Articles | Volume 14, issue 8
https://doi.org/10.5194/essd-14-3599-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/essd-14-3599-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
The Landscape Fire Scars Database: mapping historical burned area and fire severity in Chile
Alejandro Miranda
CORRESPONDING AUTHOR
Center for Climate and Resilience Research, (CR), Santiago, Chile
Laboratorio de Ecología del Paisaje y Conservación,
Departamento de Ciencias Forestales, Universidad de La Frontera, Temuco,
Chile
Rayén Mentler
Center for Climate and Resilience Research, (CR), Santiago, Chile
Ítalo Moletto-Lobos
Image Processing Laboratory, Global Change Unit, University of
Valencia, Valencia, Spain
Gabriela Alfaro
Industrial Engineering Department, University of Chile, Santiago,
Chile
Leonardo Aliaga
Center for Climate and Resilience Research, (CR), Santiago, Chile
Dana Balbontín
Center for Climate and Resilience Research, (CR), Santiago, Chile
Maximiliano Barraza
Center for Climate and Resilience Research, (CR), Santiago, Chile
Susanne Baumbach
Center for Climate and Resilience Research, (CR), Santiago, Chile
Patricio Calderón
Center for Climate and Resilience Research, (CR), Santiago, Chile
Fernando Cárdenas
Center for Climate and Resilience Research, (CR), Santiago, Chile
Iván Castillo
Center for Climate and Resilience Research, (CR), Santiago, Chile
Gonzalo Contreras
Center for Climate and Resilience Research, (CR), Santiago, Chile
Felipe de la Barra
Industrial Engineering Department, University of Chile, Santiago,
Chile
Mauricio Galleguillos
Center for Climate and Resilience Research, (CR), Santiago, Chile
Facultad de Ingeniería y Ciencias, Universidad Adolfo
Ibáñez, Santiago, Chile
Mauro E. González
Center for Climate and Resilience Research, (CR), Santiago, Chile
Instituto de Conservación, Biodiversidad y Territorio, Facultad de
Ciencias Forestales y Recursos Naturales, Universidad Austral de Chile,
Valdivia, Chile
Center for Fire and Socioecosystem Resilience (FireSES), Universidad
Austral de Chile, Valdivia, Chile
Carlos Hormazábal
Center for Climate and Resilience Research, (CR), Santiago, Chile
Antonio Lara
Center for Climate and Resilience Research, (CR), Santiago, Chile
Instituto de Conservación, Biodiversidad y Territorio, Facultad de
Ciencias Forestales y Recursos Naturales, Universidad Austral de Chile,
Valdivia, Chile
Fundación Centro de los Bosques Nativos FORECOS, Valdivia, Chile
Ian Mancilla
Center for Climate and Resilience Research, (CR), Santiago, Chile
Francisca Muñoz
Center for Climate and Resilience Research, (CR), Santiago, Chile
Cristian Oyarce
Center for Climate and Resilience Research, (CR), Santiago, Chile
Francisca Pantoja
Center for Climate and Resilience Research, (CR), Santiago, Chile
Rocío Ramírez
Center for Climate and Resilience Research, (CR), Santiago, Chile
Vicente Urrutia
Center for Climate and Resilience Research, (CR), Santiago, Chile
Related authors
No articles found.
Daniel Nuñez-Ibarra, Mauricio Zambrano-Bigiarini, and Mauricio Galleguillos
EGUsphere, https://doi.org/10.5194/egusphere-2025-2606, https://doi.org/10.5194/egusphere-2025-2606, 2025
This preprint is open for discussion and under review for Hydrology and Earth System Sciences (HESS).
Short summary
Short summary
Soil moisture plays a key role in how land and climate interact, yet it remains difficult to measure in remote or natural areas. This study compared four state-of-the-art soil moisture datasets against ground data from ten sites in Chile. Results show that some products perform better in humid areas, while others do better in dry regions. The work highlights which datasets are most reliable and suggests new ways to assess how well they track changes after rainfall events.
H. Jaime Hernández, Valentina González, Lissette Cortés, Carlos Hormazábal, Diego Muñoz, Miquel Nieto, Alejandro Miranda, Rodrigo Fuentes, Adison Altamirano, and Cristian Echeverría
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-3-2024, 643–647, https://doi.org/10.5194/isprs-archives-XLVIII-3-2024-643-2024, https://doi.org/10.5194/isprs-archives-XLVIII-3-2024-643-2024, 2024
Anne F. Van Loon, Sarra Kchouk, Alessia Matanó, Faranak Tootoonchi, Camila Alvarez-Garreton, Khalid E. A. Hassaballah, Minchao Wu, Marthe L. K. Wens, Anastasiya Shyrokaya, Elena Ridolfi, Riccardo Biella, Viorica Nagavciuc, Marlies H. Barendrecht, Ana Bastos, Louise Cavalcante, Franciska T. de Vries, Margaret Garcia, Johanna Mård, Ileen N. Streefkerk, Claudia Teutschbein, Roshanak Tootoonchi, Ruben Weesie, Valentin Aich, Juan P. Boisier, Giuliano Di Baldassarre, Yiheng Du, Mauricio Galleguillos, René Garreaud, Monica Ionita, Sina Khatami, Johanna K. L. Koehler, Charles H. Luce, Shreedhar Maskey, Heidi D. Mendoza, Moses N. Mwangi, Ilias G. Pechlivanidis, Germano G. Ribeiro Neto, Tirthankar Roy, Robert Stefanski, Patricia Trambauer, Elizabeth A. Koebele, Giulia Vico, and Micha Werner
Nat. Hazards Earth Syst. Sci., 24, 3173–3205, https://doi.org/10.5194/nhess-24-3173-2024, https://doi.org/10.5194/nhess-24-3173-2024, 2024
Short summary
Short summary
Drought is a creeping phenomenon but is often still analysed and managed like an isolated event, without taking into account what happened before and after. Here, we review the literature and analyse five cases to discuss how droughts and their impacts develop over time. We find that the responses of hydrological, ecological, and social systems can be classified into four types and that the systems interact. We provide suggestions for further research and monitoring, modelling, and management.
Juan Pablo Boisier, Camila Alvarez-Garreton, Rodrigo Marinao, and Mauricio Galleguillos
EGUsphere, https://doi.org/10.5194/egusphere-2024-2695, https://doi.org/10.5194/egusphere-2024-2695, 2024
Short summary
Short summary
Our study examines water stress in Chile from mid-20th century to the end of the 21st century, using novel datasets on water availability, land use, and water use. We compute a water stress index for all basins in Chile and show that rising water use significantly contributes to water stress. We also show that a drier future is expected in central Chile and that the water stress index can be used as a tool for designing adaptation strategies.
Violeta Tolorza, Christian H. Mohr, Mauricio Zambrano-Bigiarini, Benjamín Sotomayor, Dagoberto Poblete-Caballero, Sebastien Carretier, Mauricio Galleguillos, and Oscar Seguel
Earth Surf. Dynam., 12, 841–861, https://doi.org/10.5194/esurf-12-841-2024, https://doi.org/10.5194/esurf-12-841-2024, 2024
Short summary
Short summary
We calculated disturbances and landscape-lowering rates across various timescales in a ~ 406 km2 catchment in the Chilean Coastal Range. Intensive management of exotic tree plantations involves short rotational cycles (planting and harvesting by replanting clear-cuts) lasting 9–25 years, dense forestry road networks (increasing connectivity), and a recent increase in wildfires. Concurrently, persistent drought conditions and the high water demand of fast-growing trees reduce water availability.
Oscar M. Baez-Villanueva, Mauricio Zambrano-Bigiarini, Diego G. Miralles, Hylke E. Beck, Jonatan F. Siegmund, Camila Alvarez-Garreton, Koen Verbist, René Garreaud, Juan Pablo Boisier, and Mauricio Galleguillos
Hydrol. Earth Syst. Sci., 28, 1415–1439, https://doi.org/10.5194/hess-28-1415-2024, https://doi.org/10.5194/hess-28-1415-2024, 2024
Short summary
Short summary
Various drought indices exist, but there is no consensus on which index to use to assess streamflow droughts. This study addresses meteorological, soil moisture, and snow indices along with their temporal scales to assess streamflow drought across hydrologically diverse catchments. Using data from 100 Chilean catchments, findings suggest that there is not a single drought index that can be used for all catchments and that snow-influenced areas require drought indices with larger temporal scales.
Jorge F. Perez-Quezada, David Trejo, Javier Lopatin, David Aguilera, Bruce Osborne, Mauricio Galleguillos, Luca Zattera, Juan L. Celis-Diez, and Juan J. Armesto
Biogeosciences, 21, 1371–1389, https://doi.org/10.5194/bg-21-1371-2024, https://doi.org/10.5194/bg-21-1371-2024, 2024
Short summary
Short summary
For 8 years we sampled a temperate rainforest and a peatland in Chile to estimate their efficiency to capture carbon per unit of water lost. The efficiency is more related to the water lost than to the carbon captured and is mainly driven by evaporation instead of transpiration. This is the first report from southern South America and highlights that ecosystems might behave differently in this area, likely explained by the high annual precipitation (~ 2100 mm) and light-limited conditions.
Cited articles
Ager, A. A., Preisler, H. K., Arca, B., Spano, D., and Salis, M.: Wildfire
risk estimation in the Mediterranean area: MEDITERRANEAN WILDFIRE RISK
ESTIMATION, Environmetrics, 25, 384–396, https://doi.org/10.1002/env.2269,
2014.
Alzubaidi, L., Zhang, J., Humaidi, A. J., Al-Dujaili, A., Duan, Y.,
Al-Shamma, O., Santamaría, J., Fadhel, M. A., Al-Amidie, M., and
Farhan, L.: Review of deep learning: concepts, CNN architectures,
challenges, applications, future directions, J. Big Data, 8, 53,
https://doi.org/10.1186/s40537-021-00444-8, 2021.
Amato, F., Tonini, M., Murgante, B., and Kanevski, M.: Fuzzy definition of
Rural Urban Interface: An application based on land use change scenarios in
Portugal, Environ. Model. Softw., 104, 171–187,
https://doi.org/10.1016/j.envsoft.2018.03.016, 2018.
Andela, N., Morton, D. C., Giglio, L., Paugam, R., Chen, Y., Hantson, S., van der Werf, G. R., and Randerson, J. T.: The Global Fire Atlas of individual fire size, duration, speed and direction, Earth Syst. Sci. Data, 11, 529–552, https://doi.org/10.5194/essd-11-529-2019, 2019.
Artés, T., Oom, D., de Rigo, D., Durrant, T. H., Maianti, P.,
Libertà, G., and San-Miguel-Ayanz, J.: A global wildfire dataset for the
analysis of fire regimes and fire behaviour, Sci. Data, 6, 296,
https://doi.org/10.1038/s41597-019-0312-2, 2019.
Balch, J. K., Bradley, B. A., Abatzoglou, J. T., Nagy, R. C., Fusco, E. J.,
and Mahood, A. L.: Human-started wildfires expand the fire niche across the
United States, P. Natl. Acad. Sci. USA, 114, 2946–2951,
https://doi.org/10.1073/pnas.1617394114, 2017.
Boisier, J. P., Rondanelli, R., Garreaud, R. D., and Muñoz, F.:
Anthropogenic and natural contributions to the Southeast Pacific
precipitation decline and recent megadrought in central Chile, Geophys. Res.
Lett., 43, 413–421, https://doi.org/10.1002/2015GL067265, 2016.
Bowman, D., Williamson, G., Yebra, M., Lizundia-Loiola, J., Pettinari, M.
L., Shah, S., Bradstock, R., and Chuvieco, E.: Wildfires: Australia needs
national monitoring agency, Nature, 584, 188–191,
https://doi.org/10.1038/d41586-020-02306-4, 2020.
Bowman, D. M. J. S., Balch, J., Artaxo, P., Bond, W. J., Cochrane, M. A.,
D'Antonio, C. M., DeFries, R., Johnston, F. H., Keeley, J. E., Krawchuk, M.
A., Kull, C. A., Mack, M., Moritz, M. A., Pyne, S., Roos, C. I., Scott, A.
C., Sodhi, N. S., and Swetnam, T. W.: The human dimension of fire regimes on
Earth: The human dimension of fire regimes on Earth, J. Biogeogr., 38,
2223–2236, https://doi.org/10.1111/j.1365-2699.2011.02595.x, 2011.
Brull, J.: Análisis de la severidad de los incendios de magnitud de la temporada de incendios forestales 2017–2018, Sección de análisis y predicción de incendios forestales. Corporación Nacional Forestal, Santiago, Chile, pp. 67, 2018.
Butsic, V., Kelly, M., and Moritz, M.: Land Use and Wildfire: A Review of
Local Interactions and Teleconnections, Land, 4, 140–156,
https://doi.org/10.3390/land4010140, 2015.
Cardil, A., Mola-Yudego, B., Blázquez-Casado, Á., and
González-Olabarria, J. R.: Fire and burn severity assessment:
Calibration of Relative Differenced Normalized Burn Ratio (RdNBR) with field
data, J. Environ. Manage., 235, 342–349,
https://doi.org/10.1016/j.jenvman.2019.01.077, 2019.
Chuvieco, E., Lizundia-Loiola, J., Pettinari, M. L., Ramo, R., Padilla, M., Tansey, K., Mouillot, F., Laurent, P., Storm, T., Heil, A., and Plummer, S.: Generation and analysis of a new global burned area product based on MODIS 250 m reflectance bands and thermal anomalies, Earth Syst. Sci. Data, 10, 2015–2031, https://doi.org/10.5194/essd-10-2015-2018, 2018.
Chuvieco, E., Mouillot, F., van der Werf, G. R., San Miguel, J., Tanase, M.,
Koutsias, N., García, M., Yebra, M., Padilla, M., Gitas, I., Heil, A.,
Hawbaker, T. J., and Giglio, L.: Historical background and current
developments for mapping burned area from satellite Earth observation,
Remote Sens. Environ., 225, 45–64,
https://doi.org/10.1016/j.rse.2019.02.013, 2019.
de la Barrera, F., Barraza, F., Favier, P., Ruiz, V., and Quense, J.:
Megafires in Chile 2017: Monitoring multiscale environmental impacts of
burned ecosystems, Sci. Total Environ., 637–638, 1526–1536,
https://doi.org/10.1016/j.scitotenv.2018.05.119, 2018.
Duane, A., Castellnou, M., and Brotons, L.: Towards a comprehensive look at
global drivers of novel extreme wildfire events, Clim. Change, 165, 43,
https://doi.org/10.1007/s10584-021-03066-4, 2021.
Fassnacht, F. E., Schmidt-Riese, E., Kattenborn, T., and Hernández, J.:
Explaining Sentinel 2-based dNBR and RdNBR variability with reference data
from the bird's eye (UAS) perspective, Int. J. Appl. Earth Obs.
Geoinf., 95, 102262, https://doi.org/10.1016/j.jag.2020.102262, 2021.
Fusco, E. J., Abatzoglou, J. T., Balch, J. K., Finn, J. T., and Bradley, B.
A.: Quantifying the human influence on fire ignition across the western USA,
Ecol. Appl., 26, 2390–2401, https://doi.org/10.1002/eap.1395, 2016.
Ganteaume, A. and Syphard, A. D.: Ignition Sources, in: Encyclopedia of
Wildfires and Wildland-Urban Interface (WUI) Fires, edited by: Manzello, S.
L., Springer International Publishing, Cham, 1–17,
https://doi.org/10.1007/978-3-319-51727-8_43-1, 2018.
Garreaud, R. D., Boisier, J. P., Rondanelli, R., Montecinos, A.,
Sepúlveda, H. H., and Veloso-Aguila, D.: The Central Chile Mega Drought
(2010–2018): A climate dynamics perspective, Int. J. Climatol., 40, 421–439,
https://doi.org/10.1002/joc.6219, 2019.
Ghermandi, L., Lanorte, A., Oddi, F. J., and Lasaponara, R.: Assessing Fire
Severity in Semiarid Environments with the DNBR and RDNBR Indices, Glob. J.
Sci. Front. Res. H Environ. Earth Sci., 19, 27–44, 2019.
Giglio, L., Randerson, J. T., and van der Werf, G. R.: Analysis of daily,
monthly, and annual burned area using the fourth-generation global fire
emissions database (GFED4): ANALYSIS OF BURNED AREA, J. Geophys. Res.-Biogeo., 118, 317–328, https://doi.org/10.1002/jgrg.20042, 2013.
Giglio, L., Schroeder, W., and Justice, C. O.: The collection 6 MODIS active
fire detection algorithm and fire products, Remote Sens. Environ., 178,
31–41, https://doi.org/10.1016/j.rse.2016.02.054, 2016.
Giglio, L., Boschetti, L., Roy, D. P., Humber, M. L., and Justice, C. O.:
The Collection 6 MODIS burned area mapping algorithm and product, Remote
Sens. Environ., 217, 72–85, https://doi.org/10.1016/j.rse.2018.08.005,
2018.
Gómez-González, S., González, M. E., Paula, S.,
Díaz-Hormazábal, I., Lara, A., and Delgado-Baquerizo, M.:
Temperature and agriculture are largely associated with fire activity in
Central Chile across different temporal periods, Forest Ecol. Manage., 433,
535–543, https://doi.org/10.1016/j.foreco.2018.11.041, 2019.
González, M. E., Gómez-González, S., Lara, A., Garreaud, R., and
Díaz-Hormazábal, I.: The 2010-2015 Megadrought and its influence on
the fire regime in central and south-central Chile, Ecosphere, 9, e02300,
https://doi.org/10.1002/ecs2.2300, 2018.
Goodwin, N. R. and Collett, L. J.: Development of an automated method for
mapping fire history captured in Landsat TM and ETM+ time series across
Queensland, Australia, Remote Sens. Environ., 148, 206–221,
https://doi.org/10.1016/j.rse.2014.03.021, 2014.
Gorelick, N., Hancher, M., Dixon, M., Ilyushchenko, S., Thau, D., and Moore,
R.: Google Earth Engine: Planetary-scale geospatial analysis for everyone,
Remote Sens. Environ., 202, 18–27,
https://doi.org/10.1016/j.rse.2017.06.031, 2017.
Hawbaker, T. J., Vanderhoof, M. K., Beal, Y.-J., Takacs, J. D., Schmidt, G.
L., Falgout, J. T., Williams, B., Fairaux, N. M., Caldwell, M. K., Picotte,
J. J., Howard, S. M., Stitt, S., and Dwyer, J. L.: Mapping burned areas
using dense time-series of Landsat data, Remote Sens. Environ., 198,
504–522, https://doi.org/10.1016/j.rse.2017.06.027, 2017.
Helman, D.: Land surface phenology: What do we really “see” from space?,
Sci. Total Environ., 618, 665–673,
https://doi.org/10.1016/j.scitotenv.2017.07.237, 2018.
Holz, A., Paritsis, J., Mundo, I. A., Veblen, T. T., Kitzberger, T.,
Williamson, G. J., Aráoz, E., Bustos-Schindler, C., González, M. E.,
Grau, H. R., and Quezada, J. M.: Southern Annular Mode drives multicentury
wildfire activity in southern South America, P. Natl. Acad. Sci. USA, 114,
9552–9557, https://doi.org/10.1073/pnas.1705168114, 2017.
Hu, X., Ban, Y., and Nascetti, A.: Uni-Temporal Multispectral Imagery for
Burned Area Mapping with Deep Learning, Remote Sens., 13, 1509,
https://doi.org/10.3390/rs13081509, 2021.
Huang, C., Thomas, N., Goward, S. N., Masek, J. G., Zhu, Z., Townshend, J.
R. G., and Vogelmann, J. E.: Automated masking of cloud and cloud shadow for
forest change analysis using Landsat images, Int. J. Remote Sens., 31,
5449–5464, https://doi.org/10.1080/01431160903369642, 2010.
Jolly, W. M., Cochrane, M. A., Freeborn, P. H., Holden, Z. A., Brown, T. J.,
Williamson, G. J., and Bowman, D. M. J. S.: Climate-induced variations in
global wildfire danger from 1979 to 2013, Nat. Commun., 6, 7537,
https://doi.org/10.1038/ncomms8537, 2015.
Kelly, L. T., Giljohann, K. M., Duane, A., Aquilué, N., Archibald, S.,
Batllori, E., Bennett, A. F., Buckland, S. T., Canelles, Q., Clarke, M. F.,
Fortin, M.-J., Hermoso, V., Herrando, S., Keane, R. E., Lake, F. K.,
McCarthy, M. A., Morán-Ordóñez, A., Parr, C. L., Pausas, J. G.,
Penman, T. D., Regos, A., Rumpff, L., Santos, J. L., Smith, A. L., Syphard,
A. D., Tingley, M. W., and Brotons, L.: Fire and biodiversity in the
Anthropocene, Science, 370, eabb0355,
https://doi.org/10.1126/science.abb0355, 2020.
Key, C. H. and Benson, N. C.: The normalized burn ratio (NBR): A Landsat TM radiometric measure of burn severity. US Geological Survey Northern Rocky Mountain Science Center. U.S. Department of the Interior, U.S. Geological Survey, Northern Rocky Mountain Science Center, 2003.
King, M. D., Platnick, S., Menzel, W. P., Ackerman, S. A., and Hubanks, P.
A.: Spatial and Temporal Distribution of Clouds Observed by MODIS Onboard
the Terra and Aqua Satellites, IEEE Ts. Geosci. Remote, 51,
3826–3852, https://doi.org/10.1109/TGRS.2012.2227333, 2013.
Knopp, L., Wieland, M., Rättich, M., and Martinis, S.: A Deep Learning
Approach for Burned Area Segmentation with Sentinel-2 Data, Remote Sens.,
12, 2422, https://doi.org/10.3390/rs12152422, 2020.
Lentile, L. B., Holden, Z. A., Smith, A. M. S., Falkowski, M. J., Hudak, A.
T., Morgan, P., Lewis, S. A., Gessler, P. E., and Benson, N. C.: Remote
sensing techniques to assess active fire characteristics and post-fire
effects, Int. J. Wildland Fire, 15, 319, https://doi.org/10.1071/WF05097,
2006.
Lizundia-Loiola, J., Franquesa, M., Boettcher, M., Kirches, G., Pettinari,
M. L., and Chuvieco, E.: Implementation of the Burned Area Component of the
Copernicus Climate Change Service: From MODIS to OLCI Data, Remote Sens.,
13, 4295, https://doi.org/10.3390/rs13214295, 2021.
Long, T., Zhang, Z., He, G., Jiao, W., Tang, C., Wu, B., Zhang, X., Wang,
G., and Yin, R.: 30 m Resolution Global Annual Burned Area Mapping Based on
Landsat Images and Google Earth Engine, Remote Sens., 11, 489,
https://doi.org/10.3390/rs11050489, 2019.
McWethy, D. B., Pauchard, A., García, R. A., Holz, A., González, M.
E., Veblen, T. T., Stahl, J., and Currey, B.: Landscape drivers of recent
fire activity (2001–2017) in south-central Chile, PLOS ONE, 13, e0201195,
https://doi.org/10.1371/journal.pone.0201195, 2018.
Miller, J. D. and Thode, A. E.: Quantifying burn severity in a heterogeneous
landscape with a relative version of the delta Normalized Burn Ratio (dNBR),
Remote Sens. Environ., 109, 66–80,
https://doi.org/10.1016/j.rse.2006.12.006, 2007.
Miranda, A., Altamirano, A., Cayuela, L., Lara, A., and González, M.:
Native forest loss in the Chilean biodiversity hotspot: revealing the
evidence, Reg. Environ. Change, 17, 285–297,
https://doi.org/10.1007/s10113-016-1010-7, 2017.
Miranda, A., Carrasco, J., González, M., Pais, C., Lara, A., Altamirano, A., Weintraub, A., and Syphard, A. D.: Evidence-based mapping of the wildland-urban interface to better identify human communities threatened by wildfires, Environ. Res. Lett., 15, 094069, https://doi.org/10.1088/1748-9326/ab9be5, 2020.
Miranda, A., Mentler, R., Moleto-Lobos, I., Alfaro, G., Aliaga, L., Balbontín, D., Barraza, M., Baumbach, S., Calderón, P., Cárdenas, F., Castillo, I., Gonzalo, C., de la Barra, F., Galleguillos, M., González, M., Hormazábal, C., Lara, A., Mancilla, I., Muñoz, F., Oyarce, C., Pantoja, F., Ramírez, R., and Urrutia, V. Fire Scars: remotely sensed historical burned area and fire severity in Chile between 1984–2018, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.941127, 2022.
Moritz, M. A., Batllori, E., Bradstock, R. A., Gill, A. M., Handmer, J.,
Hessburg, P. F., Leonard, J., McCaffrey, S., Odion, D. C., Schoennagel, T.,
and Syphard, A. D.: Learning to coexist with wildfire, Nature, 515, 58–66,
https://doi.org/10.1038/nature13946, 2014.
Pettorelli, N., Vik, J. O., Mysterud, A., Gaillard, J.-M., Tucker, C. J.,
and Stenseth, N. Chr.: Using the satellite-derived NDVI to assess ecological
responses to environmental change, Trends Ecol. Evol., 20, 503–510,
https://doi.org/10.1016/j.tree.2005.05.011, 2005.
Pinto, M. M., Trigo, R. M., Trigo, I. F., and DaCamara, C. C.: A Practical
Method for High-Resolution Burned Area Monitoring Using Sentinel-2 and
VIIRS, Remote Sens., 13, 1608, https://doi.org/10.3390/rs13091608, 2021.
Radeloff, V. C., Helmers, D. P., Kramer, H. A., Mockrin, M. H., Alexandre,
P. M., Bar-Massada, A., Butsic, V., Hawbaker, T. J., Martinuzzi, S.,
Syphard, A. D., and Stewart, S. I.: Rapid growth of the US wildland-urban
interface raises wildfire risk, P. Natl. Acad. Sci. USA, 115, 3314–3319,
https://doi.org/10.1073/pnas.1718850115, 2018.
Ramo, R., Roteta, E., Bistinas, I., van Wees, D., Bastarrika, A., Chuvieco,
E., and van der Werf, G. R.: African burned area and fire carbon emissions
are strongly impacted by small fires undetected by coarse resolution
satellite data, P. Natl. Acad. Sci. USA, 118, e2011160118,
https://doi.org/10.1073/pnas.2011160118, 2021.
Roteta, E., Bastarrika, A., Padilla, M., Storm, T., and Chuvieco, E.:
Development of a Sentinel-2 burned area algorithm: Generation of a small
fire database for sub-Saharan Africa, Remote Sens. Environ., 222, 1–17,
https://doi.org/10.1016/j.rse.2018.12.011, 2019.
Rouse, J. W., Haas, R. H., Schell, J. A., and Deering, D. W.: Monitoring vegetation systems in the Great Plains with
ERTS, in: Third Earth Resources Technology Satellite–1
Syposium, edited by: Freden, S. C., Mercanti, E. P., and Becker, M., Volume I: Technical Presentations, NASA SP-351, NASA, Washington, D.C., 309–317, 1974.
Roy, D. P., Ju, J., Mbow, C., Frost, P., and Loveland, T.: Accessing free
Landsat data via the Internet: Africa's challenge, Remote Sens. Lett., 1,
111–117, https://doi.org/10.1080/01431160903486693, 2010.
Schroeder, W., Oliva, P., Giglio, L., and Csiszar, I. A.: The New VIIRS 375m
active fire detection data product: Algorithm description and initial
assessment, Remote Sens. Environ., 143, 85–96,
https://doi.org/10.1016/j.rse.2013.12.008, 2014.
Singh, M., Evans, D., Tan, B. S., and Nin, C. S.: Mapping and Characterizing
Selected Canopy Tree Species at the Angkor World Heritage Site in Cambodia
Using Aerial Data, PLOS ONE, 10, e0121558,
https://doi.org/10.1371/journal.pone.0121558, 2015.
Soulard, C., Albano, C., Villarreal, M., and Walker, J.: Continuous
1985–2012 Landsat Monitoring to Assess Fire Effects on Meadows in Yosemite
National Park, California, Remote Sens., 8, 371,
https://doi.org/10.3390/rs8050371, 2016.
Soverel, N. O., Perrakis, D. D. B., and Coops, N. C.: Estimating burn
severity from Landsat dNBR and RdNBR indices across western Canada, Remote
Sens. Environ., 114, 1896–1909, https://doi.org/10.1016/j.rse.2010.03.013,
2010.
Stenzel, J. E., Bartowitz, K. J., Hartman, M. D., Lutz, J. A., Kolden, C.
A., Smith, A. M. S., Law, B. E., Swanson, M. E., Larson, A. J., Parton, W.
J., and Hudiburg, T. W.: Fixing a snag in carbon emissions estimates from
wildfires, Glob. Change Biol., 25, 3985–3994,
https://doi.org/10.1111/gcb.14716, 2019.
Stillinger, T., Roberts, D. A., Collar, N. M., and Dozier, J.: Cloud Masking
for Landsat 8 and MODIS Terra Over Snow-Covered Terrain: Error Analysis and
Spectral Similarity Between Snow and Cloud, Water Resour. Res., 55,
6169–6184, https://doi.org/10.1029/2019WR024932, 2019.
Stougiannidou, D., Zafeiriou, E., and Raftoyannis, Y.: Forest Fires in
Greece and Their Economic Impacts on Agriculture, KnE Soc. Sci., 54–70,
https://doi.org/10.18502/kss.v4i1.5977, 2020.
Szpakowski, D. M. and Jensen, J. L. R.: A Review of the Applications of
Remote Sensing in Fire Ecology, Remote Sens., 11, 2638,
https://doi.org/10.3390/rs11222638, 2019.
Úbeda, X. and Sarricolea, P.: Wildfires in Chile: A review, Global
Planet. Change, 146, 152–161,
https://doi.org/10.1016/j.gloplacha.2016.10.004, 2016.
Urrutia-Jalabert, R., González, M. E., González-Reyes, Á., Lara,
A., and Garreaud, R.: Climate variability and forest fires in central and
south-central Chile, Ecosphere, 9, e02171,
https://doi.org/10.1002/ecs2.2171, 2018.
Viale, M., Bianchi, E., Cara, L., Ruiz, L. E., Villalba, R., Pitte, P.,
Masiokas, M., Rivera, J., and Zalazar, L.: Contrasting Climates at Both
Sides of the Andes in Argentina and Chile, Front. Environ. Sci., 7, 69,
https://doi.org/10.3389/fenvs.2019.00069, 2019.
van Wagtendonk, J. W., Root, R. R., and Key, C. H.: Comparison of AVIRIS and
Landsat ETM+ detection capabilities for burn severity, Remote Sens.
Environ., 92, 397–408, https://doi.org/10.1016/j.rse.2003.12.015, 2004.
Wulder, M. A., White, J. C., Loveland, T. R., Woodcock, C. E., Belward, A.
S., Cohen, W. B., Fosnight, E. A., Shaw, J., Masek, J. G., and Roy, D. P.:
The global Landsat archive: Status, consolidation, and direction, Remote
Sens. Environ., 185, 271–283, https://doi.org/10.1016/j.rse.2015.11.032,
2016.
Short summary
Achieving a local understanding of fire regimes requires high-resolution, systematic and dynamic data. High-quality information can help to transform evidence into decision-making. Taking advantage of big-data and remote sensing technics we developed a flexible workflow to reconstruct burned area and fire severity data for more than 8000 individual fires in Chile. The framework developed for the database can be applied anywhere in the world with minimal adaptation.
Achieving a local understanding of fire regimes requires high-resolution, systematic and dynamic...
Altmetrics
Final-revised paper
Preprint