Articles | Volume 15, issue 4
https://doi.org/10.5194/essd-15-1733-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/essd-15-1733-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Weekly high-resolution multi-spectral and thermal uncrewed-aerial-system mapping of an alpine catchment during summer snowmelt, Niwot Ridge, Colorado
Antarctic Research Centre, Victoria University of Wellington,
Wellington, New Zealand
Institute of Arctic and Alpine Research, University of Colorado
Boulder, Boulder, CO, USA
Earth Lab, University of Colorado Boulder, Boulder, CO, USA
Noah P. Molotch
Institute of Arctic and Alpine Research, University of Colorado
Boulder, Boulder, CO, USA
Jet Propulsion Laboratory, California Institute of Technology,
Pasadena, CA, USA
Related authors
Julia Martin, Ruzica Dadic, Brian Anderson, Roberta Pirazzini, Oliver Wigmore, and Lauren Vargo
EGUsphere, https://doi.org/10.5194/egusphere-2025-1601, https://doi.org/10.5194/egusphere-2025-1601, 2025
Short summary
Short summary
This study examines how snow distribution affects Antarctic sea ice surface temperature, a key factor in its energy balance. Using drone and ground-based data, we mapped snow depth and surface temperature on 2.4 m thick sea ice in McMurdo Sound. We corrected thermal camera inconsistencies and found that surface temperature is more influenced by topography-driven solar radiation than snow depth. Our findings highlight the need to account for small-scale processes in sea ice energy balance models.
Julia Martin, Ruzica Dadic, Brian Anderson, Roberta Pirazzini, Oliver Wigmore, and Lauren Vargo
EGUsphere, https://doi.org/10.5194/egusphere-2025-1601, https://doi.org/10.5194/egusphere-2025-1601, 2025
Short summary
Short summary
This study examines how snow distribution affects Antarctic sea ice surface temperature, a key factor in its energy balance. Using drone and ground-based data, we mapped snow depth and surface temperature on 2.4 m thick sea ice in McMurdo Sound. We corrected thermal camera inconsistencies and found that surface temperature is more influenced by topography-driven solar radiation than snow depth. Our findings highlight the need to account for small-scale processes in sea ice energy balance models.
Baptiste Vandecrux, Jason E. Box, Andreas P. Ahlstrøm, Signe B. Andersen, Nicolas Bayou, William T. Colgan, Nicolas J. Cullen, Robert S. Fausto, Dominik Haas-Artho, Achim Heilig, Derek A. Houtz, Penelope How, Ionut Iosifescu Enescu, Nanna B. Karlsson, Rebecca Kurup Buchholz, Kenneth D. Mankoff, Daniel McGrath, Noah P. Molotch, Bianca Perren, Maiken K. Revheim, Anja Rutishauser, Kevin Sampson, Martin Schneebeli, Sandy Starkweather, Simon Steffen, Jeff Weber, Patrick J. Wright, Henry Jay Zwally, and Konrad Steffen
Earth Syst. Sci. Data, 15, 5467–5489, https://doi.org/10.5194/essd-15-5467-2023, https://doi.org/10.5194/essd-15-5467-2023, 2023
Short summary
Short summary
The Greenland Climate Network (GC-Net) comprises stations that have been monitoring the weather on the Greenland Ice Sheet for over 30 years. These stations are being replaced by newer ones maintained by the Geological Survey of Denmark and Greenland (GEUS). The historical data were reprocessed to improve their quality, and key information about the weather stations has been compiled. This augmented dataset is available at https://doi.org/10.22008/FK2/VVXGUT (Steffen et al., 2022).
Cited articles
Agisoft: Agisoft PhotoScan User Manual Standard Edition, Version 1.2, St.
Petersburg: Agisoft LLC, 2016.
Aubry-Wake, C., Baraer, M., McKenzie, J. M., Mark, B. G., Wigmore, O.,
Hellström, R. Å., Lautz, L., and Somers, L.: Measuring glacier
surface temperatures with ground-based thermal infrared imaging, Geophys. Res.
Lett., 42, 8489–8497, https://doi.org/10.1002/2015GL065321, 2015.
Beniston, M.: Mountain weather and climate: a general overview and a focus
on climatic change in the Alps, Hydrobiologia, 562, 3–16,
https://doi.org/10.1007/s10750-005-1802-0, 2006.
Bjarke, N. R., Livneh, B., Elmendorf, S. C., Molotch, N. P., Hinckley, E.-L.
S., Emery, N. C., Johnson, P. T. J., and Suding, K. N.: Catchment-scale
observations at the Niwot Ridge Long-Term Ecological Research site, Hydrol.
Process., 35, e14320, https://doi.org/10.1002/HYP.14320, 2021.
Bueno de Mesquita, C. P., Tillmann, L. S., Bernard, C. D., Rosemond, K. C.,
Molotch, N. P., and Suding, K. N.: Topographic heterogeneity explains
patterns of vegetation response to climate change (1972–2008) across a
mountain landscape, Niwot Ridge, Colorado, Arct. Antarct. Alp. Res., 50,
e1504492, https://doi.org/10.1080/15230430.2018.1504492, 2018.
Bühler, Y., Adams, M. S., Bösch, R., and Stoffel, A.: Mapping snow depth in alpine terrain with unmanned aerial systems (UASs): potential and limitations, The Cryosphere, 10, 1075–1088, https://doi.org/10.5194/tc-10-1075-2016, 2016.
CHDK: KAP UAV Exposure Control Script,
https://chdk.wikia.com/wiki/KAP_UAV_Exposure_ Control_Script (last access: 14 April 2023), 2016.
Christensen, L., Tague, C., and Baron, J. S.: Spatial patterns of
transpiration response to climate variability in a snow-dominated mountain
ecosystem, Hydrol. Process., 22, 3576–3588, 2008.
Colomina, I. and Molina, P.: Unmanned aerial systems for photogrammetry and
remote sensing: A review, ISPRS J. Photogramm. Remote, 92, 79–97, https://doi.org/10.1016/j.isprsjprs.2014.02.013, 2014.
Dugdale, S. J., Kelleher, C. A., Malcolm, I. A., Caldwell, S., and Hannah,
D. M.: Assessing the potential of drone-based thermal infrared imagery for
quantifying river temperature heterogeneity, Hydrol. Process., 33, 1152–1163,
https://doi.org/10.1002/hyp.13395, 2019.
Erickson, T. A., Williams, M. W., and Winstral, A.: Persistence of
topographic controls on the spatial distribution of snow in rugged mountain
terrain, Colorado, United States, Water Resour. Res., 41, 1–17,
https://doi.org/10.1029/2003WR002973, 2005.
Eschbach, D., Piasny, G., Schmitt, L., Pfister, L., Grussenmeyer, P., Koehl,
M., Skupinski, G., and Serradj, A.: Thermal-infrared remote sensing of
surface water-groundwater exchanges in a restored anastomosing channel
(Upper Rhine River, France), Hydrol. Process., 31, 1113–1124,
https://doi.org/10.1002/hyp.11100, 2017.
Fagre, D. B., Peterson, D. L., and Hessl, A. E.: Taking the pulse of
mountains: Ecosystem responses to climatic variability, in: Climatic Change,
vol. 59, Springer, 263–282, https://doi.org/10.1023/A:1024427803359, 2003.
FLIR: Tech Note: Radiometric Temperature Measurements Surface
Characteristics and Atmospheric Compensation,
https://www.flir.com/globalassets/guidebooks/suas-radiometric-tech-note-en.pdf (last access: 14 April 2023),
2018.
Fonstad, M. A., Dietrich, J. T., Courville, B. C., Jensen, J. L., and
Carbonneau, P. E.: Topographic structure from motion: a new development in
photogrammetric measurement, Earth Surf Process Landf, 38, 421–430,
https://doi.org/10.1002/esp.3366, 2013.
Grünewald, T., Schirmer, M., Mott, R., and Lehning, M.: Spatial and
temporal variability of snow depth and ablation rates in a small mountain
catchment, Cryosphere, 4, 215–225, https://doi.org/10.5194/tc-4-215-2010,
2010.
Harvey, M. C., Rowland, J. V., and Luketina, K. M.: Drone with thermal
infrared camera provides high resolution georeferenced imagery of the
Waikite geothermal area, New Zealand, Journal of Volcanology and Geothermal
Research, 325, 61–69, https://doi.org/10.1016/J.JVOLGEORES.2016.06.014,
2016.
Hermes, A. L., Wainwright, H. M., Wigmore, O. H., Falco, N., Molotch, N.,
and Hinckley, E.-L. S.: From patch to catchment: A statistical framework to
identify and map soil moisture patterns across complex alpine terrain,
Front. Water, 2, 48, https://doi.org/10.3389/FRWA.2020.578602, 2020.
Hoffmann, H., Müller, S., and Friborg, T.: Using an unmanned aerial
vehicle (UAV) and a thermal infrared camera to estimate temperature
differences on a lake surface, revealing incoming groundwater seepage, in:
EGU General Assembly Conference Abstracts, 6234,
https://doi.org/10.13140/RG.2.1.4596.1840, 2014.
Hunt, E. R. and Daughtry, C. S. T.: What good are unmanned aircraft systems
for agricultural remote sensing and precision agriculture?, Int. J. Remote
Sens., 39, 5345–5376, https://doi.org/10.1080/01431161.2017.1410300, 2018.
Ives, J. D., Messerli, B., and Spiess, E.: Mountains of the world: A global
priority, in: Mountains of the World: A Global Priority, edited by:
Messerli, B. and Ives, J. D., The Parthenon Publishing Group Inc., Pearl
River, New York, 1, 1997.
James, M. R. and Robson, S.: Mitigating systematic error in topographic
models derived from UAV and ground-based image networks, Earth Surf. Process.
Landf., 39, 1413–1420, https://doi.org/10.1002/esp.3609, 2014.
Kelly, J., Kljun, N., Olsson, P.-O., Mihai, L., Liljeblad, B., Weslien, P.,
Klemedtsson, L., and Eklundh, L.: Challenges and Best Practices for Deriving
Temperature Data from an Uncalibrated UAV Thermal Infrared Camera, Remote
Sens.-Basel, 11, 567, https://doi.org/10.3390/rs11050567, 2019.
Kraaijenbrink, P., Shea, J. M., Litt, M., Steiner, J. F., Treichler, D.,
Koch, I., and Immerzeel, W. W.: Mapping surface temperatures on a
debris-covered glacier with an unmanned aerial vehicle, Front. Earth Sci.-Lausanne, 6, https://doi.org/10.3389/feart.2018.00064, 2018.
Larson, K.: GPS Soil Moisture Network – NWOT-Niwot Ridge P.S.,
https://doi.org/10.7283/T5VQ30RT, 2009.
Lee, E., Yoon, H., Hyun, S. P., Burnett, W. C., Koh, D.-C., Ha, K., Kim, D.,
Kim, Y., and Kang, K.: Unmanned aerial vehicles (UAVs)-based thermal
infrared (TIR) mapping, a novel approach to assess groundwater discharge
into the coastal zone, Limnol. Oceanogr. Methods, 14, 725–735,
https://doi.org/10.1002/lom3.10132, 2016.
Li, D., Wigmore, O., Durand, M. M. T., Vander-Jagt, B., Margulis, S. A. S.
A., Molotch, N. P. N., and Bales, R. R. C.: Potential of balloon
photogrammetry for spatially continuous snow depth measurements, IEEE
Geosci. Remote Sens. Lett., 17, 1667–1671,
https://doi.org/10.1109/LGRS.2019.2953481, 2020.
Litaor, M. I., Williams, M., and Seastedt, T. R.: Topographic controls on
snow distribution, soil moisture, and species diversity of herbaceous alpine
vegetation, Niwot Ridge, Colorado, J. Geophys. Res.-Biogeo., 113, 2008,
https://doi.org/10.1029/2007JG000419, 2008.
May, D. E. and Webber, P. J.: Spatial and temporal variation of the
vegetation and its productivity, Niwot Ridge, Colorado, 1982.
Pape, R., Wundram, D., and Löffler, J.: Modelling near-surface
temperature conditions in high mountain environments: an appraisal, Clim.
Res., 39, 99–109, https://doi.org/10.3354/cr00795, 2009.
Pestana, S., Chickadel, C. C., Harpold, A., Kostadinov, T. S., Pai, H.,
Tyler, S., Webster, C., and Lundquist, J. D.: Bias Correction of Airborne
Thermal Infrared Observations Over Forests Using Melting Snow, Water Resour.
Res., 55, 11331–11343, https://doi.org/10.1029/2019WR025699, 2019.
Poirier, N., Hautefeuille, F., and Calastrenc, C.: Low altitude thermal
survey by means of an automated unmanned aerial vehicle for the detection of
archaeological buried structures, Archaeol. Prospect, 20, 303–307,
https://doi.org/10.1002/arp.1454, 2013.
TeAx: Extended Value: External Shutter for FLIR Vue Pro R – Increased
temperature accuracy by up to 70 %,
https://thermalcapture.com/extended-value-external-shutter-for-flir-vue-pro-r/,
last access: 10 December 2019.
Tonkin, T. N. and Midgley, N. G.: Ground-control networks for image based
surface reconstruction: An investigation of optimum survey designs using UAV
derived imagery and structure-from-motion photogrammetry, Remote Sens.-Basel, 8, 16–19, https://doi.org/10.3390/rs8090786, 2016.
Torres-Rua, A.: Vicarious calibration of sUAS microbolometer temperature
imagery for estimation of radiometric land surface temperature, Sensors, 17, 1499, https://doi.org/10.3390/s17071499, 2017.
Trujillo, E., Ramírez, J. A., and Elder, K. J.: Topographic,
meteorologic, and canopy controls on the scaling characteristics of the
spatial distribution of snow depth fields, Water Resour. Res., 43, W07409,
https://doi.org/10.1029/2006WR005317, 2007.
Trujillo, E., Molotch, N. P., Goulden, M. L., Kelly, A. E., and Bales, R.
C.: Elevation-dependent influence of snow accumulation on forest greening,
Nat. Geosci., 5, 705–709, https://doi.org/10.1038/ngeo1571, 2012.
vander Jagt, B., Lucieer, A., Wallace, L., Turner, D., and Durand, M.: Snow
Depth Retrieval with UAS Using Photogrammetric Techniques, Geosciences-Basel, 5, 264–285, https://doi.org/10.3390/geosciences5030264, 2015.
Verhoeven, G.: Taking computer vision aloft – archaeological
three-dimensional reconstructions from aerial photographs with photoscan, Archaeol. Prospect., 18, 67–73,
https://doi.org/10.1002/arp.399, 2011.
Vivoni, E. R., Rango, A., Anderson, C. A., Pierini, N. A., Schreiner-McGraw,
A. P., Saripalli, S., and Laliberte, A. S.: Ecohydrology with unmanned
aerial vehicles, Ecosphere, 5, art130, https://doi.org/10.1890/ES14-00217.1,
2014.
Walker, M. D., Walker, D. A., Theodose, T. A., and Webber, P. J.: The
vegetation: hierarchical species-environment relationships, in: Alpine
Ecosystem: Niwot Ridge, Colorado, edited by: Bowman, W. D. and Seastedt, T.
R., Oxford University Press, Incorporated, 99–127, 2001.
Watts, A. C., Ambrosia, V. G., and Hinkley, E. A.: Unmanned aircraft systems
in remote sensing and scientific research: Classification and considerations
of use, Remote Sens.-Basel, 4, 1671–1692,
https://doi.org/10.3390/rs4061671, 2012.
Wieder, W. R., Knowles, J. F., Blanken, P. D., Swenson, S. C., and Suding,
K. N.: Ecosystem function in complex mountain terrain: Combining models and
long-term observations to advance process-based understanding, J. Geophys. Res.-Biogeo., 122, 825–845, https://doi.org/10.1002/2016JG003704, 2017.
Wigmore, O.: Calibrated Red/Near Infrared orthomosaic imagery from UAV
campaign at Niwot Ridge, 2017. ver 1., Environmental Data Initiative [data set],
https://doi.org/10.6073/pasta/dadd5c2e4a65c781c2371643f7ff9dc4,
2022a.
Wigmore, O.: Drones over Niwot, YouTube [video], https://www.youtube.com/watch?v=5FxboPSCbW4&t=2s (last access: 10 April 2023), 2022b.
Wigmore, O.: Uncalibrated RGB orthomosaic imagery from UAV campaign at Niwot
Ridge, 2017. ver 1., Environmental Data Initiative [data set],
https://doi.org/10.6073/pasta/073a5a67ddba08ba3a24fe85c5154da7,
2022c.
Wigmore, O. and Mark, B.: Monitoring tropical debris-covered glacier dynamics from high-resolution unmanned aerial vehicle photogrammetry, Cordillera Blanca, Peru, The Cryosphere, 11, 2463–2480, https://doi.org/10.5194/tc-11-2463-2017, 2017.
Wigmore, O. and Mark, B.: High altitude kite mapping: evaluation of kite
aerial photography (KAP) and structure from motion digital elevation models
in the Peruvian Andes, Int. J. Remote Sens., 39, 4995–5015,
https://doi.org/10.1080/01431161.2017.1387312, 2018.
Wigmore, O. and Niwot Ridge LTER: 5 cm multispectral imagery from UAV
campaign at Niwot Ridge, 2017 ver 1., Environmental Data Initiative [data set],
https://doi.org/10.6073/pasta/a4f57c82ad274aa2640e0a79649290ca,
2021a.
Wigmore, O. and Niwot Ridge LTER: 25 cm NDVI data from UAV campaign at Niwot
Ridge Saddle Catchment, 2017 ver 1., Environmental Data Initiative [data set],
https://doi.org/10.6073/pasta/444a7923deebc4b660436e76ffa3130c,
2021b.
Wigmore, O. and Niwot Ridge LTER: Photogrammetric Point Cloud and DSM from UAV campaign at Niwot Ridge, 2017. ver 2, Environmental Data Initiative [data set], https://doi.org/10.6073/pasta/1289b3b41a46284d2a1c42f1b08b3807, 2022a.
Wigmore, O. and Niwot Ridge LTER: Surface temperature mapped from thermal
infrared survey from UAV campaign at Niwot Ridge, 2017. ver 2.,
Environmental Data Initiative [data set],
https://doi.org/10.6073/pasta/70518d55a8d6ec95f04f2d8a0920b7b8,
2022b.
Wigmore, O., Mark, B., McKenzie, J., Baraer, M., and Lautz, L.: Sub-metre
mapping of surface soil moisture in proglacial valleys of the tropical Andes
using a multispectral unmanned aerial vehicle, Remote Sens. Environ., 222,
104–118, https://doi.org/10.1016/j.rse.2018.12.024, 2019.
Zhang, C. and Kovacs, J. M.: The application of small unmanned aerial
systems for precision agriculture: A review, Precis. Agric., 13, 693–712,
https://doi.org/10.1007/s11119-012-9274-5, 2012.
Short summary
We flew a custom-built drone fitted with visible, near-infrared and thermal cameras every week over a summer season at Niwot Ridge in Colorado's alpine tundra. We processed these images into seamless orthomosaics that record changes in snow cover, vegetation health and the movement of water over the land surface. These novel datasets provide a unique centimetre resolution snapshot of ecohydrologic processes, connectivity and spatial and temporal heterogeneity in the alpine zone.
We flew a custom-built drone fitted with visible, near-infrared and thermal cameras every week...
Altmetrics
Final-revised paper
Preprint