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Abstract. Achieving a local understanding of fire regimes requires high-resolution, systematic and dynamic
databases. High-quality information can help to transform evidence into decision-making in the context of
rapidly changing landscapes, particularly considering that geographical and temporal patterns of fire regimes
and their trends vary locally over time. Global fire scar products at low spatial resolutions are available, but high-
resolution wildfire data, especially for developing countries, are still lacking. Taking advantage of the Google
Earth Engine (GEE) big-data analysis platform, we developed a flexible workflow to reconstruct individual
burned areas and derive fire severity estimates for all reported fires. We tested our approach for historical wild-
fires in Chile. The result is the Landscape Fire Scars Database, a detailed and dynamic database that reconstructs
8153 fires scars, representing 66.6 % of the country’s officially recorded fires between 1985 and 2018. For each
fire event, the database contains the following information: (i) the Landsat mosaic of pre- and post-fire images;
(ii) the fire scar in binary format; (iii) the remotely sensed estimated fire indexes (the normalized burned ra-
tio, NBR, and the relative delta normalized burn ratio, RdNBR); and two vector files indicating (iv) the fire scar
perimeter and (v) the fire scar severity reclassification, respectively. The Landscape Fire Scars Database for Chile
and GEE script (JavaScript) are publicly available. The framework developed for the database can be applied
anywhere in the world, with the only requirement being its adaptation to local factors such as data availability,
fire regimes, land cover or land cover dynamics, vegetation recovery, and cloud cover. The Landscape Fire Scars
Database for Chile is publicly available in https://doi.org/10.1594/PANGAEA.941127 (Miranda et al., 2022).
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1 Introduction

Wildfires, as a natural phenomenon, have been a key compo-
nent of the terrestrial system for millions of years, shaping
biome structure and composition as well as influencing the
Earth system’s cycles. Human activity has dramatically mod-
ified natural wildfire regimes and is now the main driver of
their spatial and temporal patterns (Balch et al., 2017; Bow-
man et al., 2011). The changing fire regime has become an
increasing threat to biodiversity (Kelly et al., 2020), agri-
cultural and timber production (Stougiannidou et al., 2020;
de la Barrera et al., 2018), and rural/peri-urban communi-
ties (Radeloff et al., 2018); it has also become a major con-
tributor to greenhouse gas emissions (Giglio et al., 2013).
Recent estimates point to a global mean burned area of 337
to 423 Mha every year (Giglio et al., 2013, 2018). However,
the geographical and temporal patterns of fire regimes and
their trends over time vary locally depending on the source
of ignition (Ganteaume and Syphard, 2018); climate charac-
teristics and their changes (Jolly et al., 2015; Duane et al.,
2021); predominant land use and land cover (Butsic et al.,
2015); railroad density (Amato et al., 2018); and firefight-
ing, fire suppression and fire prevention capacity (Bowman
et al., 2011; Moritz et al., 2014). Additionally, each natural
or anthropogenic forcing factor differs in its impact on fire
regime attributes (e.g., ignition, severity, burned area and in-
tensity) across multiple spatial and temporal scales world-
wide (Ager et al., 2014; Balch et al., 2017; Fusco et al.,
2016). An understanding of fire regimes at a local level re-
quires high-resolution, systematic and dynamic databases in
order to transform evidence into decision-making in these
rapidly changing landscapes (Bowman et al., 2020).

Remote sensing provides the pre-, during and post-fire bio-
physical information necessary for conducting fire-risk as-
sessment, fire detection and monitoring, assessment of fire
impacts, and follow-up of changes in land cover trends af-
ter fire occurrence (Szpakowski and Jensen, 2019). Recent
public datasets and products have enabled a better under-
standing of global and regional wildfire patterns (Giglio et
al., 2016, 2018; Schroeder et al., 2014; Lizundia-Loiola et
al., 2021). Although the principal active fire and burned area
products contain information going back to the year 2000
(e.g., MODIS) with a spatial resolution in the best cases of
more than 250 m (Chuvieco et al., 2018), there is still a lack
of high-resolution wildfire data, especially for developing
countries (Chuvieco et al., 2019). Andela et al. (2019) cre-
ated a global dataset for the period from 2003 to 2016 that
estimates the size, duration and propagation rate of individ-
ual wildfires with a spatial resolution of 500 m using MODIS
products. Likewise, Artés et al. (2019), also using MODIS
products, developed a global dataset to analyze fire regimes
and fire behavior based on ignition dates and daily burned ar-
eas for individual wildfires. The large discrepancies between
local and global estimates of burned area occur mostly in
the case of fires of less than 100 ha due to detection diffi-

culties when using coarse-resolution products (Roteta et al.,
2019; Ramo et al., 2021). This constitutes a significant bar-
rier to the proper understanding of local wildfire regimes and
highlights the need for a high-resolution wildfire database
(Chuvieco et al., 2019). Recent efforts using Landsat images
have led to the identification of annual burn probabilities per
pixel from which a database with a 30 m spatial resolution
has been constructed that reaches back to the 1980s, but this
has been done only for developed countries such as the USA
and Australia (Goodwin and Collett, 2014; Hawbaker et al.,
2017). However, recent computational advances and the free
availability of satellite imagery catalogs provide a promising
framework for mapping annual burned areas worldwide, at a
spatial resolution of 30 m with Landsat and at a 20 m reso-
lution with Sentinel-2, which would be a major step forward
in high-resolution wildfire database generation (Long et al.,
2019; Ramo et al., 2021).

In the case of Chile, the fire regime has been described
mainly on the basis of the public wildfire database main-
tained by the Chilean Forest Service (CONAF) as well as
with MODIS monthly burned area data, the latter of which
have been used only in the most recent studies (de la Bar-
rera et al., 2018; McWethy et al., 2018). Evidence regard-
ing burned areas and fire frequency is derived from data
with spatial resolutions between 500 m and 5 km (Gómez-
González et al., 2019; González et al., 2018). From these
large-scale datasets, it has been determined that fire fre-
quency is closely related to human footprint zones, such
as cities or other densely populated areas (Gómez-González
et al., 2019; McWethy et al., 2018), roads (Miranda et al.,
2020), and agricultural or industrial forest plantation activ-
ities (Gómez-González et al., 2019; McWethy et al., 2018).
However, burned area also strongly interacts with climatic
conditions favorable to the spread of fires, especially warmer
and dryer years associated with the El Niño–Southern Os-
cillation, wet winters the year previous (Holz et al., 2017;
Urrutia-Jalabert et al., 2018) and severe drought (González
et al., 2018). Such conditions have been more prevalent
and more frequent in recent years, with increasing temper-
atures and a general reduction in precipitation reported for
the area since 1980 and a prolonged “megadrought” since
2010 (Boisier et al., 2016; Garreaud et al., 2019). Fire igni-
tion near human communities, favorable climatic conditions,
and a lack of landscape or fuel management lead to increased
wildfire occurrence (Úbeda and Sarricolea, 2016). However,
this large-scale understanding may still be insufficient, espe-
cially for local applications such as fire spread modeling, fire
severity estimation, landscape planning and design, ecologi-
cal impacts and ecosystem resilience, or national greenhouse
gas emission estimation.

An excellent opportunity for developing countries to
generate their own local and historical high-resolution
databases of wildfire scars is provided by the Google Earth
Engine (GEE) (Long et al., 2019). GEE is an open cloud-
computing platform for geospatial analysis that contains a
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public catalog of satellite images, topography, land cover
and other environmental datasets (Gorelick et al., 2017).
Taking advantage of this big-data analysis platform, we
generate a detailed database of fire scars in Chile through
the development of a flexible workflow, enabling us to
reconstruct individual burned areas and fire severity infor-
mation for all reported historical fires. The result is our
Landscape Fire Scars Database for Chile; this database and
the GEE script (JavaScript) used to generate it are publicly
available at https://doi.org/10.1594/PANGAEA.941127
and https://code.earthengine.google.com/
554027d16823525d890ab2f6c45167d9 (last access:
27 July 2022), respectively. This framework could be
implemented for any geographical area globally, requiring
only that it be adapted to local conditions with respect to
seed data availability, fire regimes, land cover or land cover
dynamics, vegetation recovery, and cloud cover.

2 Data and methods

2.1 Study site

The approach that we developed was applied to central and
southern central Chile (29–43◦5′ S), a long stretch of terri-
tory encompassing 10 of the country’s administrative regions
(∼ 255 120 km2). Fire activity in Chile is concentrated in this
area, where considerable changes in land use and land cover
have been observed in recent decades (Miranda et al., 2017),
associated with increased fire activity (González et al., 2018).

2.2 Data seeding

To construct our historical database of fire scars, we used
a subset of the public wildfire database provided by the
Chilean Forest Service (Corporación Nacional Forestal –
CONAF). This agency records and stores information on the
location, date, cause, affected area by land use, date and time
of first control and suppression of fire, among other vari-
ables, on all fires (> 0.01 ha). The georeferencing system
used by CONAF until 2003 assigned each fire to the center
of a 1 km×1 km alphanumeric grid, based on the subdivi-
sion of 1 : 50 000 scale Military Geographic Institute (IGM)
maps. After 2003, the location of each fire and estimation
of their burned area began to be carried out with the help of
Global Positioning System (GPS) information. Given the im-
age availability, quality and spatial resolution of the Landsat
programs, we extracted data only for fires with a burned area
of more than 10 ha between 1985 and 2018 (N = 13 603).
The 10 ha cutoff threshold was chosen because those fires
represent more than 93 % of the burned area according to
the CONAF official information for the 1985–2018 period.
In addition, small fires are usually confounded with agricul-
tural burning, a traditional cultural practice done by Chilean
farmers. The original CONAF point dataset is included in our
database.

2.3 Fire scar generation

Our database was generated using JavaScript programming.
The detailed workflow of the script developed to create
individual fire scars is shown in Fig. 1. It consists of
the following consecutive steps: (i) input data selection
and identification; (ii) pre- and post-fire image elaboration;
(iii) index, mask calculation and vectorization; (iv) spa-
tial and spectral filtering; and (v) output data generation
and export. As noted earlier, we have made the GEE
script available to all users as a tool that can be adapted
to local conditions and used for permanent database up-
dating. The code is available at https://code.earthengine.
google.com/554027d16823525d890ab2f6c45167d9 (last ac-
cess: 27 July 2022).

The input data in Step (i) must be in point data form with
geographic coordinates representing the ignition point or a
point within the burned area. The points must indicate the fire
start date, the fire control date (fire spread end date) and the
estimated burned area. In the absence of the last two pieces
of information, we used the fire start date and a fixed burned
area of 100 ha as seed values for the initial assessment. The
input seed data are converted into a list to process and ex-
tract individual fire scars. Around each input point, a circular
buffer area is created as a function of the estimated burned
area, with the precise dimensions given by Bufferradius =
log(burnedarea) ·2000. The buffer area is defined because we
may only have the fire’s ignition point as a spatial reference.
Therefore, it is necessary to explore the area near this point
to find the limits of the fire scar. This could be an interactive
process depending on the burned area or the shape of the fire
scar.

In Step (ii), two image collections (sets of images) are
prepared for each wildfire, depending on the fire start date.
We use the atmospherically corrected surface reflectance
and orthorectified images from Landsat 5 – “LAND-
SAT/LT05/C01/T1_SR” (1984–2013), Landsat 7 – “LAND-
SAT/LE07/C01/T1_SR” (1999–2021), and Landsat 8 –
“LANDSAT/LC08/C01/T1_SR” (2013–present), with one
image collection for a pre-fire condition and another for a
post-fire condition, all of which are available from the GEE.
To avoid conflicts in mathematical operations for pre- and
post-image collection generation, the date in day/month/year
format is converted to Unix time format, which represents
the number of milliseconds that have elapsed since Jan-
uary 1970. Based on the fire start and control dates, the re-
spective image searches for both pre-fire and post-fire events
are each conducted for a period of 100 d. If this proves insuf-
ficient to get at least one image, the period can be extended up
to 2 years for a pre-fire event and up to 6 months for a post-
fire event. However, a definition of the maximum period of
time must be chosen considering the local phenology, veg-
etation recovery or landscape dynamics, which are aspects
that could change the spectral response of the land surface
after fire. Pixels of snow, clouds and cloud shadows are ex-
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Figure 1. Detailed workflow for individual fire scar generation in the Google Earth Engine. See Table 1 for details on the normalized burned
ratio (NBR) and the relative delta normalized burn ratio (RdNBR).

cluded from each image on the basis of the pixel quality band
provided by Landsat and used as a binary mask of good and
bad quality of the surface reflectance. For each image collec-
tion, we applied either the “mosaic” or the “median” reducer
function to get a unique image of the landscape conditions
at moments as close as possible before and after a fire event.
This can be done by sorting the image by its date and obtain-
ing the closer good-quality pixels. When the mosaic reducer
did not provide good-quality pixels, we applied the median
reducer instead. The median method for reducing image col-
lections avoids extreme values by selecting the median value
for each pixel.

Using the final pre- and post-mosaic images obtained as
outlined above, we then (in Step iii) calculated all of the
spectral indices (Table 1) used to identify the burned and un-
burned areas. The most widely used burned area index is the
normalized burned ratio (NBR) and its multitemporal form,
the delta normalized burn ratio (dNBR) (Lentile et al., 2006;
Fassnacht et al., 2021). These indexes reduce detection errors
caused by shadows, waterbodies, agricultural or tree harvest-
ing, flooding, and snowmelt (Chuvieco et al., 2019; Long et

al., 2019). Other burned area indexes have been proposed,
and a combination of them may give the best results; how-
ever, to discriminate between burned and unburned areas, we
opted for the relative delta normalized burn ratio (RdNBR).
This index has shown good results in Mediterranean areas
(Miller and Thode, 2007).

Step (iv) involved the selection of the RdNBR index value
for each wildfire that best captures the burned area based on
visual interpretation. This is an interactive (fire-by-fire) pro-
cess based on visual assessment of the best RdNBR value
that delimitates each individual fire scar. The raster mask of
the burned area was converted to vector format for spatial and
spectral filtering (Fig. 1). By vectorizing the initially identi-
fied burned patches, spatial and spectral information could be
added to each one so that burned and unburned patches could
be better distinguished using new criteria. This information
included the mean normalized difference vegetation index
(NDVI) both before and after the fire event, the near-infrared
(NIR) minimum value after the event, and each patch’s cal-
culated area. The information added to the initial burned area
patches could help to filter misclassified areas as burned ar-
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Table 1. Description of the spectral indexes and formulas used in the workflow.

Index Abbreviation Formula Usage Reference

Normalized difference
vegetation index

NDVI ρNIR−ρRED
ρNIR+ρRED Detects pre- and post-fire vege-

tation cover
Rouse et al. (1974)

Normalized burned
ratio

NBR ρNIR−ρSWIR2
ρNIR+ρSWIR2 Detects burned areas Key and Benson (2003)

Delta normalized burn
ratio

dNBR PreFireNBR−PostFireNBR Detects changes in the NIR and
SWIR bands to identify burned
area and fire severity

Key and Benson (2003)

Relative delta normal-
ized burn ratio

RdNBR PreFireNBR−PostFireNBR√
ABS(PreFireNBR)

Normalizes changes by pre-fire
vegetation condition

Miller and Thode (2007)

NIR stands for near infrared, and SWIR represents short-wave infrared.

eas, thereby reducing commission errors. We also calculated
the NDVI in order to estimate several vegetation parameters
based on the red and infrared spectral bands (Table 1). The
NDVI can be used to represent the current state of the compo-
sition, structure and phenology of vegetation as well as plant
health and even burned vegetation; it can also be used to rep-
resent the changes over time in the abovementioned param-
eters (Helman, 2018; Pettorelli et al., 2005). Spatial filtering
begins by defining an initial search distance to the ignition
point of 1 km, although this distance can be interactively de-
fined or modified later. The biggest patch within that distance
is then identified, and a new distance from this patch is de-
fined. Only the patches within this latter distance are con-
sidered. At this stage, polygons or patches that may cause
commission errors are eliminated from the areas counted as
burned in the preliminary mask. They may include (a) water-
bodies with a pre-fire mean NDVI of less than 0.1, (b) poly-
gons or patches for which the pre-fire mean NDVI is less than
0.1 (denoting a lack of vegetation), and (c) other filtering cri-
teria similar to those proposed by Long et al. (2019). Each
polygon or patch that satisfies the filtering criteria and has a
minimum area of 0.3 ha is retained. The filter values can be
changed to suit local conditions.

Finally, in Step (v), once the fire scar is delimited, the
event’s severity is calculated from the RdNBR in a con-
tinuous raster format and categorized based on the sever-
ity category ranges proposed by Miller and Thode (2007):
unchanged (< 69), low (69–315), moderate (316–640), and
high (≥ 641). Our database also makes available the pre- and
post-fire NBR index for each image. Each fire scar and its
severity are exported in vector and raster format, along with
the multispectral corrected Landsat images of pre- and post-
fire events and the RdNBR index. The vector data contain
information about the fire record, the calculated area and
the spectral responses used for filtering. The output name of
each vector and raster file is OBJECT (FireScar, Severity,
ImgPre, ImgPost and RdNBR) +_ISO-REGION_ID +_u-
THRESHOLD RdNBR VALUE +_START DATE, where

ISO-REGION is the name of the administrative region based
on the ISO 3166-2:CL norm; ID is the identification number
of the evaluated fire; THRESHOLD VALUE is the numerical
value of the RdNBR index used to separate burned and un-
burned areas; and START DATE is the date used to find the
first image previous to the fire, which will be the same as the
fire start date in day/month/year format (e.g., FireScar_CL-
RM_ ID1920451_u330_19990215) in most cases. A detailed
description of each variable and its format is included as sup-
plementary material in the database metadata.

2.4 Fire scar evaluation

We compared our fire scars with those generated by CONAF
for the 2015–2016, 2016–2017 and 2017–2018 fire seasons
and published in Brull (2018). The aforementioned publica-
tion elaborated on a manual digitalization of the fire scar
perimeters using secondary information such as pre- and
post-fire Landsat satellite images, the dNBR index, Visible
Infrared Imaging Radiometer Suite (VIIRS) active fire data,
and Sentinel 2 images for high-resolution interpretation. The
fire perimeters were defined as the outer limit between the
burned and unburned area in the landscape, but the unburned
areas inside this perimeter were not discounted in the final
fire scars. Brull (2018) generated 194 fire scars, of which 78
coincided with two criteria for making comparisons: (i) an
individual fire scar must be at a distance of at least 300 m
from another reported fire (by Brull, 2018), and (ii) the fire
must have the same name, start date and control as our seed
data in order to avoid confusion. From 194 fire scars col-
lected by Brull (2018), 107 were within 300 m of another re-
ported fire, and the name and dates of fires did not match for
9 fire scars. The mean area of the remaining 78 fire scars was
1180 ha (minimum area of 200 ha and max area of 12 250 ha).
In order to avoid confusion between fire events, the evalua-
tion was carried out for individual fires located at least 300 m
from any other scar from the same season (according to the
date). The evaluation of the 78 fire scars itself was based on
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the index proposed by Singh et al. (2015) that compares two
georeferenced polygons using the closeness index (D):

D (i,j )=√
(OverSegmentation(i,j ))2

+ (UnderSegmentation(i,j ))2, (1)

where i is the reference polygon, j is the segment poly-
gon, OverSegmentation (i,j )= 1− Aintersect(i,j )

Areference(i) , and Under-

Segmentation (i,j )= 1− Aintersect(i,j )
Asegment(j ) . Here, Aintersect (i,j ) is

the common area between segment polygon j and the cor-
responding reference polygon i, Areference (i) is the area of
reference polygon i, and Asegment (j ) is the area of segment
polygon j .

In order to normalize the values of D, we use the modifi-
cation formDnorm = 1−

(
D
√

(2)

)
, whereDnorm is the normal-

ization of D values between zero (non-matching polygons)
and one (perfectly matching polygons).

To assess the accuracy of our framework, we include the
evaluation of commission and omission error calculated as
follows: commission error = FP/(FP+TP), and omission er-
ror= FN/(FN+TP). Here, FP is the spatial explicit false pos-
itive area of the generated fire scar compared with the refer-
ence polygon of Brull (2018), FN is the false negative area
and TP is the true positive area.

2.5 Database quality control

Even though the data generation process is done with stan-
dard and stable GEE scripts, the project’s enormous scope
could lead to involuntary discordances in resulting files.
A thorough revision was performed over approximately
140 000 files, considering the three following major areas:
(i) file and layer naming, file readability and type and amount
of files per fire scar; (ii) geographic locations and burned-
area-related revision; and (iii) dates and season-related re-
vision. The approach was to define several tests regarding
relations between the content and attributes of the files in
each area that the whole dataset should comply to. The re-
vision scripts were written in Python in the Google Co-
lab environment, with direct access to the Google Drive
files generated by the GEE process. The tests were writ-
ten for our resulting database, but they are generic in most
terms and assumptions and are available at https://github.
com/cr2uchile/Quality_Control_FireScarCL (last access: 28
July 2022). Some of these tests led to human revision of the
fires, either regenerating them or removing them from the
fire scar database, and other tests led to automated fixes, like
name change or attribute column and content changes in the
vector files. The resulting database of 8153 fire scars com-
plies with the following statements:

– All fires have a unique identifier and 17 related files,
including two satellite composite raster .tif images that
cover a domain larger than the identified fire scar and

merge pre- and a post-fire images (ImgPreF.tif and Img-
PosF.tif, respectively); three respective raster .tif images
with the shape of the fire scar that contain (1) zeroes
where there is no fire scar identified and ones where
a fire scar is identified (FireScar.tif), (2) zeroes where
there is no fire scar identified and severity index val-
ues (from one to three) to identify the severity where
there is a fire scar (Severity.tif), and (3) the RdNBR
value (float numbers) for the points where there is a fire
scar (RdNBR.tif); and, finally, two vector shapefile im-
ages that contain six files each (.shx, .shp, .dbf, .cpg, .fix
and .prj), where one is the vectorized representation of
FireScar.shp, and the other is the vectorized representa-
tion of Severity.shp with polygon and attribute informa-
tion.

– For each set of resulting fire scar files, the ISO-
REGION_ID corresponds to the region assigned by the
original CONAF point dataset, and the START_DATE
corresponds to the ignition point assigned by CONAF.
This was preserved to better identify the resulting fire
scars with the seed database.

– All raster .tif image files have the same area type and
coordinate system. All pre and post-fire .tif images have
eight readable bands.

– For each fire, the pre- and a post-fire .tif images have the
same width and height dimensions and the same exact
geographic extent. Moreover, their domain contains the
fire scar’s ignition point and the resulting raster fire scar
.tif images (FireScar.tif, Severity.tif and RdNBR.tif).
The FireScar and Severity vector shapefiles files have
consistent values in their attribute tables, and the num-
ber of polygons of the Severity vector image is equal
or more than the number of polygons of the FireScar
vector image. The dates in the attribute tables have the
format YYYY-MM-DD, and the texts have UTF-8 en-
coding. Original fire names that included diacritics (e.g.,
ñ) were replaced by normal characters.

3 Results

Using the data for all 12 250 fires recorded by CONAF be-
tween 1985 and 2018 with a burned area greater than 10 ha,
we were able to reconstruct 8153 fire scars, comprising
66.56 % of the total registered fires (Table 2, Fig. 1). Suit-
able images were found for 35 % of recorded fires for the pe-
riod 1985–1994, 63 % of recorded fires for 1995–2004, 82 %
of recorded fires for 2005–2014 and 93 % of recorded fires
for 2015–2018. The increasing trend evident in these per-
centages reflects how image availability has grown over time.
Smaller numbers of suitable images were found for the coun-
try’s southern regions (Los Ríos and Los Lagos), the wettest
and coldest areas included in our study, where cloud cover is
continuous for much of the year (Table 2).
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Table 2. Regional and temporal distribution of fires and reconstructed fire scars. The administrative regions are those included in the study.
The “Number of fires” column indicates the total number of fires recorded by CONAF for which the burned area was over 0.01 ha. “Yes”
denotes the number of reconstructed fire scars contained in our database, and “No” denotes the number of fire scars in the database that could
not be reconstructed due to the unavailability of satellite images.

Administrative Number of Number of Reconstructed fire Total fire scars Total fire scars Total fire scars Total fire scars Total fire scars
region fires fires> 10 ha scars> 10 ha (%) 1985–2018 1985–1994 1995–2004 2005–2014 2015–2018

Yes No Yes No Yes No Yes No Yes No

Coquimbo 1863 238 60.92 145 93 27 51 40 24 38 17 40 1
Valparaíso 31 857 1784 80.38 1434 350 400 160 352 40 425 140 257 10
Metropolitana 15 337 1109 85.75 951 158 208 79 252 42 261 33 230 4
O’Higgins 8249 1221 85.09 1039 182 240 93 251 56 365 26 183 7
Maule 14 475 1419 65.89 935 484 103 290 199 118 393 52 240 24
Ñuble and Biobío 77 704 3248 58.07 1886 1362 124 775 473 375 712 171 577 41
Araucanía 31 306 2369 57.41 1360 1009 30 458 346 356 424 131 560 64
Los Ríos 3680 339 35.99 122 217 8 154 41 48 33 10 40 5
Los Lagos 8416 523 53.73 281 242 5 100 53 111 143 27 80 4

Total 192 887 12 250 66.6 8153 4097 1145 2160 2007 1170 2794 607 2207 160

The total number of fires > 0.01 ha exhibits a positive
linear relationship with the total number of fires> 10 ha
recorded by CONAF between 1985 and 2018 (R2

= 0.86).
The number of recorded fires > 10 ha and the number of re-
constructed fire scars per region exhibit the same positive
linear relationship (R2

= 0.92), indicating that the distribu-
tion of the reconstructed data is regionally representative
(Table 2, Fig. 2). However, the pattern of relationships be-
tween recorded fires and reconstructed fire scars for the dif-
ferent regions varies from period to period. For 1985–1994,
the relationship was weak (R2

= 0.1), but it had strength-
ened by 1995–2004 (R2

= 0.91); the same pattern could
be seen again for 2005–2014 (R2

= 0.93) and 2015–2018
(R2
= 0.93). The definitive version of our database is ordered

by region and fire season to facilitate exploration and analy-
sis, revealing, for example, the high levels of fire activity ar-
eas near the coastal cities of Valparaíso and Concepción over
the various decades (Fig. 3).

For each of the 8153 reconstructed fire scars, our database
contains the following: (i) a Landsat mosaic of pre- and post-
fire event images (.tif) with eight spectral bands – blue, green,
red, NIR, SWIR1 and SWIR2, NDVI, and NBR (Fig. 4);
(ii) the raster of the fire scar in binary format (.tif), where
one is the burned area and zero is the unburned area (Fig. 4);
(iii) the RdNBR index, both in continuous values (.tif) and
categorized by severity classification level, where zero is un-
changed, one is low severity, two is medium severity and
three is high severity (Miller and Thode, 2007) (Fig. 4); and
two vector files (.shp) containing (iv) the fire scar perimeter
and (v) the fire scar severity classification (Miller and Thode,
2007). Layers of information are assigned to each individual
burned patch indicating its size as well as detected fire start
and control dates, and spectral data. NBR bands are available
for each image in order to enable reassessment of the fire scar
and its severity. A detailed description of each variable and
its format may be found in the database metadata.

3.1 Fire scar evaluation

We evaluated the fire scars reconstructed using our approach
by contrasting them with the 78 scars derived from the offi-
cial CONAF data that were suitable for making comparisons.
A perfect match could not, of course, be expected given the
differences between the two methodologies. One particularly
crucial difference is that the CONAF fire scar digitalization
includes patches that were actually not burned within the fire
perimeter for each fire event. These patches constituted any-
where from 13.5 % to 18.2 % of the area indicated as burned,
depending on the fire season (Brull, 2018). Moreover, the
CONAF digitalization was complemented by the agency’s
own fieldwork, which improved the detection of low-severity
fires or surface fire under the canopy. Nevertheless, the global
accuracy assessment, derived from the closeness index and
calculated as the mean of the individual Dnorm, resulted in
a value of 0.79. Examples of the comparisons of our recon-
structed fire scars with CONAF data reported by Brull (2018)
are shown in Fig. 4 along with the respectiveDnorm index for
each case. Finally, we found a commission error of 7 % and
an omission error of 28 %.

3.2 Limitations and other observations regarding the
Landscape Fire Scars Database

The following points outline the limitations of our Landscape
Fire Scars Database as well as other pertinent observations:

1. Our Landscape Fire Scars Database does not represent
all of the fires recorded in the 1985–2018 period.

2. The reconstructed fire scars are mainly concentrated in
the last 20 years of the abovementioned period, which
may be related to the improvement in image availability
over time .
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Figure 2. Panel (a) shows the geographic distribution of the fire scar database, and panels (b) and (c) show examples of fire activity near the
cities of Valparaíso and Concepción for different periods.

3. Remotely sensed fire severity estimates the change in
the spectral response in the burned area and must be
carefully treated in the analysis of fires’ ecological im-
pact. Low-severity or surface fire may be underesti-
mated.

4. Due to the 16 d interval between Landsat images, one
fire scar reconstructed from them may represent more
than one fire event in neighboring areas experiencing
multiple fires over that interval, especially in the case
of originally independent fire events that may have
merged. Thus, some fire scars in the database may be

duplicated if they merged with another fire due to their
proximity in space and time. We include a notification
in the database where this could have happened.

5. Commission errors may occur due to other land cover
changes such as tree plantation clear-cutting or harvest-
ing of crops.

6. In certain cases, the inclusion of additional available im-
ages of pre- and post-fire events may help to improve the
fire scars.

Earth Syst. Sci. Data, 14, 3599–3613, 2022 https://doi.org/10.5194/essd-14-3599-2022
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Figure 3. The database content for each reconstructed fire scar. See Table 1 for details on the dNBR and RdNBR. The illustrated event is
from the Maule region and occurred in 2014.

Figure 4. Evaluation of the fire scars. Shown are three examples comparing fire scars from CONAF with the images reconstructed using our
Landscape Fire Scars Database methodology. See Sect. 2.3 for a detailed description of Dnorm.

4 Data availability

The Landscape Fire Scars Database for Chile can
be downloaded from the PANGAEA repository at
https://doi.org/10.1594/PANGAEA.941127 (Miranda et
al., 2022).

5 Discussion and conclusions

The creation of our Landscape Fire Scars Database for Chile
makes a high-resolution individual burned area product for
the country publicly available for the first time. The georefer-
enced database is a multi-institutional effort containing infor-
mation on more than 8000 fire events between 1984 and 2018

that affected an area of over 10 ha. It contains data on fire
scar area, perimeter and severity, which are accessible to the
general public for analyzing future changes, improvements
and new evaluations. Furthermore, the methodology for gen-
erating these data was implemented in GEE so that others
may replicate our approach or apply it to other countries or
cases where no openly accessible datasets are currently avail-
able. Public institutions and researchers can take advantage
of this framework to generate long-term time series of fire
scars for any years of interest or just for one particularly sig-
nificant wildfire. The international community can replicate
this workflow using national fire occurrence data with the
minimum required information or with recently released data
on ignition coordinates, date and fire duration for more than
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13 million individual fires worldwide that occurred between
2003 and 2016 (Andela et al., 2019). As a high-resolution
fire scar database, the Landscape Fire Scars Database should
be of much help in conducting accurate and systematic eval-
uations of underlying wildfire forces, impacts and recoveries
as well as in delineating populations and biodiversity, pub-
lic policy, and informed territorial decision-making and plan-
ning (Chuvieco et al., 2019; Long et al., 2019; Stenzel et al.,
2019).

Creating this database based on information distributed
over an extensive territory at a national scale using a single
method presented diverse challenges with respect to (i) his-
torical image availability, (ii) land cover and land cover
change dynamics, (iii) temporal image resolution and image
cloud cover, and (iv) seeding datasets. In what follows, each
of these issues is discussed in turn.

i. Historical image availability

GEE (https://earthengine.google.com, last access: 28
July 2022) provides free online access to original and
corrected Landsat program data and products. Users do
not need to download the images, and the analysis and
image modification are also carried out online, powered
by Google servers (Gorelick et al., 2017). Image avail-
ability in the Landsat program is rather uneven across
countries, with those in the developing world generally
less well represented in terms of historical records. Nev-
ertheless, the continuity of the image time series im-
proves noticeably as the time period in question ap-
proaches the present. In the case of Chile, this pattern
of improvement is clearly evidenced in the fire scar gen-
eration success rates that we obtained for time periods
since the mid-1980s (1985–1994: 35 %; 1995–2004:
63 %; 2005–2014: 82 %; 2015–2018: 93 %), which are
consistent with the availability of cloud-free pixels for
the country (Fig. 5). This tendency must be considered
when determining the time periods used to reconstruct
a database for any specific region. For example, accord-
ing to the Landsat Global Archive Consolidation up-
dates (Wulder et al., 2016), availability and usable im-
age quality are lower for Southern Hemisphere high-
latitude regions (Huang et al., 2010; Stillinger et al.,
2019; Viale et al., 2019).

ii. Land cover and land cover change dynamics

Almost 90 % of wildfire ignitions and burned areas
worldwide have anthropogenic origins (Ganteaume and
Syphard, 2018). As a result, many of these fires im-
pact the wildland–urban interface, urban and rural set-
tlements, and productive regions (e.g., agricultural lands
and tree plantations). Zones with high rates of land use
or land cover change may present some difficulties in
fire scar and severity mapping. Remotely sensed burn
area indexes are based on the abrupt change in the pre-
fire spectral band values following a fire event. For ex-

ample, NBR uses the near-infrared (NIR) and short-
wave infrared (SWIR) bands as proxies for the photo-
synthetic productivity and water content of vegetated ar-
eas (Lentile et al., 2006; van Wagtendonk et al., 2004).
Both parameters are affected by fire; thus, the greater
the temporal difference in the index, the greater the
event’s severity. However, the spectral response of those
bands may also be influenced by other factors. Forestry
activity, especially tree plantation clear-cutting, defor-
estation or harvesting on agricultural land as well as
the drying of annual grassland in the summer season,
dried meadows and the cultural practice of burning agri-
cultural wastes may all act to confuse the spectral re-
sponse for a given landscape, assimilating them to wild-
fire (Ghermandi et al., 2019). Another local considera-
tion is the recovery rate of the vegetation. For example,
recovery is faster in the tropics than in temperate areas,
which could affect the mapping of burned areas or fire
intensity estimation depending on how much time has
passed between fire occurrence and the acquisition of a
good-quality satellite image (Chuvieco et al., 2019). Lo-
cal topography may also complicate the process of dis-
tinguishing burned areas in mountainous zones due to
the increased presence of shadows, fog or melting snow
in cold or high-elevation areas (Huang et al., 2010; Still-
inger et al., 2019; Viale et al., 2019). Therefore, local
experience in landscape dynamics and practice is cru-
cial to ensuring the generation of accurate databases and
may constitute a basis for adapting the most commonly
used burned area indexes to local realities.

iii. Temporal image resolution and image cloud cover

Landsat images are widely used to study land cover
changes and trends due to their spatial and temporal res-
olution (Soulard et al., 2016). However, the 16 d interval
between images could be a major limitation. In regions
with high fire activity, this can make it more difficult to
identify individual fire scars and differentiate them from
those produced on other days in neighboring locations.
This means that a single final fire scar may in fact have
been created by multiple fire events occurring over the
16 d period that converged or totally fused. This prob-
lem could be mitigated by using Sentinel-2 images (also
available in GEE) for the earliest fire events, given that
the Sentinel-2 program is available from mid-2015 with
a temporal resolution of 5–6 d (starting in 2017) and a
pixel size of 10 and 20 m (e.g., SWIR band), although
the increased spatial resolution may raise another issue
in that it could result in the underestimation of the influ-
ence of dead vegetation shadows on the spectral index
signals (Fassnacht et al., 2021). The high temporal res-
olution could also be helpful in zones with high cloud
cover such tropical and high-latitude or mountainous ar-
eas (King et al., 2013). For example, we observe that
the Landsat archive in Africa could reduce its number
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Figure 5. The upper set of panels shows the available Landsat pixels over study area for each respective year from 1985 to 2018. The lower
set of panels represents the number of available cloud-free Landsat pixels per year for the same respective years.
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of cloud-free images (images with less than 40 % cloud
cover) to a mean of 25 %, with much fewer images in
the tropical zone of the Congo Basin (Roy et al., 2010).

The RdNBR index is able to differentiate burned area
from non-burned area over a diverse range of climatic
and geographic conditions. No evident pattern associ-
ated with the latitudinal or vegetation-type change was
observed when applying the threshold value to identify
scars. In general, RdNBR performs wells when com-
pared with field plots of severity. It is little influenced
by the type of forest and is determined mainly by the
fraction of consumed canopy cover (Cardil et al., 2019;
Soverel et al., 2010; Fassnacht et al., 2021), demonstrat-
ing the index’s high versatility. Nevertheless, the task of
assessing the performance of the severity classification
is left to users of the database, and it will depend on the
local land cover context and field validations for identi-
fication of the best index. Our database does provide the
NBR band for the images in order to facilitate a compar-
ison and evaluation of the dNBR and RdNBR indices.

The importance of the proposed database also stems
from its value as an input source for methods based on
artificial intelligence (AI) aimed at automating the pro-
cess of generating new fire scars. AI techniques (such
as machine learning, ML; deep learning, DL; and, espe-
cially, the convolutional neural network, CNN) are in-
creasingly being used for classification or object seg-
mentation problems (Alzubaidi et al., 2021). The inte-
gration of such methods with remote sensing data is en-
abling the development of burned area detection models
that use manually (user-) delimited wildfire perimeters
as their training dataset. Promising results have been
achieved using uni- or multi-temporal images and dif-
ferent types of remote sensing data to address the many
open challenges in wildfire mapping and monitoring
(Hu et al., 2021; Knopp et al., 2020; Pinto et al., 2021).

In conclusion, we believe that the present study makes
a significant contribution to the development of high-
resolution methods for mapping fire scars and their
temporal and spatial patterns. Our hope is that it will
serve as the first step in an ongoing effort to build
and maintain an extensive, consistent database on for-
est fires in Chile that will drive scientific research and
improvements in landscape management. Further study
is needed to broaden the current state of knowledge on
local conditions through standardized field surveys.

iv. Seeding datasets

Studies in Chile have previously evaluated the perfor-
mance of the global satellite burned area products show-
ing good performance. A spatial resolution improve-
ment of those products can be done using the fires de-
tected by global datasets in Chile or another area as
the seed point. Global datasets such as MODIS Col-

lection 6 burned area data, MCD64A1 (Giglio et al.,
2009); VIIRS active fire data (Schroeder et al., 2018);
and Global Fire Atlas data (Andela et al., 2019; Giglio
et al., 2018) can be used to evaluate the performance
of our approach for medium and large fires and to cre-
ate new high-resolution datasets for mapping fire scars
in different ecosystems and under different land cover
conditions.
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