Articles | Volume 14, issue 10
https://doi.org/10.5194/essd-14-4505-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/essd-14-4505-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
GLOBMAP SWF: a global annual surface water cover frequency dataset during 2000–2020
Yang Liu
State Key Laboratory of Resources and Environmental Information
System, Institute of Geographic Sciences and Natural Resources Research,
CAS, Beijing, 100101, China
Ronggao Liu
CORRESPONDING AUTHOR
State Key Laboratory of Resources and Environmental Information
System, Institute of Geographic Sciences and Natural Resources Research,
CAS, Beijing, 100101, China
Rong Shang
Key Laboratory for Humid Subtropical Eco-geographical Processes of the
Ministry of Education, School of Geographical Sciences, Fujian Normal
University, Fuzhou, 350007, China
Related authors
Jiaying He, Xin Zou, Weihan Zhang, Quan Duan, Ronggao Liu, Yang Liu, Jinwei Dong, Chaoyang Wu, Wei Li, and Chao Wu
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-733, https://doi.org/10.5194/essd-2025-733, 2025
Preprint under review for ESSD
Short summary
Short summary
This study presents a 30 m global product individual forest fires from 1984–2022, derived from the full Landsat archive on Google Earth Engine. This product maps a total of 11.97 million fire patches burning 7.3 Mha yr−1 on average. This dataset provides a valuable resource for characterizing the long-term impacts and evolving regimes of global forest fires, which is essential for effective forest management and climate policy.
Jiaying He, Xin Zou, Weihan Zhang, Quan Duan, Ronggao Liu, Yang Liu, Jinwei Dong, Chaoyang Wu, Wei Li, and Chao Wu
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-733, https://doi.org/10.5194/essd-2025-733, 2025
Preprint under review for ESSD
Short summary
Short summary
This study presents a 30 m global product individual forest fires from 1984–2022, derived from the full Landsat archive on Google Earth Engine. This product maps a total of 11.97 million fire patches burning 7.3 Mha yr−1 on average. This dataset provides a valuable resource for characterizing the long-term impacts and evolving regimes of global forest fires, which is essential for effective forest management and climate policy.
Peng Li, Rong Shang, Jing M. Chen, Huiguang Zhang, Xiaoping Zhang, Guoshuai Zhao, Hong Yan, Jun Xiao, Xudong Lin, Lingyun Fan, Rong Wang, Jianjie Cao, and Hongda Zeng
Biogeosciences, 22, 5705–5721, https://doi.org/10.5194/bg-22-5705-2025, https://doi.org/10.5194/bg-22-5705-2025, 2025
Short summary
Short summary
This study explored species-specific relationships between net primary productivity and forest age for seven forest species in subtropical China based on field data using the Semi-Empirical Model. Compared to nationwide relationships, these species-specific relationships improved simulations of aboveground biomass when using the process-based model. Our findings suggest that these species-specific relationships are crucial for accurate forest carbon modeling and management in subtropical China.
Rong Shang, Xudong Lin, Jing M. Chen, Yunjian Liang, Keyan Fang, Mingzhu Xu, Yulin Yan, Weimin Ju, Guirui Yu, Nianpeng He, Li Xu, Liangyun Liu, Jing Li, Wang Li, Jun Zhai, and Zhongmin Hu
Earth Syst. Sci. Data, 17, 3219–3241, https://doi.org/10.5194/essd-17-3219-2025, https://doi.org/10.5194/essd-17-3219-2025, 2025
Short summary
Short summary
Forest age is critical for carbon cycle modeling and effective forest management. Existing datasets, however, have low spatial resolutions or limited temporal coverage. This study introduces China's annual forest age dataset (CAFA), spanning 1986–2022 at a 30 m resolution. By tracking forest disturbances, we annually update ages. Validation shows small errors for disturbed forests and larger errors for undisturbed forests. CAFA can enhance carbon cycle modeling and forest management in China.
Peng Li, Rong Shang, Jing M. Chen, Mingzhu Xu, Xudong Lin, Guirui Yu, Nianpeng He, and Li Xu
Biogeosciences, 21, 625–639, https://doi.org/10.5194/bg-21-625-2024, https://doi.org/10.5194/bg-21-625-2024, 2024
Short summary
Short summary
The amount of carbon that forests gain from the atmosphere, called net primary productivity (NPP), changes a lot with age. These forest NPP–age relationships could be modeled from field survey data, but we are not sure which model works best. Here we tested five different models using 3121 field survey samples in China, and the semi-empirical mathematical (SEM) function was determined as the optimal. The relationships built by SEM can improve China's forest carbon modeling and prediction.
Cited articles
Al Bitar, A., Parrens, M., Fatras, C., Luque, S. P., and Ieee: Global weekly inland surface water dynamics from L-band microwave, IEEE International
Geoscience and Remote Sensing Symposium (IGARSS), Electr Network, 26 September–2 October 2020, WOS:000664335304223, 5089–5092, https://doi.org/10.1109/igarss39084.2020.9324291, 2020.
Berghuijs, W. R., Woods, R. A., and Hrachowitz, M.: A precipitation shift
from snow towards rain leads to a decrease in streamflow, Nat. Clim. Change,
4, 583–586, https://doi.org/10.1038/nclimate2246, 2014.
Bioresita, F., Puissant, A., Stumpf, A., and Malet, J. P.: A Method for
Automatic and Rapid Mapping of Water Surfaces from Sentinel-1 Imagery,
Remote Sens., 10, 217, https://doi.org/10.3390/rs10020217, 2018.
Carroll, M. L., Townshend, J. R. G., DiMiceli, C. M., Loboda, T., and
Sohlberg, R. A.: Shrinking lakes of the Arctic: Spatial relationships and
trajectory of change, Geophys. Res. Lett., 38, L20406, https://doi.org/10.1029/2011gl049427, 2011.
Feng, L., Hu, C. M., Chen, X. L., Cai, X. B., Tian, L. Q., and Gan, W. X.:
Assessment of inundation changes of Poyang Lake using MODIS observations
between 2000 and 2010, Remote Sens. Environ., 121, 80–92,
https://doi.org/10.1016/j.rse.2012.01.014, 2012.
Feng, M., Sexton, J. O., Channan, S., and Townshend, J. R.: A global,
high-resolution (30-m) inland water body dataset for 2000: first results of
a topographic-spectral classification algorithm, Int. J. Digit. Earth, 9,
113–133, https://doi.org/10.1080/17538947.2015.1026420, 2016.
Han, Q. Q. and Niu, Z. G.: Construction of the Long-Term Global Surface
Water Extent Dataset Based on Water-NDVI Spatio-Temporal Parameter Set,
Remote Sens., 12, 2675, https://doi.org/10.3390/rs12172675, 2020.
Han, X. X., Chen, X. L., and Feng, L.: Four decades of winter wetland
changes in Poyang Lake based on Landsat observations between 1973 and 2013,
Remote Sens. Environ., 156, 426–437, https://doi.org/10.1016/j.rse.2014.10.003, 2015.
Ji, L. Y., Gong, P., Wang, J., Shi, J. C., and Zhu, Z. L.: Construction of
the 500-m Resolution Daily Global Surface Water Change Database (2001–2016),
Water Resour. Res., 54, 10270–10292, https://doi.org/10.1029/2018wr023060, 2018.
Karlsson, J., Serikova, S., Vorobyev, S. N., Rocher-Ros, G., Denfeld, B.,
and Pokrovsky, O. S.: Carbon emission from Western Siberian inland waters,
Nat. Commun., 12, 825, https://doi.org/10.1038/s41467-021-21054-1, 2021.
Khandelwal, A., Karpatne, A., Marlier, M. E., Kim, J., Lettenmaier, D. P.,
and Kumar, V.: An approach for global monitoring of surface water extent
variations in reservoirs using MODIS data, Remote Sens. Environ., 202,
113–128, https://doi.org/10.1016/j.rse.2017.05.039, 2017.
Klein, I., Gessner, U., Dietz, A. J., and Kuenzer, C.: Global WaterPack – A
250 m resolution dataset revealing the daily dynamics of global inland water
bodies, Remote Sens. Environ., 198, 345–362, https://doi.org/10.1016/j.rse.2017.06.045,
2017.
Konapala, G., Mishra, A. K., Wada, Y., and Mann, M. E.: Climate change will
affect global water availability through compounding changes in seasonal
precipitation and evaporation, Nat. Commun., 11, 3044, https://doi.org/10.1038/s41467-020-16757-w,
2020.
Li, Y., Niu, Z. G., Xu, Z. Y., and Yan, X.: Construction of High
Spatial-Temporal Water Body Dataset in China Based on Sentinel-1 Archives
and GEE, Remote Sens., 12, 2413, https://doi.org/10.3390/rs12152413, 2020.
Li, Y., Zhao, G., Shah, D., Zhao, M. S., Sarkar, S., Devadiga, S., Zhao, B.
J., Zhang, S., and Gao, H. L.: NASA's MODIS/VIIRS Global Water Reservoir
Product Suite from Moderate Resolution Remote Sensing Data, Remote Sens.,
13, 565, https://doi.org/10.3390/rs13040565, 2021.
Liao, A. P., Chen, L. J., Chen, J., He, C. Y., Cao, X., Chen, J., Peng, S.,
Sun, F. D., and Gong, P.: High-resolution remote sensing mapping of global
land water, Sci. China Earth Sci., 57, 2305–2316, https://doi.org/10.1007/s11430-014-4918-0,
2014.
Liu, J. Y., Kuang, W. H., Zhang, Z. X., Xu, X. L., Qin, Y. W., Ning, J.,
Zhou, W. C., Zhang, S. W., Li, R. D., Yan, C. Z., Wu, S. X., Shi, X. Z.,
Jiang, N., Yu, D. S., Pan, X. Z., and Chi, W. F.: Spatiotemporal
characteristics, patterns, and causes of land-use changes in China since the
late 1980s, J. Geogr. Sci., 24, 195–210, https://doi.org/10.1007/s11442-014-1082-6, 2014.
Liu, R. G. and Liu, Y.: GLOBMAP SWF: a global annual surface water cover
frequency dataset since 2000 for change analysis of inland water bodies
(Version 1.0), Zenodo [data set], https://doi.org/10.5281/zenodo.6462883,
2022.
Lu, S., Ma, J., Ma, X., Tang, H., Zhao, H., and Baig, M. H. A.: Time series of Inland Surface Water Dataset in China (ISWDC) (2.0), Zenodo [data set], https://doi.org/10.5281/zenodo.2616035, 2019a.
Lu, S., Ma, J., Ma, X., Tang, H., Zhao, H., and Baig, M. H. A.: Time series of the Inland Surface Water Dataset in China (ISWDC) for 2000–2016 derived from MODIS archives, Earth Syst. Sci. Data, 11, 1099–1108, https://doi.org/10.5194/essd-11-1099-2019, 2019b.
Lutz, A. F., Immerzeel, W. W., Shrestha, A. B., and Bierkens, M. F. P.:
Consistent increase in High Asia's runoff due to increasing glacier melt and
precipitation, Nat. Clim. Change, 4, 587–592, https://doi.org/10.1038/nclimate2237, 2014.
McFeeters, S. K.: The use of the normalized difference water index (NDWI) in
the delineation of open water features, Int. J. Remote Sens., 17, 1425–1432,
https://doi.org/10.1080/01431169608948714, 1996.
Miara, A., Macknick, J. E., Vorosmarty, C. J., Tidwell, V. C., Newmark, R.,
and Fekete, B.: Climate and water resource change impacts and adaptation
potential for US power supply, Nat. Clim. Change, 7, 793,
https://doi.org/10.1038/nclimate3417, 2017.
Otsu, N. A.: Threshold Selection Method from Gray-Level Histograms, IEEE
Trans. Syst. Man Cybern., 9, 62–66, 1979.
Padron, R. S., Gudmundsson, L., Decharme, B., Ducharne, A., Lawrence, D. M.,
Mao, J. F., Peano, D., Krinner, G., Kim, H., and Seneviratne, S. I.:
Observed changes in dry-season water availability attributed to
human-induced climate change, Nat. Geosci., 13, 477,
https://doi.org/10.1038/s41561-020-0594-1, 2020.
Papa, F., Prigent, C., Aires, F., Jimenez, C., Rossow, W. B., and Matthews,
E.: Interannual variability of surface water extent at the global scale,
1993–2004, J. Geophys. Res.-Atmos., 115, D12111, https://doi.org/10.1029/2009jd012674, 2010.
Pekel, J. F., Cottam, A., Gorelick, N., and Belward, A. S.: High-resolution
mapping of global surface water and its long-term changes, Nature, 540,
418, https://doi.org/10.1038/nature20584, 2016.
Pickens, A. H., Hansen, M. C., Hancher, M., Stehman, S. V., Tyukavina, A.,
Potapov, P., Marroquin, B., and Sherani, Z.: Mapping and sampling to
characterize global inland water dynamics from 1999 to 2018 with full
Landsat time-series, Remote Sens. Environ., 243, 111792, https://doi.org/10.1016/j.rse.2020.111792,
2020.
Prigent, C., Papa, F., Aires, F., Rossow, W. B., and Matthews, E.: Global
inundation dynamics inferred from multiple satellite observations,
1993–2000, J. Geophys. Res.-Atmos., 112, D12107, https://doi.org/10.1029/2006jd007847, 2007.
Prigent, C., Jimenez, C., and Bousquet, P.: Satellite-Derived Global Surface
Water Extent and Dynamics over the Last 25 Years (GIEMS-2), J. Geophys. Res.-Atmos., 125, e2019JD030711, https://doi.org/10.1029/2019jd030711, 2020.
Ran, L. S., Butman, D. E., Battin, T. J., Yang, X. K., Tian, M. Y., Duvert,
C., Hartmann, J., Geeraert, N., and Liu, S. D.: Substantial decrease in CO2
emissions from Chinese inland waters due to global change, Nat. Commun., 12, 1730,
https://doi.org/10.1038/s41467-021-21926-6, 2021.
Tao, S. L., Fang, J. Y., Zhao, X., Zhao, S. Q., Shen, H. H., Hu, H. F.,
Tang, Z. Y., Wang, Z. H., and Guo, Q. H.: Rapid loss of lakes on the
Mongolian Plateau, P. Natl. Acad. Sci. USA, 112, 2281–2286,
https://doi.org/10.1073/pnas.1411748112, 2015.
Tortini, R., Noujdina, N., Yeo, S., Ricko, M., Birkett, C. M., Khandelwal, A., Kumar, V., Marlier, M. E., and Lettenmaier, D. P.: Satellite-based remote sensing data set of global surface water storage change from 1992 to 2018, Earth Syst. Sci. Data, 12, 1141–1151, https://doi.org/10.5194/essd-12-1141-2020, 2020.
Vermote, E.: MOD09A1 MODIS/Terra Surface Reflectance 8-Day L3 Global 500 m
SIN Grid V006, distributed by NASA EOSDIS Land Processes DAAC [data set],
https://doi.org/10.5067/MODIS/MOD09A1.006, 2015.
Xu, H. Q.: Modification of normalised difference water index (NDWI) to
enhance open water features in remotely sensed imagery, Int. J. Remote
Sens., 27, 3025–3033, https://doi.org/10.1080/01431160600589179, 2006.
Yamazaki, D., Trigg, M. A., and Ikeshima, D.: Development of a global
similar to 90 m water body map using multi-temporal Landsat images, Remote
Sens. Environ., 171, 337–351, https://doi.org/10.1016/j.rse.2015.10.014, 2015.
Zhang, G. Q., Yao, T. D., Piao, S. L., Bolch, T., Xie, H. J., Chen, D. L.,
Gao, Y. H., O'Reilly, C. M., Shum, C. K., Yang, K., Yi, S., Lei, Y. B.,
Wang, W. C., He, Y., Shang, K., Yang, X. K., and Zhang, H. B.: Extensive and
drastically different alpine lake changes on Asia's high plateaus during the
past four decades, Geophys. Res. Lett., 44, 252–260, https://doi.org/10.1002/2016gl072033,
2017.
Zhang, G. Q., Yao, T. D., Chen, W. F., Zheng, G. X., Shum, C. K., Yang, K.,
Piao, S. L., Sheng, Y. W., Yi, S., Li, J. L., O'Reilly, C. M., Qi, S. H.,
Shen, S. S. P., Zhang, H. B., and Jia, Y. Y.: Regional differences of lake
evolution across China during 1960s–2015 and its natural and anthropogenic
causes, Remote Sens. Environ., 221, 386–404, https://doi.org/10.1016/j.rse.2018.11.038,
2019.
Short summary
Surface water has been changing significantly with high seasonal variation and abrupt change, making it hard to capture its interannual trend. Here we generated a global annual surface water cover frequency dataset during 2000–2020. The percentage of the time period when a pixel is covered by water in a year was estimated to describe the seasonal dynamics of surface water. This dataset can be used to analyze the interannual variation and change trend of highly dynamic inland water extent.
Surface water has been changing significantly with high seasonal variation and abrupt change,...
Altmetrics
Final-revised paper
Preprint