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Abstract. The extent of surface water has been changing significantly due to climatic change and human activ-
ities. However, it is challenging to capture the interannual changes of inland water bodies due to their high
seasonal variation and abrupt change. In this paper, a global annual surface water cover frequency dataset
(GLOBMAP SWF) was generated from the MODIS land surface reflectance products during 2000–2020 to
describe the seasonal and interannual dynamics of surface water. Surface water cover frequency (SWF) was
proposed as the percentage of the time period when a pixel is covered by water in a year. Instead of determi-
nation of the water directly, the SWF was estimated indirectly by identifying land observations among annual
clear-sky observations to reduce the influence of clouds and variability of water bodies and surface background
characteristics, which helps to improve the applicability of the algorithm for different regions across the globe.
The generated dataset shows better performances for frozen water, saline lakes, bright surfaces and regions with
frequent cloud cover compared with the two high-frequency surface water datasets derived from MODIS data,
and it captures more intermittent surface water but may underestimate small water bodies when compared with
two high-resolution datasets derived from Landsat data. Compared with the high-resolution SWF maps extracted
from Sentinel-1 data in eight regions that cover lakes, rivers and wetlands, the R2 reaches 0.46 to 0.97, RMSE
ranges from 7.24 % to 22.62 %, and MAE is between 2.07 % and 7.15 %. In 2020, the area of global maximum
surface water extent is 3.38× 106 km2, of which the permanent surface water accounts for approximately 54 %
(1.83×106 km2), and the other 46 % is intermittent surface water (1.55×106 km2). The area of global maximum
and permanent surface water has been shrinking since 2001, with a change rate of −7577 and −4315 km2 yr−1

(p < 0.05), respectively, while the intermittent surface water with the SWF above 50 % has been expanding
(1368 km2 yr−1, p < 0.01). This dataset can be used to analyze the interannual variation and change trend of
highly dynamic inland waters extent with consideration of its seasonal variation. The GLOBMAP SWF data are
available at https://doi.org/10.5281/zenodo.6462883 (Liu and Liu, 2022).

1 Introduction

Surface water, comprised of natural lakes, rivers, reservoirs
and seasonally flooded waters, supplies water resources for
maintenance of the functions of terrestrial ecosystem and
livelihoods of human society. It plays a vital role in the
global hydrological cycle, carbon cycle and climate system

(Karlsson et al., 2021) and also provides habitats for aquatic
animals and plants. Inland waters usually show significant
interannual and seasonal variations due to seasonality and
changes of precipitation and evaporation as well as human
activities (Konapala et al., 2020). The extent of surface water
is suggested to be a sensitive indicator of climatic change and
also responds to human activities (Zhang et al., 2019). And
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the changes of surface water extent impact global hydrologi-
cal and carbon cycles and the availability of water resources,
which would affect human society and ecosystems’ sustain-
ability (Padron et al., 2020; Miara et al., 2017; Ran et al.,
2021).

Surface water has been monitored using repeated satel-
lite observations of the Earth’s surface. The extent of in-
land water bodies has been mapped with active and pas-
sive microwave observations, which can penetrate clouds and
vegetation to a certain extent. Several global surface wa-
ter datasets have been generated from microwave observa-
tions and provide monthly or weekly water cover maps at
a spatial resolution of dozens of kilometers. For example,
the Global Inundation Extent from Multi-Satellites (GIEMS)
datasets were created by fusing multiple satellite observa-
tions of passive and active microwaves along with visible
and near-infrared imagery, which describe the monthly dis-
tribution of global surface water extent at 0.25◦ resolution
(Prigent et al., 2007; Papa et al., 2010; Prigent et al., 2020).
A weekly inland water fraction dataset (Global-SWAF) was
produced at a spatial resolution of 25 km based on L-band
multi-angle and dual-polarization microwave satellite data
from the Soil Moisture Ocean Salinity (SMOS) mission over
the period of 2010 to 2019 (Al Bitar et al., 2020). In re-
cent years, with the availability of the Sentinel-1 C-band
Synthetic Aperture Radar (SAR) data, a few regional 10 m
resolution water body datasets have been developed, such
as the High Spatial-Temporal Water Body dataset in China
(HSWDC) during 2016–2018 (Li et al., 2020). But these
high-resolution datasets can only cover the period since the
launch of Sentinel-1.

Surface water was also mapped with optical satellite data,
which can provide long-term observations of the Earth’s sur-
face at tens to hundreds of meters’ resolution. Several global
30 m resolution surface water datasets have been generated
from optical high-resolution satellite data, such as Landsat
(e.g., Liao et al., 2014; Pekel et al., 2016; Feng et al., 2016;
Pickens et al., 2020). These datasets can describe the detailed
spatial distribution of inland water bodies, usually the maxi-
mum surface water extent during the observing period. Sur-
face water generally shows remarkable seasonal and inter-
annual variations and may fluctuate abruptly during a short
period due to rainfall or reservoir constructions (Berghuijs
et al., 2014; Lutz et al., 2014; Pickens et al., 2020). The
approaches based on high-spatial-resolution optical images
only provide a limited number of the snapshots of water
cover and their average change rate of area over a specific pe-
riod of several years. The sparse temporal sampling of these
satellites makes it difficult for them to capture interannual
and seasonal variations of inland waters, even misrepresented
by the abrupt fluctuation of water cover.

The Moderate Resolution Imaging Spectroradiometer
(MODIS) carried on the Terra and Aqua satellites, with its
daily revisiting period, provides a powerful tool to capture
the dynamics of surface water. Several global and regional

high-frequency surface water products have been generated
using MODIS data. Daily global datasets of inland water
bodies were generated at 250–500 m resolution (Klein et al.,
2017; Ji et al., 2018), and 8 d datasets were also created at
250 m resolution at global (Han and Niu, 2020) and regional
(Lu et al., 2019b) scales. Several datasets for reservoirs and
large lakes were also produced from MODIS observations
at 8 d temporal and 250–500 m spatial resolution (Khandel-
wal et al., 2017; Tortini et al., 2020; Li et al., 2021). These
high-frequency datasets generally directly identify water pix-
els for each daily or multi-day composite satellite scene us-
ing the following steps. The satellite observation is usually
preprocessed to exclude the effects of cloud, ice/snow and
shadow. Then, the water pixels are identified for clear-sky
observations using threshold or classification methods based
on reflectance on the visible, near-infrared (NIR), and short-
wave infrared (SWIR) bands and spectral indices. Finally, the
missing data from clouds and other contaminations are usu-
ally filled using temporal interpolation to generate a gap-free
time series of inland waters. The high-frequency datasets can
capture the seasonal variation and short-term fluctuation of
surface water extent with their daily or 8 d time-series maps.
However, since the timing of precipitation and human activ-
ity (such as reservoir impoundment and drainage) may shift
among years, it would be incomparable for the snapshot of
surface water even acquired on the same day of the year
(DOY), which would conceal the real change trend when
directly using these high-frequency datasets. Additionally,
clouds and variable characteristics of the water body and
surface background may affect the performance of the wa-
ter mapping algorithm, making it challenging to accurately
extract surface water cover at a global scale. For example,
special water bodies, such as frozen water and saline lakes,
may show different spectral characteristics compared with
those of pure water and reduce the applicability of the al-
gorithm, and it is difficult to accurately identify all clouds
and snow/ice pixels, which would introduce uncertainties to
the estimation results.

In this paper, a global annual surface water cover fre-
quency dataset (GLOBMAP SWF) was generated from
MODIS land surface reflectance data with a resolution of
500 m from 2000 to 2020. The seasonal variation of surface
water was simplified to the percentage of the time period
when a pixel is covered by water in a year (surface water
cover frequency, SWF) to characterize the seasonal and in-
terannual dynamics of surface water. The SWF transforms a
discrete variable (water or land) into a continuous variable
that can describe the distribution and life cycle of intermit-
tent surface water. It can help to avoid the interannual mis-
match issue mentioned above by excluding the influence of
different occurrence periods of water cover. The SWF was
estimated from MODIS observations annually. The estima-
tion results were compared with two high-frequency surface
water products derived from MODIS and two high-spatial-
resolution products derived from Landsat and validated with
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the SWF maps derived from Sentinel-1 SAR data. Several
examples were also provided to demonstrate its application
for the characterization of seasonal and interannual dynamics
of inland water bodies.

2 Datasets

2.1 MODIS land surface reflectance products for
surface water extraction

The MOD09A1 land surface reflectance product (Version 6)
(https://search.earthdata.nasa.gov/, last access: 20 Novem-
ber 2021) was used to generate the SWF dataset. This prod-
uct contains the atmospherically corrected surface spectral
reflectance of MODIS 1–7 bands, including three visible
bands (red, blue and green), one NIR band and three SWIR
bands (1.2, 1.6 and 2.1 µm) (Vermote, 2015). The 8 d com-
posited surface reflectance with low view angle and absence
of clouds or cloud shadows and aerosol loading if available
are provided at 500 m resolution in the sinusoidal projection.
The red, NIR and SWIR bands are sensitive to the boundaries
and properties of water, land, cloud and aerosols. Here, the
reflectance of MODIS Band 1 (red, 0.620–0.670 µm), Band 2
(NIR, 0.841–0.876 µm) and Band 7 (SWIR, 2.105–2.155 µm)
bands was utilized to estimate the SWF. Among them, the red
and SWIR bands were used to determine land observations,
and the NIR band was used to extract the annual maximum
surface water extent and distinguish water from cloud and
ice/snow.

2.2 Digital elevation model for mountain shadow
exclusion

The digital elevation model (DEM) of the U.S. Ge-
ological Survey (USGS) Global 30-Arc-Second Eleva-
tion (GTOPO30) (https://earthexplorer.usgs.gov/, last access:
20 October 2021) was used to exclude mountain shadow
in the extraction of the annual maximum surface water ex-
tent. This product provides a DEM of the entire Earth’s sur-
face with geographic coordinates and horizontal datum of
WGS84 in a resolution of 30 arcsec (approximately 900 m).
The elevation data were derived from eight sources of to-
pographic information, including Digital Terrain Elevation
Data, Digital Chart of the World, USGS 1◦ DEMs, Army
Map Service 1 : 1000000-scale maps, International Map of
the World 1 : 1000 000-scale maps, Peru 1 : 1000000-scale
map, New Zealand DEM and Antarctic Digital Database.
The elevation data were transferred to the sinusoidal pro-
jection to be consistent with that of MODIS land surface
reflectance data and used to calculate the terrain slope for
mountain shadow exclusion.

2.3 Surface water datasets for comparison

Two high-frequency surface water datasets derived from
MODIS data and two high-resolution datasets derived from
Landsat data were employed for comparison purposes, in-
cluding the global surface water change database from Ji et
al. (2018) (hereafter referred to as GSWCD) and Inland Sur-
face Water Dataset in China (ISWDC) (Lu et al., 2019b),
Global Surface Water dataset (GSW) from Pekel et al. (2016)
and the global inland water dataset derived by the Global
Land Analysis and Discovery laboratory (hereafter referred
to as GLAD) (Pickens et al., 2020).

The GSWCD provides global daily water maps at 500 m
resolution during 2001–2016 derived from the MODIS
daily reflectance time series (http://data.ess.tsinghua.edu.cn/
modis_500_2001_2016_waterbody.html, last access: 12 Jan-
uary 2022). Water was identified on each single-date re-
flectance image with the assumption that reflectance of wa-
ter at the visible bands should be higher than at the SWIR
bands, as well as thresholds of reflectance in visible and
SWIR bands. For those pixels with low reflectance in visible
bands, the spectral property assumption may not be exhib-
ited, thresholds of visible and SWIR bands reflectance were
used to identify water pixels and normalized difference veg-
etation index (NDVI) was used to reduce the confusion be-
tween water and dense vegetation. The shadow effects caused
by mountains and clouds were reduced with a terrain slope
derived from ASTER DEM data and cloud shadow flag of
MODIS state quality assurance (QA) layer, respectively. The
cloud, ice/snow and no valid data were labeled with MODIS
state QA layer and land surface temperature data, and cloud
and no valid data were filled with temporal–spatial inter-
polation to produce a gap-free time series. The producer’s
accuracy and user’s accuracy of the GSWCD product were
reported better than 90 % when compared with classifica-
tion results derived from Landsat images and manually in-
terpreted samples.

The ISWDC product maps water bodies larger than
0.0625 km2 within the land mass of China for the period
2000–2016 with 8 d temporal and 250 m spatial resolution
(https://doi.org/10.5281/zenodo.2616035; Lu et al., 2019a).
The surface water boundary was extracted based on the mod-
ified Otsu threshold method with reflectance of MODIS NIR
band. The threshold value was determined for four seasons
with 423 selected samples of lakes and rivers. The interfer-
ences were removed with a terrain slope derived from SRTM
DEM data. The producer’s accuracy and user’s accuracy of
the ISWDC product were reported to be 88.95 % and 91.13 %
when compared with samples from lakes and rivers derived
from the China national 30 m land cover dataset (Liu et al.,
2014).

The GSW product provides global surface water maps
for the period 1984–2020 with 30 m resolution (https:
//global-surface-water.appspot.com/download, last access:
10 August 2022). The pixels in Landsat 5, 7 and 8 data were
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classified as open water, land or non-valid observation us-
ing the combination of expert systems, visual analytics and
evidential reasoning. The classifier produces less than 1 % of
false water detections and misses less than 5 % of water when
measured using over 40 000 reference points. A seasonal-
ity dataset is contained in the GSW products to describe the
intra-annual distribution of water and used to compare with
our estimation results. A permanent water surface is under-
water throughout 12 months of the year (with a seasonality
value of 12), while a seasonal water surface has a value less
than 12. For lakes that freeze for part of the year, the dataset
treats ice as a non-valid observation, and the observation pe-
riod corresponds only to the unfrozen months.

The GLAD product maps global inland water for the
period 1999–2020 with 30 m resolution (https://www.
glad.umd.edu/dataset/global-surface-water-dynamics, last
access: 10 August 2022). The land and water were classified
in all Landsat 5, 7 and 8 scenes and performed a time-series
analysis to produce maps that characterize interannual and
intra-annual open surface water dynamics. Each Landsat
scene was classified into land, water, cloud, shadow, haze
and snow/ice with ensembles of classification trees. The
producer’s accuracy and user’s accuracy of the GLAD
monthly mapped water class were reported to be 96.0 %
and 93.7 % when compared with reference sample data.
The annual water percent dataset is contained in the GLAD
products to characterize the seasonality of the water cover
and used to compare with our results. The land and water
observations of a given pixel were summed per month and
aggregated into water presence frequency, measured by the
percent of clear observations flagged as water.

2.4 Datasets for validation

The estimation results were validated with the SWF maps
extracted from Sentinel-1 data. To evaluate the performance
of our dataset for different surface water types, perma-
nent and seasonal waters, and different latitudes, as well
as the presence of frequent cloud cover, eight regions
were selected for validation, including Lake Albert in the
Democratic Republic of the Congo and Uganda (30.98◦ E,
1.74◦ N), Lake Mai-Ndombe in the Democratic Republic
of the Congo in the southwestern part of Congo Basin
(18.32◦ E, 2.07◦ S), the Amazon River and Taparus River in
western Amazon in Brazil (54.87◦W, 2.16◦ S), wetlands in
western Bangladesh (91.12◦ E, 24.65◦ N), Lake Winnipego-
sis in Canada (99.91◦W, 52.61◦ N), lakes in western Rus-
sia (31.00◦ E, 64.10◦ N), Lake Maggiore in Italy (8.65◦ E,
45.90◦ N) and Lake Wakatipu in New Zealand (168.55◦ E,
45.10◦ S). These areas cover major types of inland water bod-
ies, including lakes, rivers and wetlands. Among them, the
six lake regions and the Taparus River are dominated by per-
manent surface water, the Amazon River has seasonal water
cover and wetlands in western Bangladesh are dominated by
seasonal surface water. Lake Albert, Lake Mai-Ndombe, the

Amazon River, the Taparus River and wetlands in western
Bangladesh are in the tropics and subtropics. Cloud and rain
should frequently occur in these four regions, especially for
the Amazon River, Taparus River, and Lake Mai-Ndombe
in the Amazon and Congo Basin respectively, which helps
to evaluate the performance in frequently cloud-covered ar-
eas. Lake Maggiore and Lake Wakatipu are in the middle
latitudes of the Northern and Southern Hemisphere, respec-
tively. The former is surrounded by mountains in the Alps
in northern Italy, which shows an example of the perfor-
mance in mountainous regions. Lake Winnipegosis and lakes
in western Russia are in high latitudes of the Northern Hemi-
sphere, where a large number of small water bodies are con-
centrated.

The Sentinel-1 mission images the entire Earth every 6 d
with a constellation of two satellites orbiting 180◦ apart, and
the repeat frequency is just 3 d at the Equator and less than
1 d over the Arctic. The C-band Synthetic Aperture Radar
(SAR) it carries can penetrate cloud and rain to provide an
all-weather supply of imagery of the Earth’s surface, which
helps to accurately characterize the inundation frequency. All
available vertical transmission and vertical reception (VV)
polarization data of Sentinel-1A and Sentinel-1B in 2020
were used to extract the surface water extent of the eight
regions at 10 m resolution utilizing Google Earth Engine
(GEE). A median filter method was used to reduce speckle
noise in SAR images (Bioresita et al., 2018). The water pix-
els were identified for each available image based on the Otsu
algorithm, which maps the surface water extent with an un-
supervised histogram-based thresholding approach that au-
tomatically selects the optimal threshold of water and non-
water by maximizing the variance between classes (Otsu,
1979). The Sentinel-1 SWF was mapped by calculating the
percentage of the count of water observations to the total
count of observations for each pixel. For regions at high and
middle latitudes, the observations covered with snow and ice
were excluded, and the SWF was calculated with Sentinel-1
observations during the unfrozen period.

3 Methodology

3.1 Extraction of surface water cover frequency

Clouds and ice/snow may affect accurate detection of inland
surface water based on optical remote sensing, especially for
water bodies with high reflectivity. To reduce the interfer-
ences of clouds and ice/snow, this paper does not directly de-
tect water pixels but extracted surface water through identi-
fying land observations in annual MODIS observation series.
We found high reliability distinguishing features for the sepa-
ration of land, water, cloud and ice/snow. The former usually
has a lower reflectivity in the visible band than in the SWIR
band, while the latter three are the opposite. And the cloud
and ice/snow can be excluded with higher reflectance in NIR
band compared to water and land. Based on these spectral
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characteristics, the SWF was estimated using four steps from
MOD09A1 land surface reflectance data (Fig. 1), including
counting the number of clear-sky land observations, deter-
mining the maximum surface water extent, estimating the to-
tal number of clear-sky observations over the maximum sur-
face water extent and calculating the SWF.

Firstly, the number of clear-sky land observations dur-
ing a whole year (NLand) was counted for each pixel from
the MOD09A1 annual land surface reflectance series. The
land observations were separated from water and cloud us-
ing the reflectance in the red band (RRed) and SWIR band
with a wavelength of 2.1 µm (RSWIR2.1). Those pixels with
RRed < RSWIR2.1 were labeled as land. Since RRed is gener-
ally higher than RSWIR2.1 for water, cloud and snow/ice, the
land observations can be reliably identified without the help
of cloud masks.

Then, the annual maximum surface water extent was de-
termined from the six observations with the lowest NIR re-
flectance during a specific year. Water generally has low re-
flectance in the NIR band (RNIR), while the presence of cloud
and ice/snow would significantly increase the RNIR. Thus,
observations with the lowest RNIR should be inclined to the
clear-sky inundated observation, while the cloud and ice/s-
now pixels could be excluded reliably. Here, six observa-
tions with the lowest RNIR in a year were selected by weigh-
ing available valid observations and possible noise observa-
tions, such as shadows, burned areas and occasional water
cover. These six observations were assumed to be clear-sky
observations, and water observations among them were de-
termined using the criterion of RRed > RSWIR2.1. Those pix-
els with water count ≤ 1 were identified as reliable land. To
exclude possible residual shadows, burned areas and occa-
sional water cover, all pixels with water count ≥ 3 were used
to create the maximum surface water extent map for the spe-
cific year. The mountain shadow was excluded using the cri-
terion that the terrain slope derived from DEM > 30◦.

The number of clear-sky observations over the maximum
surface water extent (NClear) was estimated from the count
of clear-sky observations of its adjacent reliable land pixels.
Here, clear-sky observation refers to the valid MOD09A1 ob-
servation that is not covered with clouds and snow/ice. The
coverage of clouds is usually similar for land and water bod-
ies in a small area. This study assumes that the number of
clear-sky observations over the water bodies (NClear) is the
same as that over adjacent land areas (NClear_Land_adjacent).
Here, for each pixel in the maximum surface water extent,
100 spatial nearest reliable land pixels were selected. The
count of clear-sky observations for those reliable land pixels
is equal to NLand since all clear-sky observations should be
land for reliable land pixels. Then, the NClear_Land_adjacent was
estimated by averaging the NLand values for the selected 100
nearest reliable land pixels, and the NClear was set to equal to
the estimated NClear_Land_adjacent.

Finally, the number of water observations (NWater) was
calculated for the pixels within the range of the maximum

surface water extent by subtracting the land observation
count (NLand) from the count of all clear-sky observations
(NClear). And the SWF was calculated by the water count di-
vided by the count of all clear-sky observations within a year
(Eq. 1). Those pixels with NLand of zero should be covered
by water during the whole year, and their SWF values were
equal to 100 %, while those pixels with NLand equal to NClear
should be permanent land, and their SWF values were equal
to 0 %. For large inland water bodies, the adjacent reliable
land pixels that were used to estimate NClear over the max-
imum surface water extent may be far away from the water
pixels, which may result in uncertainties in NClear estimation
of water pixels and the SWF consequently. Here, the SWF
was set to 100 % for those pixels with NLand less than a count
of 15 for the global largest 100 inland water bodies excluding
rivers and water bodies with great seasonal variation in water
extent to reduce the influences of uncertainty in NClear on the
SWF dataset.

SWF=
NClear−NLand

NClear
× 100% (1)

Several post-processing procedures were then implemented
to the generated SWF maps. The water bodies with an area
less than 2× 2 pixels were removed to reduce the influence
of noise. The oceans were delineated using the ocean label
in the state QA flags of MOD09A1 products. The flag of
MOD09A1 was used as the initial ocean flag. Those pix-
els detected as land by the proposed method were labeled
as land, and those water pixels between the land and the
ocean flagged by MOD09A1 were labeled as ocean. For wa-
ter bodies that were not marked as oceans in the state flag of
MOD09A1, we extended the land boundary toward the wa-
ter. If the extended land boundaries meet with each other, the
water bodies were labeled as inland waters; if the extended
land boundaries meet the ocean pixels, the adjacent water
pixels were labeled as ocean.

3.2 Validation and inter-comparison with other products

The estimation results were validated with the SWF maps
extracted from Sentinel-1 SAR observations in the eight re-
gions (Sect. 2.4). The spatial distribution of our results was
compared with the Sentinel-1 results. And the Sentinel-1
SWF maps were resampled to 500 m resolution by averag-
ing the valid SWF estimations from Sentinel-1 data within
the MODIS 500 m grid and then compared with GLOBMAP
SWF maps pixel by pixel. The root mean standard error
(RMSE), absolute mean difference (MAE) and coefficient of
determination (R2) were estimated to evaluate the accuracy
of GLOBMAP SWF maps.

The estimation results were also compared with the
GSWCD and ISWDC products that derived from MODIS
observations as well as GSW and GLAD products that de-
rived from Landsat data for characterizing the seasonal vari-
ation of surface water. The surface water maps of the five
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Figure 1. Workflow of the method for generating the GLOBMAP surface water cover frequency dataset.

datasets were demonstrated in three lake regions as exam-
ples to evaluate their performance in unfrozen water, frozen
water and saline lakes, as well as the presence of clouds and
bright surfaces. These include Taihu Lake in eastern China
(30.62–31.78◦ N, 119.66–120.82◦ E), lakes in the northeast-
ern Tibetan Plateau (34.48–36.10◦ N, 89.71–91.53◦ E) and
Qarhan Salt Lake in the southern Qaidam Basin in north-
western China (36.56–37.24◦ N, 94.48–96.08◦ E).

4 Results

4.1 Distribution of global surface water cover frequency

The estimated global SWF map in 2020 is illustrated in
Fig. 2a to describe the temporal coverage of inland surface
water. The maximum extent, minimum extent (permanent
surface water) and intermittent surface water extent are also
shown in Fig. 2b–d to characterize the different status of in-
land water bodies. The intermittent surface water refers to the
areas covered by water for part of a year. Some lakes freeze
for part of the year. Since snow and ice observations are ex-
cluded in estimation of the SWF in the proposed method, the

observations in unfrozen periods are used to estimate the sur-
face water cover frequency for the year. If area is underwater
for part of the observation period (i.e., the unfrozen period), it
is considered to be the intermittent surface water, while if wa-
ter is present throughout the unfrozen period, the water body
is considered to be a permanent surface water. Considering
possible uncertainty of the algorithm and quality of satellite
observations, here we use SWF ≥ 10 % for identification of
the maximum water extent, SWF ≥ 90 % for the minimum
water extent identification and 10 %≤SWF < 90 % for inter-
mittent water identification. For visualization, the SWF was
aggregated to 10× 10 km grids by averaging all valid SWF
values in each grid.

In 2020, the area of the maximum extent of global surface
water is 3.38×106 km2, of which the permanent surface wa-
ter (the minimum extent) is 1.83×106 km2, and the intermit-
tent surface water is 1.55×106 km2. About 46 % of the global
total surface water cover (the maximum extent) is intermit-
tent water, which demonstrates the remarkable seasonal dy-
namics of inland water cover. Compared with the global
high-resolution surface water datasets of GSW (Pekel et al.,
2016), GLAD (Pickens et al., 2020) and the Global 3 arc-
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second Water Body Map (G3WBM) (Yamazaki et al., 2015)
derived from multi-temporal Landsat images, our estimation
results extract less permanent surface water (2.78, 2.93 and
3.25×106 km2 for GSW, GLAD and G3WBM respectively)
and the maximum surface water (4.46 and 4.82× 106 km2

for GSW and GLAD respectively). This may be related to
the limited spatial resolution of MODIS and post-processing
of the dataset, which makes GLOBMAP SWF dataset able to
detect inland water body larger than 1 km× 1 km open to the
sky, including fresh and salt water. More intermittent surface
water is captured compared with the three high-resolution
datasets (0.81, 0.74 and 0.49×106 km2 for GSW, GLAD and
G3WBM respectively) with the aid of frequent MODIS ob-
servations to separate the seasonal and permanent water bod-
ies. The inland water bodies are widely distributed across
the globe except for the deserts and permanent snow-/ice-
covered areas. They are mainly concentrated in midlatitudes
to high latitudes of the Northern Hemisphere, such as the
northeast of North America, northwest of Europe, north of
Russia and the Tibetan Plateau. About 67 % of the maximum
surface water is distributed above 35◦ N, and this percentage
reaches 79 % and 54 % for the permanent surface water and
intermittent surface water, respectively. The permanent sur-
face water cover is concentrated in the lake areas, such as the
Great Lakes in North America, Arctic lakes and lakes in the
Tibetan Plateau. The intermittent surface water is widely dis-
tributed across the globe, especially in the high latitudes of
the Northern Hemisphere, which may be related to the sea-
sonal melting of permafrost. It is also scattered in Africa,
Australia, the Pacific Islands and south parts of Eurasia and
North America, which may be related to the notable seasonal
variations in precipitation.

4.2 Comparison with existing surface water datasets

The performance of our estimates was evaluated for un-
frozen water, frozen water and saline lakes and compared
with the surface water datasets of GLAD, GSW, GSWCD
and ISWDC. The effects of clouds and bright surfaces were
also evaluated. The comparison was performed in three re-
gions as examples, including Taihu Lake in eastern China,
lakes in the northeastern Tibetan Plateau and Qarhan Salt
Lake in the southern Qaidam Basin.

The performance of unfrozen water and the effects of
clouds were evaluated in the Taihu Lake region, the third
largest freshwater lake in China. It is located in the subtrop-
ical East Asian monsoon region, where clouds frequently
occur in summer. Since the average water temperature of
Taihu Lake in January is 4 ◦C, water rarely freezes in win-
ter, with only a little thin ice with a thickness of 1–2 cm
in the bay or lee shore. Figure 3 shows the distribution of
GLOBMAP SWF, annual water percent dataset of GLAD,
seasonality dataset of GSW and the surface water extent map
of GSWCD and ISDWC products in January (DOY001) and
July (DOY200) in 2015. A Google Earth high-resolution im-

age is presented for reference (Fig. 3a). The results show
that the spatial pattern of our estimates is in good agree-
ment with that of the GLAD and GSW. The GLOBMAP
SWF reaches 100 % in Taihu Lake and surrounding lakes,
indicating that our algorithm successfully extracts the distri-
bution of unfrozen water and reduces the influence of clouds
in this region (Fig. 3b). The two Landsat-based products cap-
ture more small lakes and narrow rivers with their fine spa-
tial resolution, but the water occurrence of some areas in the
northwest part of the Taihu Lake is underestimated, which is
probably due to frequent clouds. The surface water maps of
GSWCD are generally consistent with our estimation results,
GLAD and GSW, suggesting that the interpolation algorithm
of GSWCD successfully reconstructs the water cover series
in this area. Many lake areas are not identified in the ISDWC
maps especially for July (Fig. 3h), which indicates that sur-
face water cover may be underestimated in this dataset due
to clouds. Seasonal water cover is observed in our estimates
with SWF lower than 30 % in the south and east of Taihu
Lake. These intermittent water cover may be related to the
seasonal irrigation of paddy rice that is widely planted in this
area.

The performance of frozen water and impact of bright sur-
faces were compared in lakes in the northeast part of the
Tibetan Plateau (Fig. 4). Several lakes are located in this
barren area. The altitude reaches around 5000 m, and these
lakes are frozen in winter due to extreme cold weather. The
GLOBMAP SWF map captures the distribution of lakes in
Google Earth images, with the SWF reaching 100 % in the
lake areas (Fig. 4b). GLAD and GSW show similar spatial
extent of lakes with GLOBMAP, but GLAD seems to un-
derestimate the water occurrence in this region. The surface
water cover maps of GSWCD and ISDWC products in July
are consistent with our estimation results and Google Earth
imagery (Fig. 4f and h). But when it comes to winter in Jan-
uary, some frozen water cover is undetected for the GSWCD
product (red circles in Fig. 4e), and many barren land pixels
are confused with frozen water. This may be related to the
similar high reflectivity in the visible band and low land sur-
face temperature for frozen water and barren land in winter.
The ISDWC product fails to detect the lakes in this area in
DOY001–008 in 2015 due to cloud contamination (Fig. 4g).

Figure 5 shows the comparison results of Qarhan Salt
Lake, which is located in the Qaidam Basin on the north-
western part of the Tibetan Plateau. As the largest saline
lake in China, the lake is rich in inorganic salts such as
sodium chloride, potassium chloride and magnesium chlo-
ride. Corresponding to the high-resolution image of Google
Earth (Fig. 5a), our estimation results, GLAD and GSW
successfully extract the distribution of the saline lake. The
estimated SWF is approximately 100 % in the lake areas
(Fig. 5b), and the derived saline lake map agrees well with
the high-resolution images for the four subregions shown by
the red rectangles in Fig. 5a (the third row in Fig. 5). GLAD
and GSW show more spatial details of the salt lakes. The
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Figure 2. Global distribution of surface water cover frequency in 2020. (a) Global SWF map, (b) the maximum surface water extent, (c) the
permanent surface water extent and (d) the intermittent surface water extent. The SWF was aggregated to 10× 10 km grids by averaging the
valid SWF in each grid for visualization.

GSWCD product identifies the majority of the lake, but some
lake areas in southern and western parts are missed (red cir-
cles in Fig. 5f). Although clear-sky observations were ob-
tained in this area during DOY001–008 and DOY193–200
in 2015 according to MOD09A1 data, many salt water ar-
eas are missed in the ISDWC product (red circles in Fig. 5g
and h), indicating that the extent of saline lakes may be un-
derestimated in this dataset. Additionally, our estimates also
capture the signals of the endorheic Golmud River that flows
into the southeast of the saline lake (subregion 2 in Google
Earth image).

4.3 Validation

The accuracy of GLOBMAP SWF dataset was assessed with
the 10 m resolution SWF maps extracted from Sentinel-1
SAR data in eight regions that cover lakes, rivers and wet-
lands. Figure 6 presents the SWF maps of our results and
Sentinel-1 as well as the linear regression results of the two
datasets.

The surface water extent of GLOMAP SWF is generally
consistent with that of Sentinel-1 in these regions, while
Sentinel-1 SWF describes more small water bodies and
narrow rivers with its high-spatial-resolution observations.
Good positive correlation is observed for SWF maps be-
tween our estimates and Sentinel-1 results, with R2 up to
above 0.75 for most regions except for lakes in western Rus-
sia (0.46). For the lakes that are mainly covered by perma-
nent surface water in the middle and low latitudes without
frequent cloud covers, such as the Lake Albert in the Demo-

cratic Republic of the Congo and Uganda, Lake Maggiore in
Italy and Lake Wakatipu in New Zealand, the SWF maps of
GLOBMAP and Sentinel-1 agree well, with the RMSE rang-
ing from 7.24 % to 13.20 % and MAE from 2.07 % to 2.45 %.
For Lake Maggiore that is surrounded by mountains, most of
the water extent was extracted compared with the Sentinel-
1 results. The performance of the dataset may be affected
by frequent cloud cover in tropical regions. For Lake Mai-
Ndombe in the southwestern part of the Congo Basin, our
dataset can characterize the spatial extent of the lake, but the
SWF may be underestimated compared with the Sentinel-1
results, and the RMSE and MAE are increased to 11.28 %
and 3.80 % respectively, which may be due to the lack of
clear-sky observations in this tropic region. In the western
Amazon, both the two SWF maps show widespread seasonal
water cover in the Amazon River and permanent water cover
in the Taparus River, with an RMSE and MAE of 7.93 %
and 2.24 %, respectively. Our estimation results present scat-
tered detection with SWF < 10 % in the middle and southern
parts of the image, which may also be related to the frequent
occurrence of clouds and rain. For the wetlands in western
Bangladesh, widespread intermittent water cover and com-
plex surface conditions make it challenging to extract the
SWF. Our results generally agree well with the Sentinel-1
SWF map in this region, both showing higher inundation
frequency in the northern and middle parts of the wetlands
than in the southern part and margins, and the RMSE and
MAE are still within 10.8 % and 7.2 %. For lakes in high
latitudes, including Lake Winnipegosis and lakes in western
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Figure 3. Comparison of surface water map of GLOBMAP SWF, GLAD, GSW, GSWCD and ISDWC in frequently cloud-covered areas
around Taihu Lake in eastern China (30.62–31.78◦ N, 119.66–120.82◦ E) in 2015. (a) Google Earth high-resolution image (from Google
Earth), (b) GLOBMAP surface water cover frequency, (c) GLAD annual water percent and (d) GSW seasonality (source: EC JRC/Google).
Surface water extent of GSWCD in (e) DOY001 and (f) DOY200 in 2015 and surface water extent of ISDWC in (g) DOY001–008 and
(h) DOY193–200 in 2015.

Russia, the dataset captures the distribution of large water
bodies but may underestimate scattered small lakes in these
regions due to the coarse resolution of MODIS data, which
makes the RMSE and MAE increase to 16.22 %–22.62 % and
6.17 %–7.04 %, respectively. The comparison indicates that
our dataset can also provide reasonable estimates for inter-
mittent inland water bodies, and it is more reliable for large
water bodies with less seasonal water cover and clouds.

4.4 Interannual variation and change trend of global
surface water

The interannual variation and change trend of global max-
imum, minimum and intermittent surface water were ana-
lyzed using the GLOBMAP SWF dataset from 2001 to 2020.
Since the MODIS data are incomplete in 2000, the results
of 2000 were not used in this analysis. Figure 7 shows in-
terannual variation of the area of global inland water bod-
ies with different inundation frequencies. During the past 2
decades, the average area of global maximum surface wa-
ter (SWF ≥ 10 %) is 3.57± 0.10× 106 km2, with the largest
area of 3.72× 106 km2 in 2008 and the smallest area of
3.38× 106 km2 in 2016. The average area of the minimum

surface water (permanent surface water, SWF ≥ 90 %) is
1.89± 0.03× 106 km2, which is 53 % of the area of maxi-
mum water extent. The permanent water reached the largest
extent of 1.95× 106 km2 in 2001 and the smallest extent of
1.83 km2 in 2016. The average area of global intermittent wa-
ter (10 %≤SWF < 90 %) is 1.68±0.08×106 km2, account-
ing for 47 % of the maximum water area. Among them, about
79 % of intermittent water occurred in less than half a year
(10 %≤SWF < 50 %).

A decreasing trend is observed for the area of global maxi-
mum and minimum surface water since 2001. The maximum
water extent shrank at a rate of −7577 km2 yr−1 (p = 0.04)
during 2001–2020, with the downward trend mainly occur-
ring after 2012 (Fig. 7a). The area of permanent surface wa-
ter has been decreasing continuously since 2001 at a rate
of −4315 km2 yr−1 (p < 0.01) (Fig. 7b). The intermittent
surface water also shows an insignificant weak decreasing
trend (−3262 km2 yr−1, p = 0.29). The intermittent surface
water was divided up into two parts based on the value of
SWF – intermittent water cover with 10 %≤SWF < 50 %
and that with 50 %≤SWF < 90 % – and the areas were then
calculated for these two types separately (Fig. 7d and e).
The results show that the area of intermittent surface wa-
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Figure 4. Comparison of surface water map of GLOBMAP SWF, GLAD, GSW, GSWCD and ISDWC for frozen lakes over bright surface
in the northeastern Tibetan Plateau (34.48–36.10◦ N, 89.71–91.53◦ E) in 2015. (a) Google Earth high-resolution image (from Google Earth),
(b) GLOBMAP surface water cover frequency map; (c) GLAD annual water percent and (d) GSW seasonality (source: EC JRC/Google).
Surface water extent of GSWCD in (e) DOY001 and (f) DOY200 in 2015 and surface water extent of ISDWC in (g) DOY001–008 and
(h) DOY193–200 in 2015.

ter with SWF less than 50 % also showed a decreasing trend
(−4629 km2 yr−1, p = 0.13) like the maximum water extent,
indicating that the extent of global surface water in the wet
season was shrinking. In contrast, an increasing trend is ob-
served for the area of intermittent water with SWF above
50 % (1368 km2 yr−1, p < 0.01), indicating that the tempo-
ral coverage period of some permanent water bodies was re-
duced but still longer than half a year.

A linear trend of SWF was mapped to demonstrate the
monotonic changes of surface water inundation frequency
during 2001–2020. For visualization, the trend maps were
aggregated to 10 km resolution and selected to display the
fraction of positive slopes or negative slopes (p < 0.05),
whichever is larger in each 10 km grid, to represent the main
monotonic change type of surface water (Fig. 8a). Grids with
a dominantly positive (negative) slope were labeled as in-
undation frequency increasing (decreasing) areas (positive
(negative) fraction). Similarly, we compared the average rate
of positive slopes and negative slopes within each 10 km grid,
and chose the faster change rate to represent the intensity of
surface water changes (Fig. 8b). Grids with positive (nega-
tive) slope rate mean that the water occurrence is increas-
ing (decreasing) rapidly. The results show notable changes
of water cover extent in the high latitudes of the Northern
Hemisphere. In the Arctic, there are more expanded lakes

in the south, while the shrinking lakes are concentrated in
the north, especially in the northern Arctic regions of Russia
and Canada. This is consistent with the findings of Carroll
et al. (2011) in Canada. The SWF has increased rapidly in
the northern Tibetan Plateau at a rate of above 1.5 % yr−1

(Fig. 8b), which is consistent with the observed extensive
lake expansion and new lakes on the plateau due to increased
glacial meltwater and precipitation (Zhang et al., 2017). A
similar increase of SWF is also observed in southeastern
Siberia, northern India, and central and northeastern parts
of North America. In contrast, the inundation frequency has
been mainly decreased for water bodies of Central Asia,
Southeast Asia and southern China, as well as southern parts
of South America.

4.5 Application examples for surface water dynamic
analysis

Two examples are provided in this section to demonstrate the
application of GLOBMAP SWF dataset in surface water dy-
namic analysis. These include the seasonal variation and in-
terannual change of Poyang Lake in southeastern China and
global top 10 lakes with the largest seasonal dynamics.

Earth Syst. Sci. Data, 14, 4505–4523, 2022 https://doi.org/10.5194/essd-14-4505-2022



Y. Liu et al.: GLOBMAP SWF 4515

Figure 5. Comparison of surface water map of GLOBMAP SWF, GLAD, GSW, GSWCD and ISDWC for Qarhan Salt Lake in the southern
Qaidam Basin in northwestern China (36.56–37.24◦ N, 94.48–96.08◦ E) in 2015. (a) Google Earth high-resolution image (from Google
Earth), (b) GLOBMAP surface water cover frequency, (c) GLAD annual water percent and (d) GSW seasonality (source: EC JRC/Google).
Surface water extent of GSWCD in (e) DOY001 and (f) DOY200 in 2015 and surface water extent of ISDWC in (g) DOY001–008 and
(h) DOY193–200 in 2015. The last row shows the Google Earth high-resolution images for the four subregions shown with the red circles in
Fig. 6a (from Google Earth).

4.5.1 Seasonal and interannual dynamics of Poyang
Lake

Analysis of the seasonal and interannual dynamics of inland
water body is illustrated for Poyang Lake (28.28–29.89◦ N,
115.62–117.05◦ E), which is a large shallow lake located
on the south bank of the middle and lower reaches of the
Yangtze River. It receives water from five rivers and the sur-
rounding areas and flows into the Yangtze River from the
northern lake outlet. The lake shows significant seasonal
variations of the water cover area due to the great seasonal
fluctuations of regional precipitation and the runoff of the
Yangtze River and the five rivers entering the lake, making
it challenging to evaluate its interannual change. Figure 9a
presents the spatial distribution of GLOBMAP SWF in 2020.
The SWF value of most of the lake is ranging from 20 %
to 70 %, indicating that the lake is mainly covered by inter-
mittent water. The minimum lake area (SWF≥ 90 %) during
the dry season of 2020 is 545 km2, while the maximum area
(SWF≥ 10 %) during the flood season reaches more than 7.4
times the former (4062 km2). Figure 9b shows the interan-
nual series of water cover areas with different inundation fre-
quencies. The maximum lake area shows remarkable fluctu-
ation among years. The area of the maximum lake extent ex-

ceeded 4900 km2 in 2002, 2010 and 2012, while it reduced to
below 4000 km2 in 2004, 2007, 2008, 2013–2015, 2017 and
2018, and the smallest area was only 3055 km2 in 2011. The
maximum lake area is closely related to the amount of water
entering the lake during the flood season. The Poyang Lake
basin and the Yangtze River basin are located in the East
Asia monsoon region. The precipitation is mainly concen-
trated in summer and has significant interannual fluctuations,
resulting in notable interannual variations of the lake area
in the flood season. The interannual variation of lake area
decreases gradually with the increase of SWF and reaches
the lowest for the minimum lake extent that occurred dur-
ing the dry season. Precipitation in the dry season (winter)
is much less frequent and less affected by abnormal climate,
which may reduce the year-by-year fluctuation of the lake
area in the dry season consequently. In 2003, the permanent
lake area decreased abruptly from 947 to 512 km2 and then
remained at a low value, with the area ranging from 500 to
660 km2 for most years after 2003, which coincides with the
time of the impoundment of the Three Gorges Dam in 2003.
These results are consistent with the decline of the annual
minimum inundation area (Feng et al., 2012) and the rapid
increase of wetland vegetation coverage in this region af-
ter 2002 (Han et al., 2015). The available count of clear-sky
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Figure 6. Comparison of GLOBMAP SWF against SWF maps derived from Sentinel-1 in eight regions. These include Lake Albert in
the Democratic Republic of the Congo and Uganda (30.98◦ E, 1.74◦ N), Lake Mai-Ndombe in western Democratic Republic of the Congo
(18.32◦ E, 2.07◦ S), the Amazon River and Taparus River in western Amazon in Brazil (54.87◦W, 2.16◦ S), wetlands in western Bangladesh
(91.12◦ E, 24.65◦ N), Lake Winnipegosis in Canada (99.91◦W, 52.61◦ N), lakes in western Russia (31.00◦ E, 64.10◦ N), Lake Maggiore in
Italy (8.65◦ E, 45.90◦ N) and Lake Wakatipu in New Zealand (168.55◦ E, 45.10◦ S). The linear regression results are presented at the top of
the figure.

observations was averaged over the maximum surface wa-
ter extent in the Poyang Lake region for each year during
2001–2020 (purple line in Fig. 9b). The average NClear was
between 33 and 39 during this 20-year period. Correlation
was observed between the area of maximum surface water
extent and the NClear. More clear-sky observations mean less
precipitation, which may lead to a smaller lake area, while
fewer clear-sky observations mean more precipitation, and
the lake area should be larger. However, the two variables do
not correspond exactly, which indicates that the maximum
surface water area does not depend on the available number
of clear-sky observations. The minimum surface water area
shows no obvious correlation with NClear, and its interannual
fluctuation should be related to precipitation and the amount
of water entering the lake in the dry season.

4.5.2 Top 10 lakes with significant seasonal variation

The 10 lakes with the largest seasonal variation in 2020 were
identified to illustrate the seasonal fluctuation of inland open
surface water. Seasonal variation was evaluated with the pro-
portion of the intermittent water area to the maximum water
area in this year. All lakes whose maximum water cover ex-
tent > 3000 km2 were ranked with their seasonal variation,
and the top 10 lakes are listed in Table 1.

The results show that the intermittent water area of these
10 lakes accounts for more than 30 % of the maximum wa-
ter area. Poyang Lake in eastern China presents the largest

seasonal fluctuation, with the seasonal variation reaching
84.29 %. These 10 lakes can be divided into three types:
two natural freshwater lakes, four natural saltwater lakes and
four reservoirs. Among them, natural freshwater lakes in-
clude Poyang Lake and Lake Peipus. Both lakes are shallow
in depth, and the relief of the bottom and surrounding area
is flat, which means the water area may rise dramatically in
the flood season and fall during the dry season. For exam-
ple, the shores of the Lake Peipus are usually flooded in the
spring, with the flooding area reaching up to 1000 km2. Salt-
water lakes include the Aral Sea, Lake Gairdner, Lake Eyre
and Great Salt Lake. These lakes are all endorheic lakes that
are located in the arid regions of Central Asia, Australia and
North America. Similar to the two freshwater lakes, the wa-
ter depth is also shallow for these four saltwater lakes. In the
wet season, the river runoff and local precipitation make the
lake extent expand, while in the dry season, the lakes shrink
significantly due to the strong evaporation. Four reservoirs,
including Lake Kariba, Rybinsk Reservoir, La Grande River
reservoir and Lake Nasser, are also listed in the top 10 lakes.
The notable seasonal fluctuation of reservoir area should be
related to artificial impoundment and drainage of the reser-
voir dam.
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Figure 7. Interannual variation of the area of global surface water with different inundation frequency from 2001 to 2020. (a) Areas of the
maximum surface water extent with SWF≥ 10 %. (b) Areas of the minimum surface water extent with SWF≥ 90 %. Areas of the intermittent
surface water extent with (c) 10 %≤SWF < 90 %, (d) 10 %≤SWF < 50 % and (e) 50 %≤SWF < 90 %.

5 Discussions

It is challenging to capture the interannual variation and
change trend of inland water bodies due to their signifi-
cant seasonal variations. The extent of surface water usually
varies during a year due to the seasonal cycle of precipita-
tion and evaporation, and it may also change abruptly due to
large amount of rainfall and human activities, such as reser-
voir construction, mining and irrigation (Tao et al., 2015).
The timing of seasonal variation in surface water extent of-
ten varies among years due to interannual shifts of the timing
of precipitation and human activities. Thus, it may be incom-
parable for the snapshot of surface water acquired at the same

period or during a specific period such as the high-water pe-
riod that is usually analyzed (e.g., in summer or wet season),
which would misinterpret its interannual change and long-
term trend. Here, we generated a global surface water cover
frequency dataset from high-frequency MODIS data to char-
acterize the seasonal variation and interannual change of in-
land water bodies. This dataset simplifies the multi-period
water cover maps to the percentage of period that a pixel
is covered by water in a year. It can characterize the tem-
poral coverage frequency of surface water, which is suitable
to represent the spatiotemporal characteristics of intermittent
waters. The extent of maximum, minimum and different in-
undation frequency of surface water can be estimated from
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Figure 8. Linear trend of surface water cover frequency during 2001 and 2020. The trend maps were aggregated to 10 km resolution for visu-
alization. (a) Dominant SWF slope fraction (%). The positive (negative) fraction means that the fraction of pixels has increasing (decreasing)
SWF (p < 0.05) in each 10 km grid, indicating whether the inundation frequency is dominantly increasing (decreasing). (b) Dominant SWF
change rate (% yr−1). The positive (negative) slope rate means that the mean linear slope rate of pixels has increasing (decreasing) SWF
(p < 0.05) in each 10 km grid, whichever is faster, indicating whether the inundation frequency is increasing (decreasing) rapidly. The light
grey refers to non-water-covered areas.

the dataset without the influence of the occurrence period,
which helps to avoid misidentifying seasonal changes in wa-
ter cover as interannual changes.

This paper developed a method for surface water extrac-
tion from a new perspective, which estimates the SWF indi-
rectly by identifying land observations in annual observation
series to reduce the influence of clouds, snow/ice and variable
characteristics of water body and surface background. Wa-

ter generally absorbs more solar radiation in spectral bands
with longer wavelengths, resulting in the greater reflectiv-
ity of visible bands than that of NIR and SWIR bands. This
spectral contrast has been widely used to extract surface wa-
ter extent directly (e.g., GSWCD), and several spectral in-
dices have been proposed for surface water extraction with
the reflectance in the visible band (usually green) and NIR
or SWIR band, such as the Normalized Difference Water In-
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Figure 9. The seasonal variation and interannual change of surface water cover of Poyang Lake (28.28–29.89◦ N, 115.62–117.05◦ E). (a) The
GLOBMAP SWF map in 2020. (b) The interannual variation of the area of Poyang Lake with different inundation frequency and average
value of the count of available clear-sky observations (Nclear) over the maximum surface water extent from 2001 to 2020.

Table 1. Global top 10 lakes with the largest seasonal variation in 2020.

Lake name Country Lake type Maximum Minimum Intermittent water Seasonal
area (km2) area (km2) area (km2) variation (%)

Poyang Lake China Freshwater lake 3465.66 544.58 2921.08 84.29
Lake Kariba Zambia, Zimbabwe Reservoir 4558.92 1427.27 3131.66 68.69
Aral Sea Uzbekistan, Kazakhstan Saltwater lake 24 188.81 9677.03 14 511.79 59.99
Rybinsk Reservoir Russia Reservoir 4344.69 1761.92 2582.77 59.45
Lake Eyre Australia Saltwater lake 3870.94 1734.23 2136.71 55.20
Lake Gairdner Australia Saltwater lake 3958.95 1852.50 2106.45 53.21
La Grande River reservoir Canada Reservoir 4626.11 2363.39 2262.72 48.91
Lake Eyre Australia Saltwater lake 3870.94 2230.09 1640.85 42.39
Lake Peipus Estonia, Russia Freshwater lake 3518.90 2069.95 1448.95 41.18
Great Salt Lake America Saltwater lake 7385.98 4446.01 2939.97 39.80
Lake Nasser Egypt, Sudan Reservoir 5033.32 3397.40 1635.91 32.50

dex (NDWI) (McFeeters, 1996) and the Improved Normal-
ized Difference Water Index (MNDWI) (Xu, 2006). To re-
duce the effects of clouds, the threshold of index is usually
set to greater than zero in surface water mapping. When it
comes to special water bodies with high reflectivities, such as
frozen water, saline lakes and turbid water bodies, the value
of these indices may be below the threshold, resulting in mis-
detection. Additionally, variation of surface background may
also result in confusion in water extraction, which has been
demonstrated in the misdetection of lakes on the bright sur-
face of the northeastern Tibetan Plateau (Sect. 4.2). These
may introduce substantial uncertainties in global water cover
mapping with the direct water extraction algorithm. In the
generation of global water datasets, it is not only needed to
propose good water cover extraction algorithm, but also to
consider data quality, noise and applicability of the algorithm
in different regions. We found a reliable and robust method
to separate land from water, cloud and snow/ice. The RRed

of the former is generally lower than that of RSWIR, while
it is opposite for the latter three. If the SWF values were
estimated indirectly by identifying land, the interference of
cloud and snow/ice in water identification would be avoided.
In this paper, instead of identifying water cover directly, the
frequency of surface water cover was estimated by subtract-
ing the count of land observations from the count of total
clear-sky observations, which avoids directly distinguishing
water from cloud and snow/ice. The annual maximum wa-
ter surface extent was extracted based on the minimum near-
infrared reflectance composition method, which automati-
cally excludes the influence of clouds, ice and snow. More-
over, the land identification method (RRed < RSWIR) was ap-
plicable for major types of water bodies and surface back-
ground and can exclude cloud and snow/ice observations.
Through these procedures, the proposed algorithm is ubiqui-
tous for various water bodies and surface background and re-
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duces the interference of cloud and snow/ice, which helps to
improve the applicability of our algorithm across the globe.

Several factors may affect the performance of the proposed
approach, including clouds, shadows, thawing of snow and
ice, and spatial resolution. Clouds can obscure surface water
signals in optical remote sensing. They usually occur more
frequently during the rainy season, while the clear-sky ob-
servations are inclined to occur in the dry season. Since our
algorithm uses the percentage of water observations in all
clear-sky observations to estimate the water cover frequency
within a whole year, the cloud observations that are concen-
trated in the rainy season are not taken into account, which
may lead to underestimation of the SWF (Lake Mai-Ndombe
in Fig. 6). The number of available clear-sky snow/ice-free
observations in a year (NClear) was counted during the period
2001–2020 over global terrestrial surface. There are on av-
erage 4285 pixels with NClear ≤ 6, accounting for 0.0008 %
of the total terrestrial surface pixels (550 215 315) in a year.
This percentage is 0.02 % (460 pixels out of total 1 901 338
water pixels) for the inland water bodies. Since the propor-
tion of pixels with extreme sparse clear-sky observation is
very small, its influences should be limited at global scale.
Figure 10 shows the global map of NClear in 2020. Fortu-
nately, NClear is generally above 40 in arid and semi-arid ar-
eas, where water bodies may show significant season varia-
tion in their extent. The low NClear values are concentrated
in the tropics and subtropics, such as the Gulf of Guinea, the
Amazon, the Southeast Asia, and the Sichuan Basin in south-
western China, where NClear mostly ranges from 25 to 35.
Since surface water generally shows relatively small seasonal
changes in the tropics and subtropics, the available clear-
sky observations should be able to capture the distribution of
surface water. In high latitudes in the Northern Hemisphere,
NClear is generally reduced to 10–25 due to a long period of
snow/ice cover and the polar night in winter. The proposed
algorithm excludes snow/ice observations and uses the ob-
servations in unfrozen period to estimate the surface water
cover frequency. In the glacial areas, such as Greenland and
glacial areas of the Tibetan Plateau, NClear is less than 10 as
snow and ice observations are excluded in the counting of
clear-sky observations, but it should have little impact on the
dataset due to limited water bodies in these regions. In some
areas in the central part of several huge lakes (e.g., Caspian
Sea), since they are far away from the land pixels on the shore
and their clear-sky observations may be different from that of
the adjacent reliable land pixels, NClear values are set to fill
value to reduce the uncertainties in NClear estimation. The
SWF of these regions is usually estimated to be 100 %, as
its Nland is usually less than 15. The limited number of valid
observations is a common problem for optical remote sens-
ing. The MODIS onboard Terra and Aqua satellites observe
the Earth’s surface every 1 to 2 d. Their dense time series can
be acquired to generate more clear-sky observations. Addi-
tionally, in the proposed method, all pixels with water count
≥ 3 among six observations with the lowest NIR reflectance

were used to create the maximum surface water extent map.
This means that the algorithm can be implemented with three
valid observations during a year, which helps to improve the
global applicability of the algorithm.

The mountain shadows were masked using the criterion
that the terrain slope derived from DEM data is greater than
30◦. In areas with complex terrain, this simplification may
result in uncertainties of the estimation results. The variation
of solar angle along latitudes and seasons was not considered
in the slope criteria for shadow estimation, which may cause
water that is outside of shadow to be removed in mountain-
ous areas. Here, the DEM data were mainly used to exclude
large areas mountain shadows, such as shadows in the margin
of the Tibetan Plateau. For mountain shadows with a small
range, since the local time when MODIS passes changes
among days, the distribution of shadows will change due to
different solar and viewing geometry. MOD09A1 selects the
best possible observation during an 8 d composition period,
and its spatial resolution is coarse (500 m), which helps to re-
duce the effects of mountain shadows with a small range. It
would help to improve the identification of terrain shadows
by considering solar angle variation and using fine-resolution
DEM data, such as GMTED2010.

In snow-/ice-covered areas, the meltwater on the ice would
reduce the reflectivity in the NIR band. This may lead to
overestimation of the maximum water area since the six ob-
servations with the lowest NIR reflectivity are used to extract
the annual maximum water extent. Here, we create the maxi-
mum surface water extent map using those pixels with water
count no less than 3 to remove possible false detections.

Additionally, the spatial resolution of MODIS may limit
the identification for narrow rivers and small water bodies,
resulting in underestimation of surface water extent. It is
difficult for the dataset to capture small water bodies and
the subtle changes of surface water, especially in high lat-
itudes in the Northern Hemisphere, where a large number
of small water bodies are located. Satellite data often have
certain advantages in terms of temporal or spatial resolu-
tion and time coverage, etc., but it is difficult to take into
account all of these aspects. MODIS provides daily spectral
measurements of the Earth surface since 2000. Its long-term
high-frequency observations have unique advantages in mon-
itoring of the seasonal and interannual changes in surface
water. High-resolution images such as from Sentinel-1 and
Sentinel-2 would help to improve the surface water extrac-
tion in these areas.

6 Data availability

The GLOBMAP SWF dataset is available on the Zenodo
repository at https://doi.org/10.5281/zenodo.6462883 (Liu
and Liu, 2022). The number of MOD09A1 clear-sky
snow-/ice-free observations (NClear) data is also provided
as a quality dataset. The dataset is provided by 296
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Figure 10. Global map of the number of clear-sky snow/ice-free MOD09A1 observations in 2020.

1200 km× 1200 km tiles at annual temporal and 500 m
spatial resolutions in the sinusoidal projection in Geotiff
format for each year during 2000–2020. The SWF file is
named “GLOBMAPSWF.AYYYY001.hHHvVV.V01.tif”,
while the NClear file is named “GLOBMAP-
ClearCount.AYYYY001.hHHvVV.V01.tif”, where
“YYYY” refers to the year of the file, and “HH” and
“VV” explain the number of tiles that are the same as the
MODIS standard tile. For the SWF dataset, the valid range is
0–100, the scale factor is 1.0 and the unit is percent. For the
NClear dataset, the valid range is 0–46, and the scale factor is
1.0.

7 Conclusions

In this paper, a global annual surface water cover frequency
dataset (GLOBMAP SWF) was generated at 500 m resolu-
tion from MODIS land surface reflectance data from 2000
to 2020. The SWF was proposed to quantitatively describe
the seasonal dynamics of inland water bodies by estimat-
ing the percentage of water cover occurrence in a year. The
count of a pixel covered by water was estimated indirectly
by subtracting the land observation count from total clear-
sky observation count. The SWF was calculated by dividing
the water count by the total number of clear-sky observations
without the help of cloud masks.

In 2020, the area of global maximum surface water extent
is 3.38× 106 km2, of which the permanent surface water is
1.83× 106 km2 (54 %), and the intermittent surface water is
1.55× 106 km2 (46 %). The inland water bodies are mainly
concentrated in midlatitudes–high latitudes of the Northern
Hemisphere above 35◦ N. Compared with the high-frequency
GSWCD and ISWDC datasets derived from MODIS data,
the regional analysis demonstrates that our estimation results
show better performances for frozen water and saline lakes;

the influence of clouds is successfully reduced, with the esti-
mated SWF reaching 100 % for permanent water bodies in
cloud frequently covered regions. And the false detection
was also reduced over the bright surface in winter. When
compared with the high-resolution GLAD and GSW datasets
derived from Landsat data, the generated dataset captures
more intermittent surface water, but small water bodies may
be underestimated due to the coarse spatial resolution of
MODIS. Our estimates are validated with the 10 m resolu-
tion SWF maps extracted from Sentinel-1 SAR observations
in eight regions that cover lakes, rivers and wetlands. Con-
sistent spatial patterns and good positive correlations are ob-
served between the two results, with the R2 up to 0.46–0.97,
RMSE ranging from 7.24 % to 22.62 %, and MAE between
2.07 % and 7.15 %. During 2001–2020, a decreasing trend is
observed for the area of global maximum (−7577 km2 yr−1,
p = 0.04) and minimum (−4315 km2 yr−1, p < 0.01) sur-
face water. The intermittent water also showed an insignif-
icant weak decreasing trend (−3262 km2 yr−1, p = 0.29),
while that with SWF above 50 % has been expanding since
2001 (1368 km2 yr−1, p < 0.01).

The GLOBMAP SWF dataset condenses the seasonal
variation of inland water bodies to inundation frequency dur-
ing a year. It can characterize the spatial distribution of per-
manent water extent in the dry season and maximum water
extent in the rainy season, as well as the distribution of inter-
mittent water and the length of inundation period. The dataset
can be used to analyze the interannual variation and change
trend of surface water with consideration of its seasonal vari-
ation and may guide the scientific management of water re-
sources and the investment in water infrastructures.
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