Articles | Volume 14, issue 9
https://doi.org/10.5194/essd-14-4035-2022
https://doi.org/10.5194/essd-14-4035-2022
Data description paper
 | 
06 Sep 2022
Data description paper |  | 06 Sep 2022

A 500-year annual runoff reconstruction for 14 selected European catchments

Sadaf Nasreen, Markéta Součková, Mijael Rodrigo Vargas Godoy, Ujjwal Singh, Yannis Markonis, Rohini Kumar, Oldrich Rakovec, and Martin Hanel

Related authors

Unveiling the Impact of Potential Evapotranspiration Method Selection on Trends in Hydrological Cycle Components Across Europe
Vishal Thakur, Yannis Markonis, Rohini Kumar, Johanna Ruth Thomson, Mijael Rodrigo Vargas Godoy, Martin Hanel, and Oldrich Rakovec
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-341,https://doi.org/10.5194/hess-2024-341, 2024
Preprint under review for HESS
Short summary
Changes in precipitation and temperature patterns related to the state of the North Atlantic Ocean during the Medieval Climate Anomaly
Shailendra Pratap, Yannis Markonis, and Cécile Blanchet
Clim. Past Discuss., https://doi.org/10.5194/cp-2024-68,https://doi.org/10.5194/cp-2024-68, 2024
Preprint under review for CP
Short summary
Gridded dataset of nitrogen and phosphorus point sources from wastewater in Germany (1950–2019)
Fanny J. Sarrazin, Sabine Attinger, and Rohini Kumar
Earth Syst. Sci. Data, 16, 4673–4708, https://doi.org/10.5194/essd-16-4673-2024,https://doi.org/10.5194/essd-16-4673-2024, 2024
Short summary
Groundwater head responses to droughts across Germany
Pia Ebeling, Andreas Musolff, Rohini Kumar, Andreas Hartmann, and Jan H. Fleckenstein
EGUsphere, https://doi.org/10.5194/egusphere-2024-2761,https://doi.org/10.5194/egusphere-2024-2761, 2024
Short summary
Can causal discovery lead to a more robust prediction model for runoff signatures?
Hossein Abbasizadeh, Petr Maca, Martin Hanel, Mads Troldborg, and Amir AghaKouchak
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-297,https://doi.org/10.5194/hess-2024-297, 2024
Preprint under review for HESS
Short summary

Related subject area

Domain: ESSD – Land | Subject: Hydrology
CIrrMap250: annual maps of China's irrigated cropland from 2000 to 2020 developed through multisource data integration
Ling Zhang, Yanhua Xie, Xiufang Zhu, Qimin Ma, and Luca Brocca
Earth Syst. Sci. Data, 16, 5207–5226, https://doi.org/10.5194/essd-16-5207-2024,https://doi.org/10.5194/essd-16-5207-2024, 2024
Short summary
HANZE v2.1: an improved database of flood impacts in Europe from 1870 to 2020
Dominik Paprotny, Paweł Terefenko, and Jakub Śledziowski
Earth Syst. Sci. Data, 16, 5145–5170, https://doi.org/10.5194/essd-16-5145-2024,https://doi.org/10.5194/essd-16-5145-2024, 2024
Short summary
A Copernicus-based evapotranspiration dataset at 100 m spatial resolution over four Mediterranean basins
Paulina Bartkowiak, Bartolomeo Ventura, Alexander Jacob, and Mariapina Castelli
Earth Syst. Sci. Data, 16, 4709–4734, https://doi.org/10.5194/essd-16-4709-2024,https://doi.org/10.5194/essd-16-4709-2024, 2024
Short summary
Gridded dataset of nitrogen and phosphorus point sources from wastewater in Germany (1950–2019)
Fanny J. Sarrazin, Sabine Attinger, and Rohini Kumar
Earth Syst. Sci. Data, 16, 4673–4708, https://doi.org/10.5194/essd-16-4673-2024,https://doi.org/10.5194/essd-16-4673-2024, 2024
Short summary
A globally sampled high-resolution hand-labeled validation dataset for evaluating surface water extent maps
Rohit Mukherjee, Frederick Policelli, Ruixue Wang, Elise Arellano-Thompson, Beth Tellman, Prashanti Sharma, Zhijie Zhang, and Jonathan Giezendanner
Earth Syst. Sci. Data, 16, 4311–4323, https://doi.org/10.5194/essd-16-4311-2024,https://doi.org/10.5194/essd-16-4311-2024, 2024
Short summary

Cited articles

Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., Devin, M., Ghemawat, S., Irving, G., Isard, M., Kudlur, M., Levenberg, J., Monga, R., Moorea, S., Murray, D. G., Steiner, B., Tucker, P., Vasudevan, V., Warden, P., Wicke, M., Yu, Y., Zheng, X., and Google brain: Tensorflow: A system for large-scale machine learning, in: 12th {USENIX} symposium on operating systems design and implementation ({OSDI} 16, 2–4 November 2016, Savannah, GA, USA, pp. 265–283, 2016. a, b
Armstrong, M. S., Kiem, A. S., and Vance, T. R.: Comparing instrumental, palaeoclimate, and projected rainfall data: Implications for water resources management and hydrological modelling, Journal of Hydrology: Regional Studies, 31, 100728, https://doi.org/10.1016/j.ejrh.2020.100728, 2020. a
Arnold, T. B.: kerasR: R interface to the keras deep learning library, Journal of Open Source Software, 2, 296, https://doi.org/10.21105/joss.00296, 2017. a, b
Ayzel, G., Kurochkina, L., and Zhuravlev, S.: The influence of regional hydrometric data incorporation on the accuracy of gridded reconstruction of monthly runoff, Hydrol. Sci. J., 0, https://doi.org/10.1080/02626667.2020.1762886, 1–12, 2020. a
Boch, R. and Spötl, C.: Reconstructing palaeoprecipitation from an active cave flowstone, J. Quaternary Sci., 26, 675–687, 2011. a
Download
Short summary
This article presents a 500-year reconstructed annual runoff dataset for several European catchments. Several data-driven and hydrological models were used to derive the runoff series using reconstructed precipitation and temperature and a set of proxy data. The simulated runoff was validated using independent observed runoff data and documentary evidence. The validation revealed a good fit between the observed and reconstructed series for 14 catchments, which are available for further analysis.
Altmetrics
Final-revised paper
Preprint