Articles | Volume 14, issue 10
https://doi.org/10.5194/essd-14-4505-2022
https://doi.org/10.5194/essd-14-4505-2022
Data description paper
 | 
12 Oct 2022
Data description paper |  | 12 Oct 2022

GLOBMAP SWF: a global annual surface water cover frequency dataset during 2000–2020

Yang Liu, Ronggao Liu, and Rong Shang

Related authors

Separating overstory and understory leaf area indices for global needleleaf and deciduous broadleaf forests by fusion of MODIS and MISR data
Yang Liu, Ronggao Liu, Jan Pisek, and Jing M. Chen
Biogeosciences, 14, 1093–1110, https://doi.org/10.5194/bg-14-1093-2017,https://doi.org/10.5194/bg-14-1093-2017, 2017
Short summary

Related subject area

Domain: ESSD – Land | Subject: Hydrology
Lena River biogeochemistry captured by a 4.5-year high-frequency sampling program
Bennet Juhls, Anne Morgenstern, Jens Hölemann, Antje Eulenburg, Birgit Heim, Frederieke Miesner, Hendrik Grotheer, Gesine Mollenhauer, Hanno Meyer, Ephraim Erkens, Felica Yara Gehde, Sofia Antonova, Sergey Chalov, Maria Tereshina, Oxana Erina, Evgeniya Fingert, Ekaterina Abramova, Tina Sanders, Liudmila Lebedeva, Nikolai Torgovkin, Georgii Maksimov, Vasily Povazhnyi, Rafael Gonçalves-Araujo, Urban Wünsch, Antonina Chetverova, Sophie Opfergelt, and Pier Paul Overduin
Earth Syst. Sci. Data, 17, 1–28, https://doi.org/10.5194/essd-17-1-2025,https://doi.org/10.5194/essd-17-1-2025, 2025
Short summary
CAMELS-DE: hydro-meteorological time series and attributes for 1582 catchments in Germany
Ralf Loritz, Alexander Dolich, Eduardo Acuña Espinoza, Pia Ebeling, Björn Guse, Jonas Götte, Sibylle K. Hassler, Corina Hauffe, Ingo Heidbüchel, Jens Kiesel, Mirko Mälicke, Hannes Müller-Thomy, Michael Stölzle, and Larisa Tarasova
Earth Syst. Sci. Data, 16, 5625–5642, https://doi.org/10.5194/essd-16-5625-2024,https://doi.org/10.5194/essd-16-5625-2024, 2024
Short summary
Observational partitioning of water and CO2 fluxes at National Ecological Observatory Network (NEON) sites: a 5-year dataset of soil and plant components for spatial and temporal analysis
Einara Zahn and Elie Bou-Zeid
Earth Syst. Sci. Data, 16, 5603–5624, https://doi.org/10.5194/essd-16-5603-2024,https://doi.org/10.5194/essd-16-5603-2024, 2024
Short summary
CIrrMap250: annual maps of China's irrigated cropland from 2000 to 2020 developed through multisource data integration
Ling Zhang, Yanhua Xie, Xiufang Zhu, Qimin Ma, and Luca Brocca
Earth Syst. Sci. Data, 16, 5207–5226, https://doi.org/10.5194/essd-16-5207-2024,https://doi.org/10.5194/essd-16-5207-2024, 2024
Short summary
HANZE v2.1: an improved database of flood impacts in Europe from 1870 to 2020
Dominik Paprotny, Paweł Terefenko, and Jakub Śledziowski
Earth Syst. Sci. Data, 16, 5145–5170, https://doi.org/10.5194/essd-16-5145-2024,https://doi.org/10.5194/essd-16-5145-2024, 2024
Short summary

Cited articles

Al Bitar, A., Parrens, M., Fatras, C., Luque, S. P., and Ieee: Global weekly inland surface water dynamics from L-band microwave, IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Electr Network, 26 September–2 October 2020, WOS:000664335304223, 5089–5092, https://doi.org/10.1109/igarss39084.2020.9324291, 2020. 
Berghuijs, W. R., Woods, R. A., and Hrachowitz, M.: A precipitation shift from snow towards rain leads to a decrease in streamflow, Nat. Clim. Change, 4, 583–586, https://doi.org/10.1038/nclimate2246, 2014. 
Bioresita, F., Puissant, A., Stumpf, A., and Malet, J. P.: A Method for Automatic and Rapid Mapping of Water Surfaces from Sentinel-1 Imagery, Remote Sens., 10, 217, https://doi.org/10.3390/rs10020217, 2018. 
Carroll, M. L., Townshend, J. R. G., DiMiceli, C. M., Loboda, T., and Sohlberg, R. A.: Shrinking lakes of the Arctic: Spatial relationships and trajectory of change, Geophys. Res. Lett., 38, L20406, https://doi.org/10.1029/2011gl049427, 2011. 
Feng, L., Hu, C. M., Chen, X. L., Cai, X. B., Tian, L. Q., and Gan, W. X.: Assessment of inundation changes of Poyang Lake using MODIS observations between 2000 and 2010, Remote Sens. Environ., 121, 80–92, https://doi.org/10.1016/j.rse.2012.01.014, 2012. 
Download
Short summary
Surface water has been changing significantly with high seasonal variation and abrupt change, making it hard to capture its interannual trend. Here we generated a global annual surface water cover frequency dataset during 2000–2020. The percentage of the time period when a pixel is covered by water in a year was estimated to describe the seasonal dynamics of surface water. This dataset can be used to analyze the interannual variation and change trend of highly dynamic inland water extent.
Altmetrics
Final-revised paper
Preprint