Andrew R. Klekociuk, Lenneke M. Jong, Andrew D. Moy, Christopher T. Plummer, Paul T. Vallelonga, Jonathan Wille, and Lingwei Zhang
Clim. Past, 17, 1795–1818, https://doi.org/10.5194/cp-17-1795-2021, https://doi.org/10.5194/cp-17-1795-2021, 2021
Short summary
Short summary
We present preliminary analyses of the annual sea salt concentrations and snowfall accumulation in a new East Antarctic ice core, Mount Brown South. We compare this record with an updated Law Dome (Dome Summit South site) ice core record over the period 1975–2016. The Mount Brown South record preserves a stronger and inverse signal for the El Niño–Southern Oscillation (in austral winter and spring) compared to the Law Dome record (in summer).
Cody C. Routson, Darrell S. Kaufman, Nicholas P. McKay, Michael P. Erb, Stéphanie H. Arcusa, Kendrick J. Brown, Matthew E. Kirby, Jeremiah P. Marsicek, R. Scott Anderson, Gonzalo Jiménez-Moreno, Jessica R. Rodysill, Matthew S. Lachniet, Sherilyn C. Fritz, Joseph R. Bennett, Michelle F. Goman, Sarah E. Metcalfe, Jennifer M. Galloway, Gerrit Schoups, David B. Wahl, Jesse L. Morris, Francisca Staines-Urías, Andria Dawson, Bryan N. Shuman, Daniel G. Gavin, Jeffrey S. Munroe, and Brian F. Cumming
Earth Syst. Sci. Data, 13, 1613–1632, https://doi.org/10.5194/essd-13-1613-2021, https://doi.org/10.5194/essd-13-1613-2021, 2021
Short summary
Short summary
We present a curated database of western North American Holocene paleoclimate records, which have been screened on length, resolution, and geochronology. The database gathers paleoclimate time series that reflect temperature, hydroclimate, or circulation features from terrestrial and marine sites, spanning a region from Mexico to Alaska. This publicly accessible collection will facilitate a broad range of paleoclimate inquiry.
Nicholas P. McKay, Julien Emile-Geay, and Deborah Khider
Geochronology, 3, 149–169, https://doi.org/10.5194/gchron-3-149-2021, https://doi.org/10.5194/gchron-3-149-2021, 2021
Short summary
Short summary
This paper describes geoChronR, an R package that streamlines the process of quantifying age uncertainties, propagating uncertainties through several common analyses, and visualizing the results. In addition to describing the structure and underlying theory of the package, we present five real-world use cases that illustrate common workflows in geoChronR. geoChronR is built on the Linked PaleoData framework, is open and extensible, and we welcome feedback and contributions from the community.
Chris S. M. Turney, Richard T. Jones, Nicholas P. McKay, Erik van Sebille, Zoë A. Thomas, Claus-Dieter Hillenbrand, and Christopher J. Fogwill
Earth Syst. Sci. Data, 12, 3341–3356, https://doi.org/10.5194/essd-12-3341-2020, https://doi.org/10.5194/essd-12-3341-2020, 2020
Short summary
Short summary
The Last Interglacial (129–116 ka) experienced global temperatures and sea levels higher than today. The direct contribution of warmer conditions to global sea level (thermosteric) are uncertain. We report a global network of sea surface temperatures. We find mean global annual temperature anomalies of 0.2 ± 0.1˚C and an early maximum peak of 0.9 ± 0.1˚C. Our reconstruction suggests warmer waters contributed on average 0.08 ± 0.1 m and a peak contribution of 0.39 ± 0.1 m to global sea level.
Chris M. Brierley, Anni Zhao, Sandy P. Harrison, Pascale Braconnot, Charles J. R. Williams, David J. R. Thornalley, Xiaoxu Shi, Jean-Yves Peterschmitt, Rumi Ohgaito, Darrell S. Kaufman, Masa Kageyama, Julia C. Hargreaves, Michael P. Erb, Julien Emile-Geay, Roberta D'Agostino, Deepak Chandan, Matthieu Carré, Partrick J. Bartlein, Weipeng Zheng, Zhongshi Zhang, Qiong Zhang, Hu Yang, Evgeny M. Volodin, Robert A. Tomas, Cody Routson, W. Richard Peltier, Bette Otto-Bliesner, Polina A. Morozova, Nicholas P. McKay, Gerrit Lohmann, Allegra N. Legrande, Chuncheng Guo, Jian Cao, Esther Brady, James D. Annan, and Ayako Abe-Ouchi
Clim. Past, 16, 1847–1872, https://doi.org/10.5194/cp-16-1847-2020, https://doi.org/10.5194/cp-16-1847-2020, 2020
Short summary
Short summary
This paper provides an initial exploration and comparison to climate reconstructions of the new climate model simulations of the mid-Holocene (6000 years ago). These use state-of-the-art models developed for CMIP6 and apply the same experimental set-up. The models capture several key aspects of the climate, but some persistent issues remain.
Bronwen L. Konecky, Nicholas P. McKay, Olga V. Churakova (Sidorova), Laia Comas-Bru, Emilie P. Dassié, Kristine L. DeLong, Georgina M. Falster, Matt J. Fischer, Matthew D. Jones, Lukas Jonkers, Darrell S. Kaufman, Guillaume Leduc, Shreyas R. Managave, Belen Martrat, Thomas Opel, Anais J. Orsi, Judson W. Partin, Hussein R. Sayani, Elizabeth K. Thomas, Diane M. Thompson, Jonathan J. Tyler, Nerilie J. Abram, Alyssa R. Atwood, Olivier Cartapanis, Jessica L. Conroy, Mark A. Curran, Sylvia G. Dee, Michael Deininger, Dmitry V. Divine, Zoltán Kern, Trevor J. Porter, Samantha L. Stevenson, Lucien von Gunten, and Iso2k Project Members
Earth Syst. Sci. Data, 12, 2261–2288, https://doi.org/10.5194/essd-12-2261-2020, https://doi.org/10.5194/essd-12-2261-2020, 2020
Lukas Jonkers, Olivier Cartapanis, Michael Langner, Nick McKay, Stefan Mulitza, Anne Strack, and Michal Kucera
Earth Syst. Sci. Data, 12, 1053–1081, https://doi.org/10.5194/essd-12-1053-2020, https://doi.org/10.5194/essd-12-1053-2020, 2020
Ellie Broadman, Lorna L. Thurston, Erik Schiefer, Nicholas P. McKay, David Fortin, Jason Geck, Michael G. Loso, Matt Nolan, Stéphanie H. Arcusa, Christopher W. Benson, Rebecca A. Ellerbroek, Michael P. Erb, Cody C. Routson, Charlotte Wiman, A. Jade Wong, and Darrell S. Kaufman
Earth Syst. Sci. Data, 11, 1957–1970, https://doi.org/10.5194/essd-11-1957-2019, https://doi.org/10.5194/essd-11-1957-2019, 2019
Short summary
Short summary
Rapid climate warming is impacting physical processes in Arctic environments. Glacier–fed lakes are influenced by many of these processes, and they are impacted by the changing behavior of weather, glaciers, and rivers. We present data from weather stations, river gauging stations, lake moorings, and more, following 4 years of environmental monitoring in the watershed of Lake Peters, a glacier–fed lake in Arctic Alaska. These data can help us study the changing dynamics of this remote setting.
Robert Tardif, Gregory J. Hakim, Walter A. Perkins, Kaleb A. Horlick, Michael P. Erb, Julien Emile-Geay, David M. Anderson, Eric J. Steig, and David Noone
Clim. Past, 15, 1251–1273, https://doi.org/10.5194/cp-15-1251-2019, https://doi.org/10.5194/cp-15-1251-2019, 2019
Short summary
Short summary
An updated Last Millennium Reanalysis is presented, using an expanded multi-proxy database, and proxy models representing the seasonal characteristics of proxy records, in addition to the dual sensitivity to temperature and moisture of tree-ring-width chronologies. We show enhanced skill in spatial reconstructions of key climate variables in the updated reanalysis, compared to an earlier version, resulting from the combined influences of the enhanced proxy network and improved proxy modeling.
François Klein, Nerilie J. Abram, Mark A. J. Curran, Hugues Goosse, Sentia Goursaud, Valérie Masson-Delmotte, Andrew Moy, Raphael Neukom, Anaïs Orsi, Jesper Sjolte, Nathan Steiger, Barbara Stenni, and Martin Werner
Clim. Past, 15, 661–684, https://doi.org/10.5194/cp-15-661-2019, https://doi.org/10.5194/cp-15-661-2019, 2019
Short summary
Short summary
Antarctic temperature changes over the past millennia have been reconstructed from isotope records in ice cores in several studies. However, the link between both variables is complex. Here, we investigate the extent to which this affects the robustness of temperature reconstructions using pseudoproxy and data assimilation experiments. We show that the reconstruction skill is limited, especially at the regional scale, due to a weak and nonstationary covariance between δ18O and temperature.
Chris S. M. Turney, Helen V. McGregor, Pierre Francus, Nerilie Abram, Michael N. Evans, Hugues Goosse, Lucien von Gunten, Darrell Kaufman, Hans Linderholm, Marie-France Loutre, and Raphael Neukom
Clim. Past, 15, 611–615, https://doi.org/10.5194/cp-15-611-2019, https://doi.org/10.5194/cp-15-611-2019, 2019
Short summary
Short summary
This PAGES (Past Global Changes) 2k (climate of the past 2000 years working group) special issue of Climate of the Past brings together the latest understanding of regional change and impacts from PAGES 2k groups across a range of proxies and regions. The special issue has emerged from a need to determine the magnitude and rate of change of regional and global climate beyond the timescales accessible within the observational record.
Jens Zinke, Juan P. D'Olivo, Christoph J. Gey, Malcolm T. McCulloch, J. Henrich Bruggemann, Janice M. Lough, and Mireille M. M. Guillaume
Biogeosciences, 16, 695–712, https://doi.org/10.5194/bg-16-695-2019, https://doi.org/10.5194/bg-16-695-2019, 2019
Short summary
Short summary
Here we report seasonally resolved sea surface temperature (SST) reconstructions for the southern Mozambique Channel in the SW Indian Ocean, a region located along the thermohaline ocean surface circulation route, based on multi-trace-element temperature proxy records preserved in two Porites sp. coral cores for the past 42 years. Particularly, we show the suitability of both separate and combined Sr / Ca and Li / Mg proxies for improved multielement SST reconstructions.
Richard H. Levy, Gavin B. Dunbar, Marcus J. Vandergoes, Jamie D. Howarth, Tony Kingan, Alex R. Pyne, Grant Brotherston, Michael Clarke, Bob Dagg, Matthew Hill, Evan Kenton, Steve Little, Darcy Mandeno, Chris Moy, Philip Muldoon, Patrick Doyle, Conrad Raines, Peter Rutland, Delia Strong, Marianna Terezow, Leise Cochrane, Remo Cossu, Sean Fitzsimons, Fabio Florindo, Alexander L. Forrest, Andrew R. Gorman, Darrell S. Kaufman, Min Kyung Lee, Xun Li, Pontus Lurcock, Nicholas McKay, Faye Nelson, Jennifer Purdie, Heidi A. Roop, S. Geoffrey Schladow, Abha Sood, Phaedra Upton, Sharon L. Walker, and Gary S. Wilson
Sci. Dril., 24, 41–50, https://doi.org/10.5194/sd-24-41-2018, https://doi.org/10.5194/sd-24-41-2018, 2018
Short summary
Short summary
A new annually resolvable sedimentary record of southern hemisphere climate has been recovered from Lake Ohau, South Island, New Zealand. The Lake Ohau Climate History (LOCH) Project acquired cores from two sites that preserve an 80 m thick sequence of laminated mud that accumulated since the lake formed ~ 17 000 years ago. Cores were recovered using a purpose-built barge and drilling system designed to recover soft sediment from relatively thick sedimentary sequences at water depths up to 100 m.
Michael Sigl, Nerilie J. Abram, Jacopo Gabrieli, Theo M. Jenk, Dimitri Osmont, and Margit Schwikowski
The Cryosphere, 12, 3311–3331, https://doi.org/10.5194/tc-12-3311-2018, https://doi.org/10.5194/tc-12-3311-2018, 2018
Short summary
Short summary
The fast retreat of Alpine glaciers since the mid-19th century documented in photographs is used as a symbol for the human impact on global climate, yet the key driving forces remain elusive. Here we argue that not industrial soot but volcanic eruptions were responsible for an apparently accelerated deglaciation starting in the 1850s. Our findings support a negligible role of human activity in forcing glacier recession at the end of the Little Ice Age, highlighting the role of natural drivers.
Bryan N. Shuman, Cody Routson, Nicholas McKay, Sherilyn Fritz, Darrell Kaufman, Matthew E. Kirby, Connor Nolan, Gregory T. Pederson, and Jeannine-Marie St-Jacques
Clim. Past, 14, 665–686, https://doi.org/10.5194/cp-14-665-2018, https://doi.org/10.5194/cp-14-665-2018, 2018
Short summary
Short summary
A synthesis of 93 published records reveals that moisture availability increased over large portions of North America over the past 2000 years, the Common Era (CE). In many records, the second millennium CE tended to be wetter than the first millennium CE. The long-term changes formed the background for annual to multi-decade variations, such as "mega-droughts", and also provide a context for amplified rates of hydrologic change today.
Hansi K. A. Singh, Gregory J. Hakim, Robert Tardif, Julien Emile-Geay, and David C. Noone
Clim. Past, 14, 157–174, https://doi.org/10.5194/cp-14-157-2018, https://doi.org/10.5194/cp-14-157-2018, 2018
Short summary
Short summary
The Atlantic Multidecadal Oscillation (AMO) is prominent in the climate system. We study the AMO over the last 2000 years using a novel proxy framework, the Last Millennium Reanalysis. We find that the AMO is linked to continental warming, Arctic sea ice retreat, and an Atlantic precipitation shift. Low clouds decrease globally. We find no distinct multidecadal spectral peak in the AMO over the last 2 millennia, suggesting that human activities may have enhanced the AMO in the modern era.
PAGES Hydro2k Consortium
Clim. Past, 13, 1851–1900, https://doi.org/10.5194/cp-13-1851-2017, https://doi.org/10.5194/cp-13-1851-2017, 2017
Short summary
Short summary
Water availability is fundamental to societies and ecosystems, but our understanding of variations in hydroclimate (including extreme events, flooding, and decadal periods of drought) is limited due to a paucity of modern instrumental observations. We review how proxy records of past climate and climate model simulations can be used in tandem to understand hydroclimate variability over the last 2000 years and how these tools can also inform risk assessments of future hydroclimatic extremes.
Barbara Stenni, Mark A. J. Curran, Nerilie J. Abram, Anais Orsi, Sentia Goursaud, Valerie Masson-Delmotte, Raphael Neukom, Hugues Goosse, Dmitry Divine, Tas van Ommen, Eric J. Steig, Daniel A. Dixon, Elizabeth R. Thomas, Nancy A. N. Bertler, Elisabeth Isaksson, Alexey Ekaykin, Martin Werner, and Massimo Frezzotti
Clim. Past, 13, 1609–1634, https://doi.org/10.5194/cp-13-1609-2017, https://doi.org/10.5194/cp-13-1609-2017, 2017
Short summary
Short summary
Within PAGES Antarctica2k, we build an enlarged database of ice core water stable isotope records. We produce isotopic composites and temperature reconstructions since 0 CE for seven distinct Antarctic regions. We find a significant cooling trend from 0 to 1900 CE across all regions. Since 1900 CE, significant warming trends are identified for three regions. Only for the Antarctic Peninsula is this most recent century-scale trend unusual in the context of last-2000-year natural variability.
Jens Zinke, Lars Reuning, Miriam Pfeiffer, Jasper A. Wassenburg, Emily Hardman, Reshad Jhangeer-Khan, Gareth R. Davies, Curtise K. C. Ng, and Dick Kroon
Biogeosciences, 13, 5827–5847, https://doi.org/10.5194/bg-13-5827-2016, https://doi.org/10.5194/bg-13-5827-2016, 2016
Short summary
Short summary
Our work provides a new coral proxy-based reconstruction of sea surface temperature (SST) from the coral reefs of Rodrigues Island, located in the poorly studied south-central Indian Ocean trade wind belt. This site is well located to study the SST history of the subtropical Indian Ocean and its teleconnections with the Pacific over long timescales. Our results provide insights into biases in coral Sr / Ca-based SST reconstructions and how to avoid them.
Nicholas P. McKay and Julien Emile-Geay
Clim. Past, 12, 1093–1100, https://doi.org/10.5194/cp-12-1093-2016, https://doi.org/10.5194/cp-12-1093-2016, 2016
Short summary
Short summary
The lack of accepted data formats and data standards in paleoclimatology is a growing problem that slows progress in the field. Here, we propose a preliminary data standard for paleoclimate data, general enough to accommodate all the proxy and measurement types encountered in a large international collaboration (PAGES 2k). We also introduce a data format for such structured data (Linked Paleo Data, or LiPD), leveraging recent advances in knowledge representation (Linked Open Data).
Tessa R. Vance, Jason L. Roberts, Andrew D. Moy, Mark A. J. Curran, Carly R. Tozer, Ailie J. E. Gallant, Nerilie J. Abram, Tas D. van Ommen, Duncan A. Young, Cyril Grima, Don D. Blankenship, and Martin J. Siegert
Clim. Past, 12, 595–610, https://doi.org/10.5194/cp-12-595-2016, https://doi.org/10.5194/cp-12-595-2016, 2016
Short summary
Short summary
This study details a systematic approach to finding a new high-resolution East Antarctic ice core site. The study initially outlines seven criteria that a new site must fulfil, encompassing specific accumulation, ice dynamics and atmospheric circulation aspects. We then use numerous techniques including Antarctic surface mass balance syntheses, ground-truthing of satellite data by airborne radar surveys and reanalysis products to pinpoint promising regions.
J. Emile-Geay and M. Tingley
Clim. Past, 12, 31–50, https://doi.org/10.5194/cp-12-31-2016, https://doi.org/10.5194/cp-12-31-2016, 2016
Short summary
Short summary
Ignoring nonlinearity in palaeoclimate records (e.g. continental run-off proxies) runs the risk of severely overstating changes in climate variability. Even with the correct model and parameters, some information is irretrievably lost by such proxies. However, we find that a simple empirical transform can do much to improve the situation, and makes them amenable to classical analyses. Doing so on two palaeo-ENSO records markedly changes some of the quantitative inferences made from such records.
H. S. Sundqvist, D. S. Kaufman, N. P. McKay, N. L. Balascio, J. P. Briner, L. C. Cwynar, H. P. Sejrup, H. Seppä, D. A. Subetto, J. T. Andrews, Y. Axford, J. Bakke, H. J. B. Birks, S. J. Brooks, A. de Vernal, A. E. Jennings, F. C. Ljungqvist, K. M. Rühland, C. Saenger, J. P. Smol, and A. E. Viau
Clim. Past, 10, 1605–1631, https://doi.org/10.5194/cp-10-1605-2014, https://doi.org/10.5194/cp-10-1605-2014, 2014
M. Comboul, J. Emile-Geay, M. N. Evans, N. Mirnateghi, K. M. Cobb, and D. M. Thompson
Clim. Past, 10, 825–841, https://doi.org/10.5194/cp-10-825-2014, https://doi.org/10.5194/cp-10-825-2014, 2014
J. Wang, J. Emile-Geay, D. Guillot, J. E. Smerdon, and B. Rajaratnam
Clim. Past, 10, 1–19, https://doi.org/10.5194/cp-10-1-2014, https://doi.org/10.5194/cp-10-1-2014, 2014
C. Giry, T. Felis, M. Kölling, W. Wei, G. Lohmann, and S. Scheffers
Clim. Past, 9, 841–858, https://doi.org/10.5194/cp-9-841-2013, https://doi.org/10.5194/cp-9-841-2013, 2013
Related subject area
Domain: ESSD – Ocean | Subject: Palaeooceanography, palaeoclimatology
Coral skeletal proxy records database for the Great Barrier Reef, Australia
A revised marine fossil record of the Mediterranean before and after the Messinian salinity crisis
DINOSTRAT version 2.1-GTS2020
An 800 kyr planktonic δ18O stack for the Western Pacific Warm Pool
Tephra data from varved lakes of the Last Glacial–Interglacial Transition: towards a global inventory and better chronologies on the Varved Sediments Database (VARDA)
BENFEP: a quantitative database of benthic foraminifera from surface sediments of the eastern Pacific
Ariella K. Arzey, Helen V. McGregor, Tara R. Clark, Jody M. Webster, Stephen E. Lewis, Jennie Mallela, Nicholas P. McKay, Hugo W. Fahey, Supriyo Chakraborty, Tries B. Razak, and Matt J. Fischer
Earth Syst. Sci. Data, 16, 4869–4930, https://doi.org/10.5194/essd-16-4869-2024, https://doi.org/10.5194/essd-16-4869-2024, 2024
Short summary
Short summary
Coral skeletal records from the Great Barrier Reef (GBR) provide vital data on climate and environmental change. Presented here is the Great Barrier Reef Coral Skeletal Records Database, an extensive compilation of GBR coral records. The database includes key metadata, primary data, and access instructions, and it enhances research on past, present, and future climate and environmental variability of the GBR. The database will assist with contextualising present-day threats to reefs globally.
Konstantina Agiadi, Niklas Hohmann, Elsa Gliozzi, Danae Thivaiou, Francesca R. Bosellini, Marco Taviani, Giovanni Bianucci, Alberto Collareta, Laurent Londeix, Costanza Faranda, Francesca Bulian, Efterpi Koskeridou, Francesca Lozar, Alan Maria Mancini, Stefano Dominici, Pierre Moissette, Ildefonso Bajo Campos, Enrico Borghi, George Iliopoulos, Assimina Antonarakou, George Kontakiotis, Evangelia Besiou, Stergios D. Zarkogiannis, Mathias Harzhauser, Francisco Javier Sierro, Angelo Camerlenghi, and Daniel García-Castellanos
Earth Syst. Sci. Data, 16, 4767–4775, https://doi.org/10.5194/essd-16-4767-2024, https://doi.org/10.5194/essd-16-4767-2024, 2024
Short summary
Short summary
We present a dataset of 23032 fossil occurrences of marine organisms from the Late Miocene to the Early Pliocene (~11 to 3.6 million years ago) from the Mediterranean Sea. This dataset will allow us, for the first time, to quantify the biodiversity impact of the Messinian salinity crisis, a major geological event that possibly changed global and regional climate and biota.
Peter K. Bijl
Earth Syst. Sci. Data, 16, 1447–1452, https://doi.org/10.5194/essd-16-1447-2024, https://doi.org/10.5194/essd-16-1447-2024, 2024
Short summary
Short summary
This new version release of DINOSTRAT, version 2.1, aligns stratigraphic ranges of dinoflagellate cysts (dinocysts), a microfossil group, to the latest Geologic Time Scale. In this release I present the evolution of dinocyst subfamilies from the Middle Triassic to the modern period.
Christen L. Bowman, Devin S. Rand, Lorraine E. Lisiecki, and Samantha C. Bova
Earth Syst. Sci. Data, 16, 701–713, https://doi.org/10.5194/essd-16-701-2024, https://doi.org/10.5194/essd-16-701-2024, 2024
Short summary
Short summary
We estimate an average (stack) of Western Pacific Warm Pool (WPWP) sea surface climate records over the last 800 kyr from 10 ocean sediment cores. To better understand glacial–interglacial differences between the tropical WPWP and high-latitude climate change, we compare our WPWP stack to global and North Atlantic deep-ocean stacks. Although we see similar timing in glacial–interglacial change between the stacks, the WPWP exhibits less amplitude of change.
Anna Beckett, Cecile Blanchet, Alexander Brauser, Rebecca Kearney, Celia Martin-Puertas, Ian Matthews, Konstantin Mittelbach, Adrian Palmer, Arne Ramisch, and Achim Brauer
Earth Syst. Sci. Data, 16, 595–604, https://doi.org/10.5194/essd-16-595-2024, https://doi.org/10.5194/essd-16-595-2024, 2024
Short summary
Short summary
This paper focuses on volcanic ash (tephra) in European annually laminated (varve) lake records from the period 25 to 8 ka. Tephra enables the synchronisation of these lake records and their proxy reconstructions to absolute timescales. The data incorporate geochemical data from tephra layers across 19 varve lake records. We highlight the potential for synchronising multiple records using tephra layers across continental scales whilst supporting reproducibility through accessible data.
Paula Diz, Víctor González-Guitián, Rita González-Villanueva, Aida Ovejero, and Iván Hernández-Almeida
Earth Syst. Sci. Data, 15, 697–722, https://doi.org/10.5194/essd-15-697-2023, https://doi.org/10.5194/essd-15-697-2023, 2023
Short summary
Short summary
Benthic foraminifera are key components of the ocean benthos and marine sediments. Determining their geographic distribution is highly relevant for improving our understanding of the recent and past ocean benthic ecosystem and establishing adequate conservation strategies. Here, we contribute to this knowledge by generating an open-access database of previously documented quantitative data of benthic foraminifera species from surface sediments of the eastern Pacific (BENFEP).
Cited articles
Abram, N. J., Gagan, M. K., Cole, J. E., Hantoro, W. S., and Mudelsee, M.: Recent intensification of tropical climate variability in the Indian Ocean, Nat. Geosci., 1, 849–853, https://doi.org/10.1038/ngeo357, 2008.
Abram, N. J., Dixon, B. C., Rosevear, M. G., Plunkett, B., Gagan, M. K.,
Hantoro, W. S., and Phipps, S. J.: Optimized coral reconstructions of the
Indian Ocean Dipole: An assessment of location and length considerations,
Paleoceanography, 30, 1391–1405, https://doi.org/10.1002/2015PA002810, 2015.
Abram, N. J., McGregor, H. V., Tierney, J. E., Evans, M. N., McKay, N. P.,
Kaufman, D. S., and PAGES 2k Consortium: Early onset of industrial-era
warming across the oceans and continents, Nature, 536, 411–418,
https://doi.org/10.1038/nature19082, 2016.
Abram, N. J., Wright, N. M., Ellis, B., Dixon, B. C., Wurtzel, J. B.,
England, M. H., Ummenhofer, C. C., Philibosian, B., Cahyarini, S. Y., Yu,
T.-L., Shen, C.-C., Cheng, H., Edwards, R. L., and Heslop, D.: Coupling of
Indo-Pacific climate variability over the last millennium, Nature, 579,
385–392, https://doi.org/10.1038/s41586-020-2084-4, 2020.
Alpert, A. E., Cohen, A. L., Oppo, D. W., DeCarlo, T. M., Gaetani, G. A.,
Hernandez-Delgado, E. A., Winter, A., and Gonneea, M. E.: Twentieth century
warming of the tropical Atlantic captured by Sr-U paleothermometry,
Paleoceanography, 32, 146–160, https://doi.org/10.1002/2016PA002976, 2017.
Asami, R., Yamada, T., Iryu, Y., Quinn, T. M., Meyer, C. P., and Paulay, G.:
Interannual and decadal variability of the western Pacific sea surface
condition for the years 1787–2000: Reconstruction based on stable isotope
record from a Guam coral, J. Geophys. Res.-Oceans, 110, C05018,
https://doi.org/10.1029/2004JC002555, 2005.
Atsawawaranunt, K., Comas-Bru, L., Amirnezhad Mozhdehi, S., Deininger, M., Harrison, S. P., Baker, A., Boyd, M., Kaushal, N., Ahmad, S. M., Ait Brahim, Y., Arienzo, M., Bajo, P., Braun, K., Burstyn, Y., Chawchai, S., Duan, W., Hatvani, I. G., Hu, J., Kern, Z., Labuhn, I., Lachniet, M., Lechleitner, F. A., Lorrey, A., Pérez-Mejías, C., Pickering, R., Scroxton, N., and SISAL Working Group Members: The SISAL database: a global resource to document oxygen and carbon isotope records from speleothems, Earth Syst. Sci. Data, 10, 1687–1713, https://doi.org/10.5194/essd-10-1687-2018, 2018.
Bagnato, S., Linsley, B. K., Howe, S. S., Wellington, G. M., and Salinger,
J.: Evaluating the use of the massive coral Diploastrea heliopora for
paleoclimate reconstruction, Paleoceanography, 19, PA1032,
https://doi.org/10.1029/2003PA000935, 2004.
Beck, J. W., Edwards, R. L., Ito, E., Taylor, F. W., Recy, J., Rougerie, F.,
Joannot, P., and Henin, C.: Sea-Surface Temperature from Coral Skeletal
Strontium/Calcium Ratios, Science, 257, 644–647,
https://doi.org/10.1126/science.257.5070.644, 1992.
Boiseau, M., Juillet-Leclerc, A., Yiou, P., Salvat, B., Isdale, P., and
Guillaume, M.: Atmospheric and oceanic evidences of El Niño-Southern
Oscillation events in the south central Pacific Ocean from coral stable
isotopic records over the last 137 years, Paleoceanography, 13, 671–685,
https://doi.org/10.1029/98PA02502, 1998.
Boiseau, M., Ghil, M., and Juillet-Leclerc, A.: Climatic trends and
interdecadal variability from south-central Pacific coral records, Geophys.
Res. Lett., 26, 2881–2884, https://doi.org/10.1029/1999GL900595, 1999.
Bolton, A., Goodkin, N. F., Hughen, K., Ostermann, D. R., Vo, S. T., and
Phan, H. K.: Paired Porites coral and δ18O from the western South China Sea: Proxy calibration of sea surface temperature and
precipitation, Palaeogeogr. Palaeocl., 410, 233–243,
https://doi.org/10.1016/j.palaeo.2014.05.047, 2014.
Boutin, J., Chao, Y., Asher, W. E., Delcroix, T., Drucker, R., Drushka, K.,
Kolodziejczyk, N., Lee, T., Reul, N., Reverdin, G., Schanze, J., Soloviev,
A., Yu, L., Anderson, J., Brucker, L., Dinnat, E., Santos-Garcia, A., Jones,
W. L., Maes, C., Meissner, T., Tang, W., Vinogradova, N., and Ward, B.:
Satellite and In Situ Salinity: Understanding Near-Surface Stratification
and Subfootprint Variability, B. Am. Meteorol. Soc., 97, 1391–1407,
https://doi.org/10.1175/BAMS-D-15-00032.1, 2016.
Boyer, T. P., Baranova, O. K., Coleman, C., Garcia, H. E., Grodsky, A.,
Locarnini, R. A., Mishonov, A. V., Paver, C. R., Reagan, J. R., Seidov, D.,
Smolyar, I. V., Weathers, K. W., and Zweng, M. M.: World Ocean Database
2018, edited by: Mishonov, A. V., NOAA Atlas NESDIS 87, https://www.ncei.noaa.gov/sites/default/files/2020-04/wod_intro_0.pdf (last access: 19 May 2022), 2018.
Breitkreuz, C., Paul, A., Kurahashi-Nakamura, T., Losch, M., and Schulz, M.:
A Dynamical Reconstruction of the Global Monthly Mean Oxygen Isotopic
Composition of Seawater, J. Geophys. Res.-Oceans, 123, 7206–7219,
https://doi.org/10.1029/2018JC014300, 2018.
Bryan, S. P., Hughen, K. A., Karnauskas, K. B., and Farrar, J. T.: Two
Hundred Fifty Years of Reconstructed South Asian Summer Monsoon Intensity
and Decadal-Scale Variability, Geophys. Res. Lett., 46, 3927–3935,
https://doi.org/10.1029/2018GL081593, 2019.
Cahyarini, S. Y., Pfeiffer, M., Timm, O., Dullo, W.-C., and Schönberg,
D. G.: Reconstructing seawater δ18O from paired coral δ18O and ratios: Methods, error analysis and problems, with examples from Tahiti (French Polynesia) and Timor (Indonesia), Geochim. Cosmochim. Ac., 72, 2841–2853, https://doi.org/10.1016/j.gca.2008.04.005, 2008.
Cahyarini, S. Y., Pfeiffer, M., Nurhati, I. S., Aldrian, E., Dullo, W.-C.,
and Hetzinger, S.: Twentieth century sea surface temperature and salinity
variations at Timor inferred from paired coral δ18O and
measurements, J. Geophys. Res.-Oceans, 119, 4593–4604,
https://doi.org/10.1002/2013JC009594, 2014.
Cai, W., Borlace, S., Lengaigne, M., van Rensch, P., Collins, M., Vecchi,
G., Timmermann, A., Santoso, A., McPhaden, M. J., Wu, L., England, M. H.,
Wang, G., Guilyardi, E., and Jin, F.-F.: Increasing frequency of extreme El
Niño events due to greenhouse warming, Nat. Clim. Change, 4, 111–116,
https://doi.org/10.1038/nclimate2100, 2014.
Cai, W., Wu, L., Lengaigne, M., Li, T., McGregor, S., Kug, J.-S., Yu, J.-Y.,
Stuecker, M. F., Santoso, A., Li, X., Ham, Y.-G., Chikamoto, Y., Ng, B.,
McPhaden, M. J., Du, Y., Dommenget, D., Jia, F., Kajtar, J. B., Keenlyside,
N., Lin, X., Luo, J.-J., Martín-Rey, M., Ruprich-Robert, Y., Wang, G.,
Xie, S.-P., Yang, Y., Kang, S. M., Choi, J.-Y., Gan, B., Kim, G.-I., Kim,
C.-E., Kim, S., Kim, J.-H., and Chang, P.: Pantropical climate interactions,
Science, 363, eaav4236, https://doi.org/10.1126/science.aav4236, 2019.
Calvo, E., Marshall, J. F., Pelejero, C., McCulloch, M. T., Gagan, M. K.,
and Lough, J. M.: Interdecadal climate variability in the Coral Sea since
1708 A.D., Palaeogeogr. Palaeocl., 248, 190–201,
https://doi.org/10.1016/j.palaeo.2006.12.003, 2007.
Carilli, J. E., Charles, C. D., Garren, M., McField, M., and Norris, R. D.:
Baseline shifts in coral skeletal oxygen isotopic composition: a signature
of symbiont shuffling?, Coral Reefs, 32, 559–571,
https://doi.org/10.1007/s00338-012-1004-y, 2013.
Carilli, J. E., McGregor, H. V., Gaudry, J. J., Donner, S. D., Gagan, M. K.,
Stevenson, S., Wong, H., and Fink, D.: Equatorial Pacific coral geochemical
records show recent weakening of the Walker Circulation, Paleoceanography,
29, 1031–1045, https://doi.org/10.1002/2014PA002683, 2014.
Carton, J. A., Chepurin, G. A., and Chen, L.: SODA3: A New Ocean Climate
Reanalysis, J. Climate, 31, 6967–6983, https://doi.org/10.1175/JCLI-D-18-0149.1, 2018.
Carton, J. A., Penny, S. G., and Kalnay, E.: Temperature and Salinity
Variability in the SODA3, ECCO4r3, and ORAS5 Ocean Reanalyses, J. Climate, 32, 2277–2293, https://doi.org/10.1175/JCLI-D-18-0605.1, 2019.
Chakraborty, S. and Ramesh, R.: Stable isotope variations in a coral (Favia
speciosa) from the Gulf of Kutch during 1948–1989 A.D.: Environmental
implications, P. Indian. A. S.-Earth, 107, 331–341,
https://doi.org/10.1007/BF02841599, 1998.
Charles, C. D., Hunter, D. E., and Fairbanks, R. G.: Interaction Between the
ENSO and the Asian Monsoon in a Coral Record of Tropical Climate, Science,
277, 925–928, https://doi.org/10.1126/science.277.5328.925, 1997.
Charles, C. D., Cobb, K., Moore, M. D., and Fairbanks, R. G.:
Monsoon–tropical ocean interaction in a network of coral records spanning
the 20th century, Mar. Geol., 201, 207–222,
https://doi.org/10.1016/S0025-3227(03)00217-2, 2003.
Chen, T., Cobb, K. M., Roff, G., Zhao, J., Yang, H., Hu, M., and Zhao, K.:
Coral-Derived Western Pacific Tropical Sea Surface Temperatures During the
Last Millennium, Geophys. Res. Lett., 45, 3542–3549,
https://doi.org/10.1002/2018GL077619, 2018.
Cheng, L., Trenberth, K. E., Gruber, N., Abraham, J. P., Fasullo, J. T., Li,
G., Mann, M. E., Zhao, X., and Zhu, J.: Improved Estimates of Changes in
Upper Ocean Salinity and the Hydrological Cycle, J. Climate, 33,
10357–10381, https://doi.org/10.1175/JCLI-D-20-0366.1, 2020.
Cobb, K. M., Charles, C. D., and Hunter, D. E.: A central tropical Pacific
coral demonstrates Pacific, Indian, and Atlantic decadal climate
connections, Geophys. Res. Lett., 8, 2209–2212,
https://doi.org/10.1029/2001GL012919, 2001.
Cobb, K. M., Charles, C. D., Cheng, H., and Edwards, R. L.: El
Niño/Southern Oscillation and tropical Pacific climate during the last
millennium, Nature, 424, 271–276, https://doi.org/10.1038/nature01779, 2003a.
Cobb, K. M., Charles, C. D., Cheng, H., Kastner, M., and Edwards, R. L.:
U/Th-dating living and young fossil corals from the central tropical
Pacific, Earth Planet. Sc. Lett., 210, 91–103,
https://doi.org/10.1016/S0012-821X(03)00138-9, 2003b.
Cole, J. E., Fairbanks, R. G., and Shen, G. T.: Recent Variability in the
Southern Oscillation: Isotopic Results from a Tarawa Atoll Coral, Science,
260, 1790–1793, https://doi.org/10.1126/science.260.5115.1790, 1993.
Cole, J. E., Dunbar, R. B., McClanahan, T. R., and Muthiga, N. A.: Tropical
Pacific Forcing of Decadal SST Variability in the Western Indian Ocean over
the Past Two Centuries, Science, 287, 617–619,
https://doi.org/10.1126/science.287.5453.617, 2000.
Comas-Bru, L., Rehfeld, K., Roesch, C., Amirnezhad-Mozhdehi, S., Harrison, S. P., Atsawawaranunt, K., Ahmad, S. M., Brahim, Y. A., Baker, A., Bosomworth, M., Breitenbach, S. F. M., Burstyn, Y., Columbu, A., Deininger, M., Demény, A., Dixon, B., Fohlmeister, J., Hatvani, I. G., Hu, J., Kaushal, N., Kern, Z., Labuhn, I., Lechleitner, F. A., Lorrey, A., Martrat, B., Novello, V. F., Oster, J., Pérez-Mejías, C., Scholz, D., Scroxton, N., Sinha, N., Ward, B. M., Warken, S., Zhang, H., and SISAL Working Group members: SISALv2: a comprehensive speleothem isotope database with multiple age–depth models, Earth Syst. Sci. Data, 12, 2579–2606, https://doi.org/10.5194/essd-12-2579-2020, 2020.
Comboul, M., Emile-Geay, J., Evans, M. N., Mirnateghi, N., Cobb, K. M., and Thompson, D. M.: A probabilistic model of chronological errors in layer-counted climate proxies: applications to annually banded coral archives, Clim. Past, 10, 825–841, https://doi.org/10.5194/cp-10-825-2014, 2014.
Conroy, J. L., Cobb, K. M., Lynch-Stieglitz, J., and Polissar, P. J.:
Constraints on the salinity–oxygen isotope relationship in the central
tropical Pacific Ocean, Mar. Chem., 161, 26–33,
https://doi.org/10.1016/j.marchem.2014.02.001, 2014.
Conroy, J. L., Thompson, D. M., Cobb, K. M., Noone, D., Rea, S., and
Legrande, A. N.: Spatiotemporal variability in the δ18O-salinity
relationship of seawater across the tropical Pacific Ocean,
Paleoceanography, 32, 484–497, https://doi.org/10.1002/2016PA003073, 2017.
CoralHydro2k: CoralHydro2k, GitHub repository [code], https://github.com/CoralHydro2k, last access: 19 May 2022.
Corrège, T.: Sea surface temperature and salinity reconstruction from
coral geochemical tracers, Palaeogeogr. Palaeocl., 232, 408–428,
https://doi.org/10.1016/j.palaeo.2005.10.014, 2006.
Damassa, T. D., Cole, J. E., Barnett, H. R., Ault, T. R., and McClanahan, T.
R.: Enhanced multidecadal climate variability in the seventeenth century
from coral isotope records in the western Indian Ocean, Paleoceanography,
21, PA2016, https://doi.org/10.1029/2005PA001217, 2006.
Dassié, E., DeLong, K., Kilbourne, H., Williams, B., Abram, N., Brenner,
L., Brahmi, C., Cobb, K. M., Corrège, T., Dissard, D., Emile-Geay, J.,
Evangelista, H., Evans, M. N., Farmer, J., Felis, T., Gagan, M., Gillikin,
D. P., Goodkin, N., Khodri, M., Lavagnino, A. C., LaVigne, M., Lazareth, C.,
Linsley, B., Lough, J., McGregor, H., Nurhati, I. S., Ouellette, G., Perrin,
L., Raymo, M., Rosenheim, B., Sandstrom, M., Schöne, B. R., Sifeddine,
A., Stevenson, S., Thompson, D. M., Waite, A., Wanamaker, A., and Wu, H.:
Saving Our Marine Archives, Eos, 98, https://doi.org/10.1029/2017EO068159,
2017.
DeCarlo, T. M., Gaetani, G. A., Cohen, A. L., Foster, G. L., Alpert, A. E.,
and Stewart, J. A.: Coral Sr-U thermometry, Paleoceanography, 31, 626–638,
https://doi.org/10.1002/2015PA002908, 2016.
Dee, S., Emile-Geay, J., Evans, M. N., Allam, A., Steig, E. J., and
Thompson, D. M.: PRYSM: An open-source framework for PRoxY System Modeling,
with applications to oxygen-isotope systems, J. Adv. Model Earth Sy., 7,
1220–1247, https://doi.org/10.1002/2015MS000447, 2015.
Dee, S. G., Parsons, L. A., Loope, G. R., Overpeck, J. T., Ault, T. R., and
Emile-Geay, J.: Improved spectral comparisons of paleoclimate models and
observations via proxy system modeling: Implications for multi-decadal
variability, Earth Planet. Sc. Lett., 476, 34–46,
https://doi.org/10.1016/j.epsl.2017.07.036, 2017.
DeLong, K. L., Quinn, T. M., and Taylor, F. W.: Reconstructing
twentieth-century sea surface temperature variability in the southwest
Pacific: A replication study using multiple coral records from New Caledonia, Paleoceanography, 22, PA4212, https://doi.org/10.1029/2007PA001444, 2007.
DeLong, K. L., Flannery, J. A., Maupin, C. R., Poore, R. Z., and Quinn, T.
M.: A coral calibration and replication study of two massive corals from the Gulf of Mexico, Palaeogeogr. Palaeocl., 307, 117–128,
https://doi.org/10.1016/j.palaeo.2011.05.005, 2011.
DeLong, K. L., Quinn, T. M., Taylor, F. W., Lin, K., and Shen, C.-C.: Sea
surface temperature variability in the southwest tropical Pacific since AD 1649, Nat. Clim. Change, 2, 799–804, https://doi.org/10.1038/nclimate1583, 2012.
DeLong, K. L., Quinn, T. M., Taylor, F. W., Shen, C.-C., and Lin, K.:
Improving coral-base paleoclimate reconstructions by replicating 350 years
of coral variations, Palaeogeogr. Palaeocl., 373, 6–24,
https://doi.org/10.1016/j.palaeo.2012.08.019, 2013.
DeLong, K. L., Flannery, J. A., Poore, R. Z., Quinn, T. M., Maupin, C. R.,
Lin, K., and Shen, C.-C.: A reconstruction of sea surface temperature
variability in the southeastern Gulf of Mexico from 1734 to 2008 C.E. using
cross-dated records from the coral Siderastrea siderea,
Paleoceanography, 29, 403–422, https://doi.org/10.1002/2013PA002524, 2014.
DeLong, K. L., Maupin, C. R., Flannery, J. A., Quinn, T. M., and Shen,
C.-C.: Refining temperature reconstructions with the Atlantic coral
Siderastrea siderea, Palaeogeogr. Palaeocl., 462, 1–15,
https://doi.org/10.1016/j.palaeo.2016.08.028, 2016.
DeLong, K. L., Atwood, A. R., Moore, A. L., and Sanchez, S. C.: Clues from the Sea Build a Picture of Earth's Water Cycle, Eos, 103,
https://doi.org/10.1029/2022EO220231, 2022.
Deng, W., Wei, G., Xie, L., Ke, T., Wang, Z., Zeng, T., and Liu, Y.:
Variations in the Pacific Decadal Oscillation since 1853 in a coral record
from the northern South China Sea, J. Geophys. Res.-Oceans, 118, 2358–2366,
https://doi.org/10.1002/jgrc.20180, 2013.
Deser, C., Alexander, M. A., Xie, S.-P., and Phillips, A. S.: Sea Surface
Temperature Variability: Patterns and Mechanisms, Annu. Rev. Mar. Sci., 2,
115–143, https://doi.org/10.1146/annurev-marine-120408-151453, 2010.
D'Olivo, J. P., Sinclair, D. J., Rankenburg, K., and McCulloch, M. T.: A
universal multi-trace element calibration for reconstructing sea surface
temperatures from long-lived Porites corals: Removing `vital-effects,'
Geochim. Cosmochim. Ac., 239, 109–135,
https://doi.org/10.1016/j.gca.2018.07.035, 2018.
Dong, B. and Dai, A.: The influence of the Interdecadal Pacific Oscillation
on Temperature and Precipitation over the Globe, Clim. Dynam., 45,
2667–2681, https://doi.org/10.1007/s00382-015-2500-x, 2015.
Draschba, S., Pätzold, J., and Wefer, G.: North Atlantic climate
variability since AD 1350 recorded in δ18O and skeletal density of
Bermuda corals, Int. J. Earth Sci., 88, 733–741,
https://doi.org/10.1007/s005310050301, 2000.
Drucker, R. and Riser, S. C.: Validation of Aquarius sea surface salinity
with Argo: Analysis of error due to depth of measurement and vertical
salinity stratification, J. Geophys. Res.-Oceans, 119, 4626–4637,
https://doi.org/10.1002/2014JC010045, 2014.
Druffel, E. R. M. and Griffin, S.: Large variations of surface ocean
radiocarbon: Evidence of circulation changes in the southwestern Pacific, J.
Geophys. Res.-Oceans, 98, 20249–20259, https://doi.org/10.1029/93JC02113,
1993.
Druffel, E. R. M. and Griffin, S.: Variability of surface ocean radiocarbon
and stable isotopes in the southwestern Pacific, J. Geophys. Res.-Oceans,
104, 23607–23613, https://doi.org/10.1029/1999JC900212, 1999.
Dunbar, R. B., Wellington, G. M., Colgan, M. W., and Glynn, P. W.: Eastern
Pacific sea surface temperature since 1600 A.D.: The δ18O record of climate variability in Galápagos Corals, Paleoceanography, 9, 291–315, https://doi.org/10.1029/93PA03501, 1994.
Epstein, S., Buchsbaum, R., Lowenstam, H. A., and Urey, H. C.: Revised
carbonate-water isotopic temperature scale, Geol. Soc. Am. Bull., 64,
1315–1326, https://doi.org/10.1130/0016-7606(1953)64[1315:RCITS]2.0.CO;2, 1953.
Evangelista, H., Sifeddine, A., Corrège, T., Servain, J., Dassié, E.
P., Logato, R., Cordeiro, R. C., Shen, C.-C., Le Cornec, F., Nogueira, J.,
Segal, B., Castagna, A., and Turcq, B.: Climatic Constraints on Growth Rate
and Geochemistry ( and U/Ca) of the Coral Siderastrea stellata in the Southwest Equatorial Atlantic (Rocas Atoll, Brazil), Geochem. Geophy.
Geosy., 19, 772–786, https://doi.org/10.1002/2017GC007365, 2018.
Evans, M. N., Fairbanks, R. G., and Rubenstone, J. L.: A proxy index of ENSO
teleconnections, Nature, 394, 732–733, https://doi.org/10.1038/29424, 1998.
Felis, T.: Extending the Instrumental Record of Ocean-Atmosphere Variability
into the Last Interglacial Using Tropical Corals, Oceanography, 33, 68–79,
https://doi.org/10.5670/oceanog.2020.209, 2020.
Felis, T., Pätzold, J., Loya, Y., Fine, M., Nawar, A. H., and Wefer, G.:
A coral oxygen isotope record from the northern Red Sea documenting NAO,
ENSO, and North Pacific teleconnections on Middle East climate variability
since the year 1750, Paleoceanography, 15, 679–694,
https://doi.org/10.1029/1999PA000477, 2000.
Felis, T., Pätzold, J., and Loya, Y.: Mean oxygen-isotope signatures in
Porites spp. corals: inter-colony variability and correction for
extension-rate effects, Coral Reefs, 22, 328–336,
https://doi.org/10.1007/s00338-003-0324-3, 2003.
Felis, T., Lohmann, G., Kuhnert, H., Lorenz, S. J., Scholz, D., Pätzold,
J., Al-Rousan, S. A., and Al-Moghrabi, S. M.: Increased seasonality in
Middle East temperatures during the last interglacial period, Nature, 429,
164–168, https://doi.org/10.1038/nature02546, 2004.
Felis, T., Suzuki, A., Kuhnert, H., Dima, M., Lohmann, G., and Kawahata, H.:
Subtropical coral reveals abrupt early-twentieth-century freshening in the
western North Pacific Ocean, Geology, 37, 527–530,
https://doi.org/10.1130/G25581A.1, 2009.
Felis, T., McGregor, H. V., Linsley, B. K., Tudhope, A. W., Gagan, M. K.,
Suzuki, A., Inoue, M., Thomas, A. L., Esat, T. M., Thompson, W. G., Tiwari,
M., Potts, D. C., Mudelsee, M., Yokoyama, Y., and Webster, J. M.:
Intensification of the meridional temperature gradient in the Great Barrier
Reef following the Last Glacial Maximum, Nat. Commun., 5, 4102,
https://doi.org/10.1038/ncomms5102, 2014.
Felis, T., Ionita, M., Rimbu, N., Lohmann, G., and Kölling, M.: Mild and
Arid Climate in the Eastern Sahara-Arabian Desert During the Late Little Ice
Age, Geophys. Res. Lett., 45, 7112–7119,
https://doi.org/10.1029/2018GL078617, 2018.
Flannery, J. A. and Poore, R. Z.: Proxy Sea-Surface Temperature
Reconstructions from Modern and Holocene Montastraea faveolata Specimens
from the Dry Tortugas National Park, Florida, USA, J. Coastal Res., 63,
20–31, https://doi.org/10.2112/SI63-003.1, 2013.
Flannery, J. A., Richey, J. N., Thirumalai, K., Poore, R. Z., and DeLong, K.
L.: Multi-species coral -based sea-surface temperature reconstruction using Orbicella faveolata and Siderastrea siderea from the Florida Straits, Palaeogeogr. Palaeocl., 466, 100–109,
https://doi.org/10.1016/j.palaeo.2016.10.022, 2017.
Flannery, J. A., Richey, J. N., Toth, L. T., Kuffner, I. B., and Poore, R.
Z.: Quantifying Uncertainty in -Based Estimates of SST From the Coral Orbicella faveolata, Paleoceanography and Paleoclimatology, 33, 958–973, https://doi.org/10.1029/2018PA003389, 2018.
Fleitmann, D., Dunbar, R. B., McCulloch, M., Mudelsee, M., Vuille, M.,
McClanahan, T. R., Cole, J. E., and Eggins, S.: East African soil erosion
recorded in a 300 year old coral colony from Kenya, Geophys. Res. Lett., 34, L04401,
https://doi.org/10.1029/2006GL028525, 2007.
Freeman, E., Woodruff, S. D., Worley, S. J., Lubker, S. J., Kent, E. C.,
Angel, W. E., Berry, D. I., Brohan, P., Eastman, R., Gates, L., Gloeden, W.,
Ji, Z., Lawrimore, J., Rayner, N. A., Rosenhagen, G., and Smith, S. R.:
ICOADS Release 3.0: a major update to the historical marine climate record,
Int. J. Climatol., 37, 2211–2232, https://doi.org/10.1002/joc.4775, 2017.
Friedman, A. R., Reverdin, G., Khodri, M., and Gastineau, G.: A new record
of Atlantic sea surface salinity from 1896 to 2013 reveals the signatures of
climate variability and long-term trends, Geophys. Res. Lett., 44,
1866–1876, https://doi.org/10.1002/2017GL072582, 2017.
Gagan, M. K., Ayliffe, L. K., Hopley, D., Cali, J. A., Mortimer, G. E.,
Chappell, J., McCulloch, M. T., and Head, M. J.: Temperature and
Surface-Ocean Water Balance of the Mid-Holocene Tropical Western Pacific,
Science, 279, 1014–1018, https://doi.org/10.1126/science.279.5353.1014, 1998.
Gagan, M. K., Ayliffe, L. K., Beck, J. W., Cole, J. E., Druffel, E. R. M.,
Dunbar, R. B., and Schrag, D. P.: New views of tropical paleoclimates from
corals, Quaternary Sci. Rev., 19, 45–64, https://doi.org/10.1016/S0277-3791(99)00054-2, 2000.
Gagan, M. K., Sosdian, S. M., Scott-Gagan, H., Sieh, K., Hantoro, W. S.,
Natawidjaja, D. H., Briggs, R. W., Suwargadi, B. W., and Rifai, H.: Coral
13C/12C records of vertical seafloor displacement during megathrust
earthquakes west of Sumatra, Earth Planet. Sc. Lett., 432, 461–471,
https://doi.org/10.1016/j.epsl.2015.10.002, 2015.
Giry, C., Felis, T., Kölling, M., Scholz, D., Wei, W., Lohmann, G., and
Scheffers, S.: Mid- to late Holocene changes in tropical Atlantic
temperature seasonality and interannual to multidecadal variability
documented in southern Caribbean corals, Earth Planet. Sc. Lett., 331–332,
187–200, https://doi.org/10.1016/j.epsl.2012.03.019, 2012.
Good, S. A., Martin, M. J., and Rayner, N. A.: EN4: Quality controlled ocean
temperature and salinity profiles and monthly objective analyses with
uncertainty estimates, J. Geophys. Res.-Oceans, 118, 6704–6716,
https://doi.org/10.1002/2013JC009067, 2013 (data available at: http://www.metoffice.gov.uk/hadobs, last access: 19 May 2022).
Goodkin, N. F.: Geochemistry of slow-growing corals: reconstructing sea
surface temperature, salinity and the North Atlantic Oscillation, Thesis,
Massachusetts Institute of Technology, http://hdl.handle.net/1721.1/40969, 2007.
Goodkin, N. F., Hughen, K. A., Cohen, A. L., and Smith, S. R.: Record of
Little Ice Age sea surface temperatures at Bermuda using a growth-dependent
calibration of coral , Paleoceanography, 20, PA4016,
https://doi.org/10.1029/2005PA001140, 2005.
Goodkin, N. F., Hughen, K. A., Curry, W. B., Doney, S. C., and Ostermann, D.
R.: Sea surface temperature and salinity variability at Bermuda during the
end of the Little Ice Age, Paleoceanography, 23, PA3203,
https://doi.org/10.1029/2007PA001532, 2008.
Goodkin, N. F., Samanta, D., Bolton, A., Ong, M. R., Hoang, P. K., Vo, S.
T., Karnauskas, K. B., and Hughen, K. A.: Natural and Anthropogenic Forcing
of Multi-Decadal to Centennial Scale Variability of Sea Surface Temperature
in the South China Sea, Paleoceanography and Paleoclimatology, 36,
e2021PA004233, https://doi.org/10.1029/2021PA004233, 2021.
Gorman, M. K., Quinn, T. M., Taylor, F. W., Partin, J. W., Cabioch, G.,
Austin Jr., J. A., Pelletier, B., Ballu, V., Maes, C., and Saustrup, S.: A
coral-based reconstruction of sea surface salinity at Sabine Bank, Vanuatu
from 1842 to 2007 CE, Paleoceanography, 27, PA3226,
https://doi.org/10.1029/2012PA002302, 2012.
Gould, W. J. and Cunningham, S. A.: Global-scale patterns of observed sea
surface salinity intensified since the 1870s, Communications Earth &
Environment, 2, 76, https://doi.org/10.1038/s43247-021-00161-3, 2021.
Gouretski, V. and Reseghetti, F.: On depth and temperature biases in
bathythermograph data: Development of a new correction scheme based on
analysis of a global ocean database, Deep-Sea Res. Pt. I, 57, 812–833, https://doi.org/10.1016/j.dsr.2010.03.011, 2010.
Grove, C. A., Kasper, S., Zinke, J., Pfeiffer, M., Garbe-Schönberg, D.,
and Brummer, G.-J. A.: Confounding effects of coral growth and high SST
variability on skeletal : Implications for coral paleothermometry,
Geochem. Geophy. Geosy., 14, 1277–1293, https://doi.org/10.1002/ggge.20095, 2013.
Gu, G. and Adler, R. F.: Interdecadal variability/long-term changes in
global precipitation patterns during the past three decades: global warming
and/or pacific decadal variability?, Clim. Dynam., 40, 3009–3022,
https://doi.org/10.1007/s00382-012-1443-8, 2013.
Guilderson, T. P. and Schrag, D. P.: Reliability of coral isotope records
from the Western Pacific Warm Pool: A comparison using age-optimized
records, Paleoceanography, 14, 457–464, https://doi.org/10.1029/1999PA900024, 1999.
Hakim, G. J., Emile-Geay, J., Steig, E. J., Noone, D., Anderson, D. M.,
Tardif, R., Steiger, N., and Perkins, W. A.: The last millennium climate
reanalysis project: Framework and first results, J. Geophys. Res.-Atmos.,
121, 6745–6764, https://doi.org/10.1002/2016JD024751, 2016.
Hargreaves, J., DeLong, K., Felis, T., Abram, N., Cobb, K., and Sayani, H.:
Tropical ocean hydroclimate and temperature from coral archives, PAGES
Magazine, 28, 29, https://doi.org/10.22498/pages.28.1.29, 2020.
Hasson, A. E. A., Delcroix, T., and Dussin, R.: An assessment of the mixed
layer salinity budget in the tropical Pacific Ocean. Observations and
modelling (1990–2009), Ocean. Dynam., 63, 179–194,
https://doi.org/10.1007/s10236-013-0596-2, 2013.
Hathorne, E. C., Gagnon, A., Felis, T., Adkins, J., Asami, R., Boer, W.,
Caillon, N., Case, D., Cobb, K. M., Douville, E., deMenocal, P., Eisenhauer,
A., Garbe-Schönberg, D., Geibert, W., Goldstein, S., Hughen, K., Inoue,
M., Kawahata, H., Kölling, M., Cornec, F. L., Linsley, B. K., McGregor,
H. V., Montagna, P., Nurhati, I. S., Quinn, T. M., Raddatz, J., Rebaubier,
H., Robinson, L., Sadekov, A., Sherrell, R., Sinclair, D., Tudhope, A. W.,
Wei, G., Wong, H., Wu, H. C., and You, C.-F.: Interlaboratory study for
coral and other element/Ca ratio measurements, Geochem. Geophy.
Geosy., 14, 3730–3750, https://doi.org/10.1002/ggge.20230, 2013.
Held, I. M. and Soden, B. J.: Robust Responses of the Hydrological Cycle to
Global Warming, J. Climate, 19, 5686–5699, https://doi.org/10.1175/JCLI3990.1, 2006.
Hendy, E. J., Gagan, M. K., Alibert, C. A., McCulloch, M. T., Lough, J. M.,
and Isdale, P. J.: Abrupt Decrease in Tropical Pacific Sea Surface Salinity
at End of Little Ice Age, Science, 295, 1511–1514,
https://doi.org/10.1126/science.1067693, 2002.
Hennekam, R., Zinke, J., van Sebille, E., ten Have, M., Brummer, G.-J. A.,
and Reichart, G.-J.: Cocos (Keeling) Corals Reveal 200 Years of Multidecadal
Modulation of Southeast Indian Ocean Hydrology by Indonesian Throughflow,
Paleoceanography and Paleoclimatology, 33, 48–60,
https://doi.org/10.1002/2017PA003181, 2018.
Hereid, K. A., Quinn, T. M., Taylor, F. W., Shen, C.-C., Edwards, R. L., and
Cheng, H.: Coral record of reduced El Nino activity in the early 15th to
middle 17th centuries, Geology, 41, 51–54,
https://doi.org/10.1130/G33510.1, 2013.
Hetzinger, S., Pfeiffer, M., Dullo, W.-C., Ruprecht, E., and
Garbe-Schönberg, D.: and δ18O in a fast-growing Diploria strigosa coral: Evaluation of a new climate archive for the tropical
Atlantic, Geochem. Geophy. Geosy., 7, Q10002,
https://doi.org/10.1029/2006GC001347, 2006.
Hetzinger, S., Pfeiffer, M., Dullo, W.-C., Keenlyside, N., Latif, M., and
Zinke, J.: Caribbean coral tracks Atlantic Multidecadal Oscillation and past
hurricane activity, Geology, 36, 11–14, https://doi.org/10.1130/G24321A.1, 2008.
Hetzinger, S., Pfeiffer, M., Dullo, W.-C., Garbe-Schönberg, D., and
Halfar, J.: Rapid 20th century warming in the Caribbean and impact of remote
forcing on climate in the northern tropical Atlantic as recorded in a
Guadeloupe coral, Palaeogeogr. Palaeocl., 296, 111–124,
https://doi.org/10.1016/j.palaeo.2010.06.019, 2010.
Hickey, T. D., Reich, C. D., DeLong, K. L., Poore, R. Z., and Brock, J. C.:
Holocene Core Logs and Site Methods for Modern Reef and Head-Coral Cores:
Dry Tortugas National Park, Florida, U.S. Geological Survey, https://doi.org/10.3133/ofr20121095, 2013.
Huang, B., Thorne, P. W., Banzon, V. F., Boyer, T., Chepurin, G., Lawrimore,
J. H., Menne, M. J., Smith, T. M., Vose, R. S., and Zhang, H.-M.: Extended
Reconstructed Sea Surface Temperature, Version 5 (ERSSTv5): Upgrades,
Validations, and Intercomparisons, J. Climate, 30, 8179–8205,
https://doi.org/10.1175/JCLI-D-16-0836.1, 2017 (data available at: https://psl.noaa.gov/data/gridded/data.noaa.ersst.v5.html, last access: 19 May 2022).
Ionita, M., Felis, T., Lohmann, G., Rimbu, N., and Pätzold, J.: Distinct
modes of East Asian Winter Monsoon documented by a southern Red Sea coral
record, J. Geophys. Res.-Oceans, 119, 1517–1533,
https://doi.org/10.1002/2013JC009203, 2014.
Jimenez, G., Cole, J. E., Thompson, D. M., and Tudhope, A. W.: Northern
Galápagos Corals Reveal Twentieth Century Warming in the Eastern
Tropical Pacific, Geophys. Res. Lett., 45, 1981–1988,
https://doi.org/10.1002/2017GL075323, 2018.
Kawakubo, Y., Yokoyama, Y., Suzuki, A., Okai, T., Alibert, C., Kinsley, L.,
and Eggins, S.: Precise determination of by laser ablation ICP-MS
compared to ICP-AES and application to multi-century temperate corals,
Geochem. J., 48, 145–152, https://doi.org/10.2343/geochemj.2.0295, 2014.
Kawakubo, Y., Alibert, C., and Yokoyama, Y.: A Reconstruction of Subtropical
Western North Pacific SST Variability Back to 1578, Based on a Porites Coral
Record from the Northern Ryukyus, Japan, Paleoceanography, 32,
1352–1370, https://doi.org/10.1002/2017PA003203, 2017.
Kennedy, J. J., Rayner, N. A., Atkinson, C. P., and Killick, R. E.: An
Ensemble Data Set of Sea Surface Temperature Change From 1850: The Met
Office Hadley Centre HadSST.4.0.0.0 Data Set, J. Geophys. Res.-Atmos., 124,
7719–7763, https://doi.org/10.1029/2018JD029867, 2019.
Khider, D., Emile-Geay, J., McKay, N. P., Gil, Y., Garijo, D., Ratnakar, V.,
Alonso-Garcia, M., Bertrand, S., Bothe, O., Brewer, P., Bunn, A., Chevalier,
M., Comas-Bru, L., Csank, A., Dassié, E., DeLong, K., Felis, T.,
Francus, P., Frappier, A., Gray, W., Goring, S., Jonkers, L., Kahle, M.,
Kaufman, D., Kehrwald, N. M., Martrat, B., McGregor, H., Richey, J.,
Schmittner, A., Scroxton, N., Sutherland, E., Thirumalai, K., Allen, K.,
Arnaud, F., Axford, Y., Barrows, T., Bazin, L., Pilaar Birch, S. E.,
Bradley, E., Bregy, J., Capron, E., Cartapanis, O., Chiang, H.-W., Cobb, K.
M., Debret, M., Dommain, R., Du, J., Dyez, K., Emerick, S., Erb, M. P.,
Falster, G., Finsinger, W., Fortier, D., Gauthier, N., George, S., Grimm,
E., Hertzberg, J., Hibbert, F., Hillman, A., Hobbs, W., Huber, M., Hughes,
A. L. C., Jaccard, S., Ruan, J., Kienast, M., Konecky, B., Le Roux, G.,
Lyubchich, V., Novello, V. F., Olaka, L., Partin, J. W., Pearce, C., Phipps,
S. J., Pignol, C., Piotrowska, N., Poli, M.-S., Prokopenko, A., Schwanck,
F., Stepanek, C., Swann, G. E. A., Telford, R., Thomas, E., Thomas, Z.,
Truebe, S., von Gunten, L., Waite, A., Weitzel, N., Wilhelm, B., Williams,
J., Williams, J. J., Winstrup, M., Zhao, N., and Zhou, Y.: PaCTS 1.0: A
Crowdsourced Reporting Standard for Paleoclimate Data, Paleoceanography and
Paleoclimatology, 34, 1570–1596, https://doi.org/10.1029/2019PA003632, 2019.
Kilbourne, K. H., Quinn, T. M., and Taylor, F. W.: A fossil coral
perspective on western tropical Pacific climate ∼ 350 ka,
Paleoceanography, 19, PA1019, https://doi.org/10.1029/2003PA000944, 2004a.
Kilbourne, K. H., Quinn, T. M., Taylor, F. W., Delcroix, T., and Gouriou,
Y.: El Niño–Southern Oscillation–related salinity variations recorded
in the skeletal geochemistry of a Porites coral from Espiritu Santo,
Vanuatu, Paleoceanography, 19, PA4002, https://doi.org/10.1029/2004PA001033,
2004b.
Kilbourne, K. H., Quinn, T. M., Webb, R., Guilderson, T., Nyberg, J., and
Winter, A.: Paleoclimate proxy perspective on Caribbean climate since the
year 1751: Evidence of cooler temperatures and multidecadal variability,
Paleoceanography, 23, PA3220, https://doi.org/10.1029/2008PA001598, 2008.
Kilbourne, K. H., Quinn, T. M., Webb, R., Guilderson, T., Nyberg, J., and
Winter, A.: Coral windows onto seasonal climate variability in the northern
Caribbean since 1479, Geochem. Geophy. Geosy., 11, Q10006,
https://doi.org/10.1029/2010GC003171, 2010.
Kilbourne, K. H., Alexander, M. A., and Nye, J. A.: A low latitude
paleoclimate perspective on Atlantic multidecadal variability, J. Marine
Syst., 133, 4–13, https://doi.org/10.1016/j.jmarsys.2013.09.004, 2014.
Klein, R., Tudhope, A. W., Chilcott, C. P., Pätzold, J., Abdulkarim, Z.,
Fine, M., Fallick, A. E., and Loya, Y.: Evaluating southern Red Sea corals
as a proxy record for the Asian monsoon, Earth Planet. Sc. Lett., 148,
381–394, https://doi.org/10.1016/S0012-821X(97)00021-6, 1997.
Konecky, B. L., McKay, N. P., Churakova (Sidorova), O. V., Comas-Bru, L., Dassié, E. P., DeLong, K. L., Falster, G. M., Fischer, M. J., Jones, M. D., Jonkers, L., Kaufman, D. S., Leduc, G., Managave, S. R., Martrat, B., Opel, T., Orsi, A. J., Partin, J. W., Sayani, H. R., Thomas, E. K., Thompson, D. M., Tyler, J. J., Abram, N. J., Atwood, A. R., Cartapanis, O., Conroy, J. L., Curran, M. A., Dee, S. G., Deininger, M., Divine, D. V., Kern, Z., Porter, T. J., Stevenson, S. L., von Gunten, L., and Iso2k Project Members: The Iso2k database: a global compilation of paleo-δ18O and δ2H records to aid understanding of Common Era climate, Earth Syst. Sci. Data, 12, 2261–2288, https://doi.org/10.5194/essd-12-2261-2020, 2020.
Konecky, B. L., McKay, N. P., Falster, G. M., Stevenson, S. L., Fischer, M.
J., Atwood, A. R., Thompson, D. M., Jones, M. D., DeLong, K. L., Tyler, J.
J., Martrat, B., Thomas, E. K., Conroy, J. L., Dee, S. G., Jonkers, L.,
Churakova (Sidorova), O. V., Kern, Z., Opel, T., Porter, T. J., Sayani, H.
R., Skrzypek, G., and Iso2k Project Members: Temperature-driven changes in
the global water cycle during the Common Era, in review, 2023.
Krawczyk, H., Zinke, J., Browne, N., Struck, U., McIlwain, J., O'Leary, M.,
and Garbe-Schönberg, D.: Corals reveal ENSO-driven synchrony of climate
impacts on both terrestrial and marine ecosystems in northern Borneo, Sci.
Rep.-UK, 10, 3678, https://doi.org/10.1038/s41598-020-60525-1, 2020.
Kuffner, I. B., Roberts, K. E., Flannery, J. A., Morrison, J. M., and
Richey, J. N.: Fidelity of the proxy in recording ocean temperature in the western Atlantic coral Siderastrea siderea, Geochem. Geophy. Geosy., 18, 178–188, https://doi.org/10.1002/2016GC006640, 2017.
Kuhnert, H., Pätzold, J., Hatcher, B., Wyrwoll, K.-H., Eisenhauer, A.,
Collins, L. B., Zhu, Z. R., and Wefer, G.: A 200-year coral stable oxygen
isotope record from a high-latitude reef off Western Australia, Coral Reefs,
18, 1–12, https://doi.org/10.1007/s003380050147, 1999.
Kuhnert, H., Pätzold, J., Wyrwoll, K.-H., and Wefer, G.: Monitoring
climate variability over the past 116 years in coral oxygen isotopes from
Ningaloo Reef, Western Australia, Int. J. Earth Sci., 88, 725–732,
https://doi.org/10.1007/s005310050300, 2000.
Lawman, A. E., Quinn, T. M., Partin, J. W., Thirumalai, K., Taylor, F. W.,
Wu, C.-C., Yu, T.-L., Gorman, M. K., and Shen, C.-C.: A Century of Reduced
ENSO Variability During the Medieval Climate Anomaly, Paleoceanography and
Paleoclimatology, 35, e2019PA003742, https://doi.org/10.1029/2019PA003742,
2020a.
Lawman, A. E., Partin, J. W., Dee, S. G., Casadio, C. A., Di Nezio, P., and
Quinn, T. M.: Developing a Coral Proxy System Model to Compare Coral and
Climate Model Estimates of Changes in Paleo-ENSO Variability,
Paleoceanography and Paleoclimatology, 35, e2019PA003836,
https://doi.org/10.1029/2019PA003836, 2020b.
LeGrande, A. N. and Schmidt, G. A.: Global gridded data set of the oxygen
isotopic composition in seawater, Geophys. Res. Lett., 33, L12604,
https://doi.org/10.1029/2006GL026011, 2006.
LeGrande, A. N. and Schmidt, G. A.: Water isotopologues as a quantitative
paleosalinity proxy, Paleoceanography, 26, PA3225,
https://doi.org/10.1029/2010PA002043, 2011.
Linsley, B. K., Dunbar, R. B., Wellington, G. M., and Mucciarone, D. A.: A
coral-based reconstruction of Intertropical Convergence Zone variability
over Central America since 1707, J. Geophys. Res.-Oceans, 99, 9977–9994,
https://doi.org/10.1029/94JC00360, 1994.
Linsley, B. K., Messier, R. G., and Dunbar, R. B.: Assessing between-colony
oxygen isotope variability in the coral Porites lobata at Clipperton Atoll,
Coral Reefs, 18, 13–27, https://doi.org/10.1007/s003380050148, 1999.
Linsley, B. K., Wellington, G. M., and Schrag, D. P.: Decadal Sea Surface
Temperature Variability in the Subtropical South Pacific from 1726 to 1997 A.D., Science, 290, 1145–1148, https://doi.org/10.1126/science.290.5494.1145, 2000.
Linsley, B. K., Wellington, G. M., Schrag, D. P., Ren, L., Salinger, M. J.,
and Tudhope, A. W.: Geochemical evidence from corals for changes in the
amplitude and spatial pattern of South Pacific interdecadal climate
variability over the last 300 years, Clim. Dynam., 22, 1–11,
https://doi.org/10.1007/s00382-003-0364-y, 2004.
Linsley, B. K., Kaplan, A., Gouriou, Y., Salinger, J., deMenocal, P. B.,
Wellington, G. M., and Howe, S. S.: Tracking the extent of the South Pacific
Convergence Zone since the early 1600s, Geochem. Geophy. Geosy., 7, Q05003,
https://doi.org/10.1029/2005GC001115, 2006.
Linsley, B. K., Zhang, P., Kaplan, A., Howe, S. S., and Wellington, G. M.:
Interdecadal-decadal climate variability from multicoral oxygen isotope
records in the South Pacific Convergence Zone region since 1650 A.D.,
Paleoceanography, 23, PA2219, https://doi.org/10.1029/2007PA001539, 2008.
Loope, G., Thompson, D., Cole, J., and Overpeck, J.: Is there a
low-frequency bias in multiproxy reconstructions of tropical pacific SST
variability?, Quaternary Sci. Rev., 246, 106530,
https://doi.org/10.1016/j.quascirev.2020.106530, 2020.
Lough, J. M.: Climate records from corals, WIREs Clin. Change, 1, 318–331,
https://doi.org/10.1002/wcc.39, 2010.
Lough, J. M. and Barnes, D. J.: Several centuries of variation in skeletal
extension, density and calcification in massive Porites colonies from the
Great Barrier Reef: A proxy for seawater temperature and a background of
variability against which to identify unnatural change, J. Exp. Mar. Biol.
Ecol., 211, 29–67, https://doi.org/10.1016/S0022-0981(96)02710-4, 1997.
Madakumbura, G. D., Thackeray, C. W., Norris, J., Goldenson, N., and Hall,
A.: Anthropogenic influence on extreme precipitation over global land areas
seen in multiple observational datasets, Nat. Commun., 12, 3944,
https://doi.org/10.1038/s41467-021-24262-x, 2021.
Maupin, C. R., Quinn, T. M., and Halley, R. B.: Extracting a climate signal
from the skeletal geochemistry of the Caribbean coral Siderastrea siderea,
Geochem. Geophy. Geosy., 9, Q12012, https://doi.org/10.1029/2008GC002106, 2008.
McConnaughey, T.: 13C and 18O isotopic disequilibrium in biological
carbonates: I. Patterns, Geochim. Cosmochim. Ac., 53, 151–162,
https://doi.org/10.1016/0016-7037(89)90282-2, 1989.
McGregor, H. V. and Gagan, M. K.: Western Pacific coral δ18O records of anomalous Holocene variability in the El Niño–Southern Oscillation, Geophys. Res. Lett., 31, L11204, https://doi.org/10.1029/2004GL019972, 2004.
McGregor, H. V., Gagan, M. K., McCulloch, M. T., Hodge, E., and Mortimer,
G.: Mid-Holocene variability in the marine 14C reservoir age for northern
coastal Papua New Guinea, Quat. Geochronol., 3, 213–225,
https://doi.org/10.1016/j.quageo.2007.11.002, 2008.
McGregor, H. V., Fischer, M. J., Gagan, M. K., Fink, D., and Woodroffe, C.
D.: Environmental control of the oxygen isotope composition of Porites coral
microatolls, Geochim. Cosmochim. Ac., 75, 3930–3944,
https://doi.org/10.1016/j.gca.2011.04.017, 2011.
McGregor, H. V., Evans, M. N., Goosse, H., Leduc, G., Martrat, B., Addison,
J. A., Mortyn, P. G., Oppo, D. W., Seidenkrantz, M.-S., Sicre, M.-A.,
Phipps, S. J., Selvaraj, K., Thirumalai, K., Filipsson, H. L., and Ersek,
V.: Robust global ocean cooling trend for the pre-industrial Common Era,
Nat. Geosci., 8, 671–677, https://doi.org/10.1038/ngeo2510, 2015.
McKay, N. P. and Emile-Geay, J.: Technical note: The Linked Paleo Data framework – a common tongue for paleoclimatology, Clim. Past, 12, 1093–1100, https://doi.org/10.5194/cp-12-1093-2016, 2016.
McPhaden, M. J., Busalacchi, A. J., Cheney, R., Donguy, J.-R., Gage, K. S.,
Halpern, D., Ji, M., Julian, P., Meyers, G., Mitchum, G. T., Niiler, P. P.,
Picaut, J., Reynolds, R. W., Smith, N., and Takeuchi, K.: The Tropical
Ocean-Global Atmosphere observing system: A decade of progress, J. Geophys.
Res.-Oceans, 103, 14169–14240, https://doi.org/10.1029/97JC02906, 1998.
McPhaden, M. J., Busalacchi, A. J., and Anderson, D. L. T.: A TOGA
Retrospective, Oceanography, 23, 86–103, 2010.
Mohtar, A. T., Hughen, K. A., Goodkin, N. F., Streanga, I.-M., Ramos, R. D.,
Samanta, D., Cervino, J., and Switzer, A. D.: Coral-based proxy calibrations
constrain ENSO-driven sea surface temperature and salinity gradients in the
Western Pacific Warm Pool, Palaeogeogr. Palaeocl., 561, 110037,
https://doi.org/10.1016/j.palaeo.2020.110037, 2021.
Moses, C. S., Swart, P. K., and Rosenheim, B. E.: Evidence of multidecadal
salinity variability in the eastern tropical North Atlantic,
Paleoceanography, 21, PA3010, https://doi.org/10.1029/2005PA001257, 2006.
Murty, S. A., Goodkin, N. F., Halide, H., Natawidjaja, D., Suwargadi, B.,
Suprihanto, I., Prayudi, D., Switzer, A. D., and Gordon, A. L.: Climatic
Influences on Southern Makassar Strait Salinity Over the Past Century,
Geophys. Res. Lett., 44, 11967–11975, https://doi.org/10.1002/2017GL075504,
2017.
Murty, S. A., Bernstein, W. N., Ossolinski, J. E., Davis, R. S., Goodkin, N.
F., and Hughen, K. A.: Spatial and Temporal Robustness of -SST
Calibrations in Red Sea Corals: Evidence for Influence of Mean Annual
Temperature on Calibration Slopes, Paleoceanography and Paleoclimatology,
33, 443–456, https://doi.org/10.1029/2017PA003276, 2018a.
Murty, S. A., Goodkin, N. F., Wiguna, A. A., and Gordon, A. L.: Variability
in Coral-Reconstructed Sea Surface Salinity Between the Northern and
Southern Lombok Strait Linked to East Asian Winter Monsoon Mean State
Reversals, Paleoceanography and Paleoclimatology, 33, 1116–1133,
https://doi.org/10.1029/2018PA003387, 2018b.
Nakamura, N., Kayanne, H., Iijima, H., McClanahan, T. R., Behera, S. K., and
Yamagata, T.: Mode shift in the Indian Ocean climate under global warming
stress, Geophys. Res. Lett., 36, L23708, https://doi.org/10.1029/2009GL040590, 2009.
Neukom, R., Steiger, N., Gómez-Navarro, J. J., Wang, J., and Werner, J.
P.: No evidence for globally coherent warm and cold periods over the
preindustrial Common Era, Nature, 571, 550–554,
https://doi.org/10.1038/s41586-019-1401-2, 2019.
Nurhati, I. S., Cobb, K. M., Charles, C. D., and Dunbar, R. B.: Late 20th
century warming and freshening in the central tropical Pacific, Geophys.
Res. Lett., 36, L21606, https://doi.org/10.1029/2009GL040270, 2009.
Nurhati, I. S., Cobb, K. M., and Lorenzo, E. D.: Decadal-Scale SST and
Salinity Variations in the Central Tropical Pacific: Signatures of Natural
and Anthropogenic Climate Change, J. Climate, 24, 3294–3308,
https://doi.org/10.1175/2011JCLI3852.1, 2011.
Okai, T., Suzuki, A., Kawahata, H., Terashima, S., and Imai, N.: Preparation
of a New Geological Survey of Japan Geochemical Reference Material: Coral
JCp-1, Geostandard Newslett., 26, 95–99,
https://doi.org/10.1111/j.1751-908X.2002.tb00627.x, 2002.
Osborne, M. C., Dunbar, R. B., Mucciarone, D. A., Sanchez-Cabeza, J.-A., and
Druffel, E.: Regional calibration of coral-based climate reconstructions
from Palau, West Pacific Warm Pool (WPWP), Palaeogeogr. Palaeocl., 386,
308–320, https://doi.org/10.1016/j.palaeo.2013.06.001, 2013.
Osborne, M. C., Dunbar, R. B., Mucciarone, D. A., Druffel, E., and
Sanchez-Cabeza, J.-A.: A 215-yr coral δ18O time series from Palau
records dynamics of the West Pacific Warm Pool following the end of the
Little Ice Age, Coral Reefs, 33, 719–731, https://doi.org/10.1007/s00338-014-1146-1, 2014.
PAGES 2k Consortium: Continental-scale temperature variability during the
past two millennia, Nat. Geosci., 6, 339–346, https://doi.org/10.1038/ngeo1797, 2013.
PAGES2k Consortium: A global multiproxy database for temperature
reconstructions of the Common Era, Scientific Data, 4, 170088,
https://doi.org/10.1038/sdata.2017.88, 2017.
PAGES 2k Consortium: Consistent multidecadal variability in global
temperature reconstructions and simulations over the Common Era, Nat.
Geosci., 12, 643–649, https://doi.org/10.1038/s41561-019-0400-0, 2019.
PAGES 2k Network Coordinators: Understanding the climate of the past 2000
years: Phase 3 of the PAGES 2k Network, PAGES Magazine, 25, 110,
https://doi.org/10.22498/pages.25.2.110, 2017.
PAGES Hydro2k Consortium: Comparing proxy and model estimates of hydroclimate variability and change over the Common Era, Clim. Past, 13, 1851–1900, https://doi.org/10.5194/cp-13-1851-2017, 2017.
Pawlowicz, R.: M_Map: A mapping package for MATLAB, version 1.4m, EOAS [software], https://www.eoas.ubc.ca/~rich/map.html (last access: 19 May 2022), 2020.
Pfeiffer, M., Timm, O., Dullo, W.-C., and Podlech, S.: Oceanic forcing of
interannual and multidecadal climate variability in the southwestern Indian
Ocean: Evidence from a 160 year coral isotopic record (La Réunion,
55∘ E, 21∘ S), Paleoceanography, 19, PA4006,
https://doi.org/10.1029/2003PA000964, 2004a.
Pfeiffer, M., Dullo, W.-C., and Eisenhauer, A.: Variability of the
Intertropical Convergence Zone recorded in coral isotopic records from the
central indian Ocean (Chagos Archipelago), Quaternary Res., 61, 245–255,
https://doi.org/10.1016/j.yqres.2004.02.009, 2004b.
Pfeiffer, M., Reuning, L., Zinke, J., Garbe-Schönberg, D., Leupold, M.,
and Dullo, W.-C.: 20th Century δ18O Seawater and Salinity Variations Reconstructed From Paired δ18O and Measurements of a La Reunion Coral, Paleoceanography and Paleoclimatology, 34, 2183–2200, https://doi.org/10.1029/2019PA003770, 2019.
Power, S., Delage, F., Chung, C., Kociuba, G., and Keay, K.: Robust
twenty-first-century projections of El Niño and related precipitation
variability, Nature, 502, 541–545, https://doi.org/10.1038/nature12580, 2013.
Qu, T., Song, Y. T., and Maes, C.: Sea surface salinity and barrier layer
variability in the equatorial Pacific as seen from Aquarius and Argo, J. Geophys. Res.-Oceans, 119, 15–29, https://doi.org/10.1002/2013JC009375, 2014.
Quinn, T. M., Taylor, F. W., and Crowley, T. J.: A 173 year stable isotope
record from a tropical south pacific coral, Quaternary Sci. Rev., 12,
407–418, https://doi.org/10.1016/S0277-3791(05)80005-8, 1993.
Quinn, T. M., Crowley, T. J., and Taylor, F. W.: New stable isotope results
from a 173-year coral from Espiritu Santo, Vanuatu, Geophys.
Res. Lett., 23, 3413–3416, https://doi.org/10.1029/96GL03169, 1996.
Quinn, T. M., Taylor, F. W., and Crowley, T. J.: Coral-based climate
variability in the Western Pacific Warm Pool since 1867, J. Geophys.
Res.-Oceans, 111, C11006, https://doi.org/10.1029/2005JC003243, 2006.
Ramos, R. D., Goodkin, N. F., Siringan, F. P., and Hughen, K. A.: Coral
Records of Temperature and Salinity in the Tropical Western Pacific Reveal
Influence of the Pacific Decadal Oscillation Since the Late Nineteenth
Century, Paleoceanography and Paleoclimatology, 34, 1344–1358,
https://doi.org/10.1029/2019PA003684, 2019.
Ramos, R. D., Goodkin, N. F., and Fan, T.-Y.: Coral Records at the Northern
Edge of the Western Pacific Warm Pool Reveal Multiple Drivers of Sea Surface
Temperature, Salinity, and Rainfall Variability Since the End of the Little
Ice Age, Paleoceanography and Paleoclimatology, 35, e2019PA003826,
https://doi.org/10.1029/2019PA003826, 2020.
Rayner, N. A., Parker, D. E., Horton, E. B., Folland, C. K., Alexander, L.
V., Rowell, D. P., Kent, E. C., and Kaplan, A.: Global analyses of sea
surface temperature, sea ice, and night marine air temperature since the
late nineteenth century, J. Geophys. Res.-Atmos., 108, 4407,
https://doi.org/10.1029/2002JD002670, 2003.
Reed, E. V., Cole, J. E., Lough, J. M., Thompson, D., and Cantin, N. E.:
Linking climate variability and growth in coral skeletal records from the
Great Barrier Reef, Coral Reefs, 38, 29–43,
https://doi.org/10.1007/s00338-018-01755-8, 2019.
Reed, E. V., Thompson, D. M., Cole, J. E., Lough, J. M., Cantin, N. E.,
Cheung, A. H., Tudhope, A., Vetter, L., Jimenez, G., and Edwards, R. L.:
Impacts of Coral Growth on Geochemistry: Lessons From the Galápagos
Islands, Paleoceanography and Paleoclimatology, 36, e2020PA004051,
https://doi.org/10.1029/2020PA004051, 2021.
Ren, L., Linsley, B. K., Wellington, G. M., Schrag, D. P., and
Hoegh-guldberg, O.: Deconvolving the δ18O seawater component from
subseasonal coral δ18O and at Rarotonga in the southwestern subtropical Pacific for the period 1726 to 1997, Geochim. Cosmochim. Ac., 67, 1609–1621, https://doi.org/10.1016/S0016-7037(02)00917-1, 2003.
Reynolds, R. W., Rayner, N. A., Smith, T. M., Stokes, D. C., and Wang, W.:
An Improved In Situ and Satellite SST Analysis for Climate, J. Climate, 15,
1609–1625, https://doi.org/10.1175/1520-0442(2002)015<1609:AIISAS>2.0.CO;2, 2002.
Rixen, T., Ramachandran, P., Lehnhoff, L., Dasbach, D., Gaye, B., Urban, B.,
Ramachandran, R., and Ittekkot, V.: Impact of monsoon-driven surface ocean
processes on a coral off Port Blair on the Andaman Islands and their link to
North Atlantic climate variations, Global Planet. Change, 75, 1–13,
https://doi.org/10.1016/j.gloplacha.2010.09.005, 2011.
Rodriguez, L. G., Cohen, A. L., Ramirez, W., Oppo, D. W., Pourmand, A.,
Edwards, R. L., Alpert, A. E., and Mollica, N.: Mid-Holocene, Coral-Based
Sea Surface Temperatures in the Western Tropical Atlantic, Paleoceanography
and Paleoclimatology, 34, 1234–1245, https://doi.org/10.1029/2019PA003571, 2019.
Ropelewski, C. F. and Halpert, M. S.: Global and Regional Scale
Precipitation Patterns Associated with the El Niño/Southern Oscillation,
Mon. Weather Rev., 115, 1606–1626,
https://doi.org/10.1175/1520-0493(1987)115<1606:GARSPP>2.0.CO;2, 1987.
Saha, N., Rodriguez-Ramirez, A., Nguyen, A. D., Clark, T. R., Zhao, J., and
Webb, G. E.: Seasonal to decadal scale influence of environmental drivers on
Ba Ca and Y Ca in coral aragonite from the southern Great Barrier Reef, Sci. Total Environ., 639, 1099–1109,
https://doi.org/10.1016/j.scitotenv.2018.05.156, 2018.
Saha, N., Webb, G. E., Zhao, J.-X., Lewis, S. E., Duc Nguyen, A., and Feng,
Y.: Spatiotemporal variation of rare earth elements from river to reef
continuum aids monitoring of terrigenous sources in the Great Barrier Reef,
Geochim. Cosmochim. Ac., 299, 85–112, https://doi.org/10.1016/j.gca.2021.02.014, 2021.
Saji, N. H., Goswami, B. N., Vinayachandran, P. N., and Yamagata, T.: A
dipole mode in the tropical Indian Ocean, Nature, 401, 360–363,
https://doi.org/10.1038/43854, 1999.
Sanchez, S. C., Charles, C. D., Carriquiry, J. D., and Villaescusa, J. A.:
Two centuries of coherent decadal climate variability across the Pacific
North American region, Geophys. Res. Lett., 43, 9208–9216,
https://doi.org/10.1002/2016GL069037, 2016.
Sanchez, S. C., Westphal, N., Haug, G. H., Cheng, H., Edwards, R. L.,
Schneider, T., Cobb, K. M., and Charles, C. D.: A Continuous Record of
Central Tropical Pacific Climate Since the Midnineteenth Century
Reconstructed From Fanning and Palmyra Island Corals: A Case Study in Coral
Data Reanalysis, Paleoceanography and Paleoclimatology, 35, e2020PA003848,
https://doi.org/10.1029/2020PA003848, 2020.
Sanchez, S. C., Hakim, G. J., and Saenger, C. P.: Climate Model
Teleconnection Patterns Govern the Niño-3.4 Response to Early
Nineteenth-Century Volcanism in Coral-Based Data Assimilation
Reconstructions, J. Climate, 34, 1863–1880,
https://doi.org/10.1175/JCLI-D-20-0549.1, 2021.
Sayani, H. R., Cobb, K. M., DeLong, K., Hitt, N. T., and Druffel, E. R. M.:
Intercolony δ18O and variability among Porites spp. corals at Palmyra Atoll: Toward more robust coral-based estimates of climate, Geochem. Geophy. Geosy., 20, 5270–5284, https://doi.org/10.1029/2019GC008420, 2019.
Sayani, H. R., Thompson, D. M., Carilli, J. E., Marchitto, T. M., Chapman,
A. U., and Cobb, K. M.: Reproducibility of Coral Mn/Ca-Based Wind
Reconstructions at Kiritimati Island and Butaritari Atoll, Geochem. Geophy.
Geosy., 22, e2020GC009398, https://doi.org/10.1029/2020GC009398, 2021.
Schmid, C., Molinari, R. L., Sabina, R., Daneshzadeh, Y.-H., Xia, X.,
Forteza, E., and Yang, H.: The Real-Time Data Management System for Argo
Profiling Float Observations, J. Atmos. Ocean. Tech., 24, 1608–1628,
https://doi.org/10.1175/JTECH2070.1, 2007.
Schrag, D. P.: Rapid analysis of high-precision ratios in corals and other marine carbonates, Paleoceanography, 14, 97–102,
https://doi.org/10.1029/1998PA900025, 1999.
Shen, G. T., Cole, J. E., Lea, D. W., Linn, L. J., McConnaughey, T. A., and
Fairbanks, R. G.: Surface ocean variability at Galapagos from 1936–1982:
Calibration of geochemical tracers in corals, Paleoceanography, 7, 563–588,
https://doi.org/10.1029/92PA01825, 1992.
Smith, J. M., Quinn, T. M., Helmle, K. P., and Halley, R. B.:
Reproducibility of geochemical and climatic signals in the Atlantic coral
Montastraea faveolata, Paleoceanography, 21, PA1010,
https://doi.org/10.1029/2005PA001187, 2006.
Smith, S. V., Buddemeier, R. W., Redalje, R. C., and Houck, J. E.:
Strontium-Calcium Thermometry in Coral Skeletons, Science, 204, 404–407,
https://doi.org/10.1126/science.204.4391.404, 1979.
Song, F., Leung, L. R., Lu, J., Dong, L., Zhou, W., Harrop, B., and Qian,
Y.: Emergence of seasonal delay of tropical rainfall during 1979–2019, Nat.
Clim. Change, 11, 605–612, https://doi.org/10.1038/s41558-021-01066-x, 2021.
Steiger, N. J., Smerdon, J. E., Cook, E. R., and Cook, B. I.: A
reconstruction of global hydroclimate and dynamical variables over the
Common Era, Scientific Data, 5, 180086, https://doi.org/10.1038/sdata.2018.86, 2018.
Storz, D., Gischler, E., Fiebig, J., Eisenhauer, A., and
Garbe-Schönberg, D.: Evaluation of oxygen isotope and ratios from a Maldivian scleractinian coral for reconstruction of climate variability in the northwestern Indian Ocean, PALAIOS, 28, 42–55,
https://doi.org/10.2110/palo.2012.p12-034r, 2013.
Swart, P. K., Healy, G. F., Dodge, R. E., Kramer, P., Hudson, J. H., Halley,
R. B., and Robblee, M. B.: The stable oxygen and carbon isotopic record from
a coral growing in Florida Bay: a 160 year record of climatic and
anthropogenic influence, Palaeogeogr. Palaeocl., 123, 219–237,
https://doi.org/10.1016/0031-0182(95)00078-X, 1996.
Swart, P. K., White, K. S., Enfield, D., Dodge, R. E., and Milne, P.: Stable
oxygen isotopic composition of corals from the Gulf of Guinea as indicators
of periods of extreme precipitation conditions in the sub-Sahara, J.
Geophys. Res.-Oceans, 103, 27885–27891, https://doi.org/10.1029/98JC02404, 1998.
Swart, P. K., Healy, G., Greer, L., Lutz, M., Saied, A., Anderegg, D.,
Dodge, R. E., and Rudnick, D.: The use of proxy chemical records in Coral
skeletons to ascertain past environmental conditions in Florida Bay,
Estuaries, 22, 384–397, https://doi.org/10.2307/1353206, 1999.
Tangri, N., Dunbar, R. B., Linsley, B. K., and Mucciarone, D. M.: ENSO's
Shrinking Twentieth-Century Footprint Revealed in a Half-Millennium Coral
Core From the South Pacific Convergence Zone, Paleoceanography and
Paleoclimatology, 33, 1136–1150, https://doi.org/10.1029/2017PA003310, 2018.
Tardif, R., Hakim, G. J., Perkins, W. A., Horlick, K. A., Erb, M. P., Emile-Geay, J., Anderson, D. M., Steig, E. J., and Noone, D.: Last Millennium Reanalysis with an expanded proxy database and seasonal proxy modeling, Clim. Past, 15, 1251–1273, https://doi.org/10.5194/cp-15-1251-2019, 2019.
Thompson, D. M., Ault, T. R., Evans, M. N., Cole, J. E., and Emile-Geay, J.:
Comparison of observed and simulated tropical climate trends using a forward
model of coral δ18O, Geophys. Res. Lett., 38, L14706,
https://doi.org/10.1029/2011GL048224, 2011.
Tierney, J. E., Abram, N. J., Anchukaitis, K. J., Evans, M. N., Giry, C.,
Kilbourne, K. H., Saenger, C. P., Wu, H. C., and Zinke, J.: Tropical sea
surface temperatures for the past four centuries reconstructed from coral
archives, Paleoceanography, 30, 226–252, https://doi.org/10.1002/2014PA002717, 2015.
Tudhope, A. W., Shimmield, G. B., Chilcott, C. P., Jebb, M., Fallick, A. E.,
and Dalgleish, A. N.: Recent changes in climate in the far western
equatorial Pacific and their relationship to the Southern Oscillation;
oxygen isotope records from massive corals, Papua New Guinea, Earth Planet.
Sc. Lett., 136, 575–590, https://doi.org/10.1016/0012-821X(95)00156-7, 1995.
Tudhope, A. W., Chilcott, C. P., McCulloch, M. T., Cook, E. R., Chappell,
J., Ellam, R. M., Lea, D. W., Lough, J. M., and Shimmield, G. B.:
Variability in the El Niño-Southern Oscillation Through a
Glacial-Interglacial Cycle, Science, 291, 1511–1517,
https://doi.org/10.1126/science.1057969, 2001.
Ummenhofer, C. C., Murty, S. A., Sprintall, J., Lee, T., and Abram, N. J.:
Heat and freshwater changes in the Indian Ocean region, Nat. Rev. Earth
Environ., 2, 525–541, https://doi.org/10.1038/s43017-021-00192-6, 2021.
Urban, F. E., Cole, J. E., and Overpeck, J. T.: Influence of mean climate
change on climate variability from a 155-year tropical Pacific coral record,
Nature, 407, 989–993, https://doi.org/10.1038/35039597, 2000.
Vásquez-Bedoya, L. F., Cohen, A. L., Oppo, D. W., and Blanchon, P.:
Corals record persistent multidecadal SST variability in the Atlantic Warm
Pool since 1775 AD, Paleoceanography, 27, PA3231, https://doi.org/10.1029/2012PA002313, 2012.
Vazquez-Cuervo, J. and Gomez-Valdes, J.: SMAP and CalCOFI Observe Freshening
during the 2014–2016 Northeast Pacific Warm Anomaly, Remote Sens., 10,
1716, https://doi.org/10.3390/rs10111716, 2018.
von Reumont, J., Hetzinger, S., Garbe-Schönberg, D., Manfrino, C., and
Dullo, W.-Chr.: Impact of warming events on reef-scale temperature
variability as captured in two Little Cayman coral records, Geochem. Geophy. Geosy., 17, 846–857, https://doi.org/10.1002/2015GC006194, 2016.
von Reumont, J., Hetzinger, S., Garbe-Schönberg, D., Manfrino, C., and
Dullo, C.: Tracking Interannual- to Multidecadal-Scale Climate Variability
in the Atlantic Warm Pool Using Central Caribbean Coral Data,
Paleoceanography and Paleoclimatology, 33, 395–411,
https://doi.org/10.1002/2018PA003321, 2018.
Walter, R. M., Sayani, H. R., Felis, T., Cobb, K. M., Abram, N. J., Arzey,
A. K., Atwood, A., Brenner, L. D., Dassié, E. P., DeLong, K. L., Ellis,
B., Fischer, M. J., Goodkin, N. F., Hargreaves, J. A., Kilbourne, K. H.,
Krawczyk, H. A., McKay, N. P., Murty, S. A., Ramos, R. D., Reed, E. V.,
Samanta, D., Sanchez, S. C., Zinke, J., and PAGES CoralHydro2k Project Members: NOAA/WDS Paleoclimatology – CoralHydro2k Database (Common Era coral δ18O and data compilation), NOAA National Centers for Environmental Information [data set], https://doi.org/10.25921/yp94-v135, 2022.
Watanabe, T., Winter, A., and Oba, T.: Seasonal changes in sea surface
temperature and salinity during the Little Ice Age in the Caribbean Sea
deduced from Mg Ca and 18O 16O ratios in corals, Mar. Geol., 173, 21–35, https://doi.org/10.1016/S0025-3227(00)00166-3, 2001.
Watanabe, T. K., Watanabe, T., Yamazaki, A., Pfeiffer, M.,
Garbe-Schönberg, D., and Claereboudt, M. R.: Past summer upwelling
events in the Gulf of Oman derived from a coral geochemical record, Sci.
Rep.-UK, 7, 4568, https://doi.org/10.1038/s41598-017-04865-5, 2017.
Weber, J. N.: Incorporation of strontium into reef coral skeletal carbonate,
Geochim. Cosmochim. Ac., 37, 2173–2190, https://doi.org/10.1016/0016-7037(73)90015-X, 1973.
Weber, J. N. and Woodhead, P. M. J.: Temperature dependence of oxygen-18
concentration in reef coral carbonates, J. Geophys. Res., 77, 463–473,
https://doi.org/10.1029/JC077i003p00463, 1972.
Webster, P. J., Moore, A. M., Loschnigg, J. P., and Leben, R. R.: Coupled
ocean–atmosphere dynamics in the Indian Ocean during 1997–98, Nature, 401,
356–360, https://doi.org/10.1038/43848, 1999.
Weerabaddana, M. M., DeLong, K. L., Wagner, A. J., Loke, D. W. Y.,
Kilbourne, K. H., Slowey, N., Hu, H.-M., and Shen, C.-C.: Insights from
barium variability in a Siderastrea siderea coral in the northwestern Gulf
of Mexico, Mar. Pollut. Bull., 173, 112930,
https://doi.org/10.1016/j.marpolbul.2021.112930, 2021.
Wei, G., McCulloch, M. T., Mortimer, G., Deng, W., and Xie, L.: Evidence for
ocean acidification in the Great Barrier Reef of Australia, Geochim.
Cosmochim. Ac., 73, 2332–2346, https://doi.org/10.1016/j.gca.2009.02.009, 2009.
Weinzierl, M. S., Reich, C. D., Hickey, T. D., Bartlett, L. A., and Kuffner,
I. B.: Collection methods and descriptions of coral cores extracted from
massive corals in Dry Tortugas National Park, Florida, U.S.A., Open-File
Report, U.S. Geological Survey, https://doi.org/10.3133/ofr20161182, 2016.
Wilkinson, M. D., Dumontier, M., Aalbersberg, I. J., Appleton, G., Axton,
M., Baak, A., Blomberg, N., Boiten, J.-W., da Silva Santos, L. B., Bourne,
P. E., Bouwman, J., Brookes, A. J., Clark, T., Crosas, M., Dillo, I., Dumon,
O., Edmunds, S., Evelo, C. T., Finkers, R., Gonzalez-Beltran, A., Gray, A.
J. G., Groth, P., Goble, C., Grethe, J. S., Heringa, J., 't Hoen, P. A. C.,
Hooft, R., Kuhn, T., Kok, R., Kok, J., Lusher, S. J., Martone, M. E., Mons,
A., Packer, A. L., Persson, B., Rocca-Serra, P., Roos, M., van Schaik, R.,
Sansone, S.-A., Schultes, E., Sengstag, T., Slater, T., Strawn, G., Swertz,
M. A., Thompson, M., van der Lei, J., van Mulligen, E., Velterop, J.,
Waagmeester, A., Wittenburg, P., Wolstencroft, K., Zhao, J., and Mons, B.:
The FAIR Guiding Principles for scientific data management and stewardship,
Scientific Data, 3, 160018, https://doi.org/10.1038/sdata.2016.18, 2016.
Wu, H. C., Linsley, B. K., Dassié, E. P., Schiraldi, B., and deMenocal,
P. B.: Oceanographic variability in the South Pacific Convergence Zone
region over the last 210 years from multi-site coral records, Geochem. Geophy. Geosy., 14, 1435–1453, https://doi.org/10.1029/2012GC004293, 2013.
Wu, H. C., Moreau, M., Linsley, B. K., Schrag, D. P., and Corrège, T.:
Investigation of sea surface temperature changes from replicated coral variations in the eastern equatorial Pacific (Clipperton Atoll) since 1874, Palaeogeogr. Palaeocl., 412, 208–222,
https://doi.org/10.1016/j.palaeo.2014.07.039, 2014.
Wu, H. C., Felis, T., Scholz, D., Giry, C., Kölling, M., Jochum, K. P., and Scheffers, S. R.: Changes to Yucatán Peninsula precipitation associated with salinity and temperature extremes of the Caribbean Sea during the Maya civilization collapse, Sci. Rep.-UK, 7, 15825,
https://doi.org/10.1038/s41598-017-15942-0, 2017.
Xiao, H., Deng, W., Chen, X., Wei, G., Zeng, T., and Zhao, J.: Wet and cold
climate conditions recorded by coral geochemical proxies during the
beginning of the first millennium CE in the northern South China Sea, J.
Asian Earth Sci., 135, 25–34, https://doi.org/10.1016/j.jseaes.2016.12.012, 2017.
Xu, Y.-Y., Pearson, S., and Halimeda Kilbourne, K.: Assessing coral
–SST calibration techniques using the species Diploria strigosa,
Palaeogeogr. Palaeocl., 440, 353–362, https://doi.org/10.1016/j.palaeo.2015.09.016, 2015.
Zhang, R., Sutton, R., Danabasoglu, G., Kwon, Y.-O., Marsh, R., Yeager, S.
G., Amrhein, D. E., and Little, C. M.: A Review of the Role of the Atlantic
Meridional Overturning Circulation in Atlantic Multidecadal Variability and
Associated Climate Impacts, Rev. Geophys., 57, 316–375,
https://doi.org/10.1029/2019RG000644, 2019.
Zinke, J., Dullo, W.-Chr., Heiss, G. A., and Eisenhauer, A.: ENSO and Indian
Ocean subtropical dipole variability is recorded in a coral record off
southwest Madagascar for the period 1659 to 1995, Earth Planet. Sc. Lett.,
228, 177–194, https://doi.org/10.1016/j.epsl.2004.09.028, 2004.
Zinke, J., Pfeiffer, M., Timm, O., Dullo, W.-C., Kroon, D., and Thomassin,
B. A.: Mayotte coral reveals hydrological changes in the western Indian
Ocean between 1881 and 1994, Geophys. Res. Lett., 35, L23707,
https://doi.org/10.1029/2008GL035634, 2008.
Zinke, J., Rountrey, A., Feng, M., Xie, S.-P., Dissard, D., Rankenburg, K.,
Lough, J. M., and McCulloch, M. T.: Corals record long-term Leeuwin current
variability including Ningaloo Niño/Niña since 1795, Nat. Commun.,
5, 3607, https://doi.org/10.1038/ncomms4607, 2014a.
Zinke, J., Loveday, B. R., Reason, C. J. C., Dullo, W.-C., and Kroon, D.:
Madagascar corals track sea surface temperature variability in the Agulhas
Current core region over the past 334 years, Sci. Rep.-UK, 4, 4393,
https://doi.org/10.1038/srep04393, 2014b.
Zinke, J., Hoell, A., Lough, J. M., Feng, M., Kuret, A. J., Clarke, H.,
Ricca, V., Rankenburg, K., and McCulloch, M. T.: Coral record of southeast
Indian Ocean marine heatwaves with intensified Western Pacific temperature
gradient, Nat. Commun., 6, 8562, https://doi.org/10.1038/ncomms9562, 2015.
Zinke, J., Reuning, L., Pfeiffer, M., Wassenburg, J. A., Hardman, E., Jhangeer-Khan, R., Davies, G. R., Ng, C. K. C., and Kroon, D.: A sea surface temperature reconstruction for the southern Indian Ocean trade wind belt from corals in Rodrigues Island (19∘ S, 63∘ E), Biogeosciences, 13, 5827–5847, https://doi.org/10.5194/bg-13-5827-2016, 2016.
Zweng, M. M., Reagan, J. R., Seidov, D., Boyer, T. P., Locarnini, R. A.,
Garcia, H. E., Mishonov, A. V., Baranova, O. K., Weathers, K. W., Paver, C.
R., and Smolyar, I. V.: World Ocean Atlas 2018, Volume 2: Salinity, edited
by: Mishonov, A. V., NOAA Atlas NESDIS 82, https://www.ncei.noaa.gov/sites/default/files/2020-04/woa18_vol2.pdf (last access: 19 May 2022), 2019.
Short summary
Accurately quantifying how the global hydrological cycle will change in the future remains challenging due to the limited availability of historical climate data from the tropics. Here we present the CoralHydro2k database – a new compilation of peer-reviewed coral-based climate records from the last 2000 years. This paper details the records included in the database and where the database can be accessed and demonstrates how the database can investigate past tropical climate variability.
Accurately quantifying how the global hydrological cycle will change in the future remains...
Altmetrics
Final-revised paper
Preprint