Articles | Volume 14, issue 10
https://doi.org/10.5194/essd-14-4505-2022
https://doi.org/10.5194/essd-14-4505-2022
Data description paper
 | 
12 Oct 2022
Data description paper |  | 12 Oct 2022

GLOBMAP SWF: a global annual surface water cover frequency dataset during 2000–2020

Yang Liu, Ronggao Liu, and Rong Shang

Related authors

Separating overstory and understory leaf area indices for global needleleaf and deciduous broadleaf forests by fusion of MODIS and MISR data
Yang Liu, Ronggao Liu, Jan Pisek, and Jing M. Chen
Biogeosciences, 14, 1093–1110, https://doi.org/10.5194/bg-14-1093-2017,https://doi.org/10.5194/bg-14-1093-2017, 2017
Short summary

Related subject area

Domain: ESSD – Land | Subject: Hydrology
Lake-TopoCat: a global lake drainage topology and catchment database
Md Safat Sikder, Jida Wang, George H. Allen, Yongwei Sheng, Dai Yamazaki, Chunqiao Song, Meng Ding, Jean-François Crétaux, and Tamlin M. Pavelsky
Earth Syst. Sci. Data, 15, 3483–3511, https://doi.org/10.5194/essd-15-3483-2023,https://doi.org/10.5194/essd-15-3483-2023, 2023
Short summary
Three years of soil moisture observations by a dense cosmic-ray neutron sensing cluster at an agricultural research site in north-east Germany
Maik Heistermann, Till Francke, Lena Scheiffele, Katya Dimitrova Petrova, Christian Budach, Martin Schrön, Benjamin Trost, Daniel Rasche, Andreas Güntner, Veronika Döpper, Michael Förster, Markus Köhli, Lisa Angermann, Nikolaos Antonoglou, Manuela Zude-Sasse, and Sascha E. Oswald
Earth Syst. Sci. Data, 15, 3243–3262, https://doi.org/10.5194/essd-15-3243-2023,https://doi.org/10.5194/essd-15-3243-2023, 2023
Short summary
A long-term monthly surface water storage dataset for the Congo basin from 1992 to 2015
Benjamin M. Kitambo, Fabrice Papa, Adrien Paris, Raphael M. Tshimanga, Frederic Frappart, Stephane Calmant, Omid Elmi, Ayan Santos Fleischmann, Melanie Becker, Mohammad J. Tourian, Rômulo A. Jucá Oliveira, and Sly Wongchuig
Earth Syst. Sci. Data, 15, 2957–2982, https://doi.org/10.5194/essd-15-2957-2023,https://doi.org/10.5194/essd-15-2957-2023, 2023
Short summary
A global database of historic glacier lake outburst floods
Natalie Lützow, Georg Veh, and Oliver Korup
Earth Syst. Sci. Data, 15, 2983–3000, https://doi.org/10.5194/essd-15-2983-2023,https://doi.org/10.5194/essd-15-2983-2023, 2023
Short summary
Past and future discharge and stream temperature at high spatial resolution in a large European basin (Loire basin, France)
Hanieh Seyedhashemi, Florentina Moatar, Jean-Philippe Vidal, and Dominique Thiéry
Earth Syst. Sci. Data, 15, 2827–2839, https://doi.org/10.5194/essd-15-2827-2023,https://doi.org/10.5194/essd-15-2827-2023, 2023
Short summary

Cited articles

Al Bitar, A., Parrens, M., Fatras, C., Luque, S. P., and Ieee: Global weekly inland surface water dynamics from L-band microwave, IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Electr Network, 26 September–2 October 2020, WOS:000664335304223, 5089–5092, https://doi.org/10.1109/igarss39084.2020.9324291, 2020. 
Berghuijs, W. R., Woods, R. A., and Hrachowitz, M.: A precipitation shift from snow towards rain leads to a decrease in streamflow, Nat. Clim. Change, 4, 583–586, https://doi.org/10.1038/nclimate2246, 2014. 
Bioresita, F., Puissant, A., Stumpf, A., and Malet, J. P.: A Method for Automatic and Rapid Mapping of Water Surfaces from Sentinel-1 Imagery, Remote Sens., 10, 217, https://doi.org/10.3390/rs10020217, 2018. 
Carroll, M. L., Townshend, J. R. G., DiMiceli, C. M., Loboda, T., and Sohlberg, R. A.: Shrinking lakes of the Arctic: Spatial relationships and trajectory of change, Geophys. Res. Lett., 38, L20406, https://doi.org/10.1029/2011gl049427, 2011. 
Feng, L., Hu, C. M., Chen, X. L., Cai, X. B., Tian, L. Q., and Gan, W. X.: Assessment of inundation changes of Poyang Lake using MODIS observations between 2000 and 2010, Remote Sens. Environ., 121, 80–92, https://doi.org/10.1016/j.rse.2012.01.014, 2012. 
Download
Short summary
Surface water has been changing significantly with high seasonal variation and abrupt change, making it hard to capture its interannual trend. Here we generated a global annual surface water cover frequency dataset during 2000–2020. The percentage of the time period when a pixel is covered by water in a year was estimated to describe the seasonal dynamics of surface water. This dataset can be used to analyze the interannual variation and change trend of highly dynamic inland water extent.