Articles | Volume 14, issue 6
https://doi.org/10.5194/essd-14-2865-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/essd-14-2865-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
High-temporal-resolution hydrometeorological data collected in the tropical Cordillera Blanca, Peru (2004–2020)
Department of Geography, Byrd Polar and Climate Research Center, The
Ohio State University, Columbus, OH, USA
Bryan G. Mark
Department of Geography, Byrd Polar and Climate Research Center, The
Ohio State University, Columbus, OH, USA
Robert Å. Hellström
Department of Geography, Bridgewater State University, Bridgewater,
MA, USA
Michel Baraer
Département de génie de la construction, École de
technologie supérieure, Montreal, QC, Canada
Jeffrey M. McKenzie
Department of Earth and Planetary Sciences, McGill University,
Montreal, QC, Canada
Thomas Condom
Université Grenoble Alpes, CNRS, IRD, Grenoble-INP, Institut des
Géosciences de l'Environnement (IGE, UMR 5001), Grenoble, France
Alejo Cochachín Rapre
Peruvian National Water Authority, Division of Glaciers and Water
Resources, Huaraz, Peru
Gilber Gonzales
Peruvian National Water Authority, Division of Glaciers and Water
Resources, Huaraz, Peru
Joe Quijano Gómez
Peruvian National Water Authority, Division of Glaciers and Water
Resources, Huaraz, Peru
Rolando Cesai Crúz Encarnación
Peruvian National Water Authority, Division of Glaciers and Water
Resources, Huaraz, Peru
Related authors
No articles found.
Nilo Lima-Quispe, Denis Ruelland, Antoine Rabatel, Waldo Lavado-Casimiro, and Thomas Condom
EGUsphere, https://doi.org/10.5194/egusphere-2024-2370, https://doi.org/10.5194/egusphere-2024-2370, 2024
Short summary
Short summary
This study estimated the water balance of Lake Titicaca using an integrated modeling framework that considers natural hydrological processes and net irrigation consumption. The proposed approach was implemented at a daily scale for a period of 35 years. This framework is able to simulate lake water levels with good accuracy over a wide range of hydroclimatic conditions. The findings demonstrate that a simple representation of hydrological processes is suitable for use in poorly-gauged regions.
Alexis Caro, Thomas Condom, Antoine Rabatel, Nicolas Champollion, Nicolás García, and Freddy Saavedra
The Cryosphere, 18, 2487–2507, https://doi.org/10.5194/tc-18-2487-2024, https://doi.org/10.5194/tc-18-2487-2024, 2024
Short summary
Short summary
The glacier runoff changes are still unknown in most of the Andean catchments, thereby increasing uncertainties in estimating water availability, especially during the dry season. Here, we simulate glacier evolution and related glacier runoff changes across the Andes between 2000 and 2019. Our results indicate a glacier reduction in 93 % of the catchments, leading to a 12 % increase in glacier melt. These results can be downloaded and integrated with discharge measurements in each catchment.
Kara A. Lamantia, Laura J. Larocca, Lonnie G. Thompson, and Bryan G. Mark
EGUsphere, https://doi.org/10.5194/egusphere-2024-676, https://doi.org/10.5194/egusphere-2024-676, 2024
Short summary
Short summary
Glaciers that exist within tropical regions are a vital water resource and excellent indicators of changing climate. We use satellite imagery analysis to detect the boundary between snow and ice on the Quelccaya Ice Cap (QIC) in Peru, the world’s largest tropical ice cap. This indicates the QIC’s health and can be analyzed with other variables such as temperature, precipitation, and sea surface temperature anomalies to better understand what factors on what timeline are driving the ice retreat.
Vasana Dharmadasa, Christophe Kinnard, and Michel Baraër
The Cryosphere, 17, 1225–1246, https://doi.org/10.5194/tc-17-1225-2023, https://doi.org/10.5194/tc-17-1225-2023, 2023
Short summary
Short summary
This study highlights the successful usage of UAV lidar to monitor small-scale snow depth distribution. Our results show that underlying topography and wind redistribution of snow along forest edges govern the snow depth variability at agro-forested sites, while forest structure variability dominates snow depth variability in the coniferous environment. This emphasizes the importance of including and better representing these processes in physically based models for accurate snowpack estimates.
Rubén Basantes-Serrano, Antoine Rabatel, Bernard Francou, Christian Vincent, Alvaro Soruco, Thomas Condom, and Jean Carlo Ruíz
The Cryosphere, 16, 4659–4677, https://doi.org/10.5194/tc-16-4659-2022, https://doi.org/10.5194/tc-16-4659-2022, 2022
Short summary
Short summary
We assessed the volume variation of 17 glaciers on the Antisana ice cap, near the Equator. We used aerial and satellite images for the period 1956–2016. We highlight very negative changes in 1956–1964 and 1979–1997 and slightly negative or even positive conditions in 1965–1978 and 1997–2016, the latter despite the recent increase in temperatures. Glaciers react according to regional climate variability, while local humidity and topography influence the specific behaviour of each glacier.
Eole Valence, Michel Baraer, Eric Rosa, Florent Barbecot, and Chloe Monty
The Cryosphere, 16, 3843–3860, https://doi.org/10.5194/tc-16-3843-2022, https://doi.org/10.5194/tc-16-3843-2022, 2022
Short summary
Short summary
The internal properties of the snow cover shape the annual hygrogram of northern and alpine regions. This study develops a multi-method approach to measure the evolution of snowpack internal properties. The snowpack hydrological property evolution was evaluated with drone-based ground-penetrating radar (GPR) measurements. In addition, the combination of GPR observations and time domain reflectometry measurements is shown to be able to be adapted to monitor the snowpack moisture over winter.
Élise G. Devoie, Stephan Gruber, and Jeffrey M. McKenzie
Earth Syst. Sci. Data, 14, 3365–3377, https://doi.org/10.5194/essd-14-3365-2022, https://doi.org/10.5194/essd-14-3365-2022, 2022
Short summary
Short summary
Soil freezing characteristic curves (SFCCs) relate the temperature of a soil to its ice content. SFCCs are needed in all physically based numerical models representing freezing and thawing soils, and they affect the movement of water in the subsurface, biogeochemical processes, soil mechanics, and ecology. Over a century of SFCC data exist, showing high variability in SFCCs based on soil texture, water content, and other factors. This repository summarizes all available SFCC data and metadata.
Romina Llanos, Patricia Moreira-Turcq, Bruno Turcq, Raúl Espinoza Villar, Yizet Huaman, Thomas Condom, and Bram Willems
Biogeosciences Discuss., https://doi.org/10.5194/bg-2022-47, https://doi.org/10.5194/bg-2022-47, 2022
Manuscript not accepted for further review
Short summary
Short summary
Our results highlight a marked decrease of high carbon accumulation rates in Andean peatlands over the last decades due to the diminution in melt water inflow generated by the retreat of glaciers as a consequence of regional warming. These marked changes stress the high ecological sensitivity of these peatlands, endangering their outstanding role in the regional (and even global) C cycle as large C sinks that contribute to the mitigation of global climate change.
Jeffrey M. McKenzie, Barret L. Kurylyk, Michelle A. Walvoord, Victor F. Bense, Daniel Fortier, Christopher Spence, and Christophe Grenier
The Cryosphere, 15, 479–484, https://doi.org/10.5194/tc-15-479-2021, https://doi.org/10.5194/tc-15-479-2021, 2021
Short summary
Short summary
Groundwater is an underappreciated catalyst of environmental change in a warming Arctic. We provide evidence of how changing groundwater systems underpin surface changes in the north, and we argue for research and inclusion of cryohydrogeology, the study of groundwater in cold regions.
Anna Chesnokova, Michel Baraër, and Émilie Bouchard
The Cryosphere, 14, 4145–4164, https://doi.org/10.5194/tc-14-4145-2020, https://doi.org/10.5194/tc-14-4145-2020, 2020
Short summary
Short summary
In the context of a ubiquitous increase in winter discharge in cold regions, our results show that icing formations can help overcome the lack of direct observations in these remote environments and provide new insights into winter runoff generation. The multi-technique approach used in this study provided important information about the water sources active during the winter season in the headwaters of glacierized catchments.
Jordi Bolibar, Antoine Rabatel, Isabelle Gouttevin, Clovis Galiez, Thomas Condom, and Eric Sauquet
The Cryosphere, 14, 565–584, https://doi.org/10.5194/tc-14-565-2020, https://doi.org/10.5194/tc-14-565-2020, 2020
Short summary
Short summary
We introduce a novel approach for simulating glacier mass balances using a deep artificial neural network (i.e. deep learning) from climate and topographical data. This has been added as a component of a new open-source parameterized glacier evolution model. Deep learning is found to outperform linear machine learning methods, mainly due to its nonlinearity. Potential applications range from regional mass balance reconstructions from observations to simulations for past and future climates.
Martin Mergili, Shiva P. Pudasaini, Adam Emmer, Jan-Thomas Fischer, Alejo Cochachin, and Holger Frey
Hydrol. Earth Syst. Sci., 24, 93–114, https://doi.org/10.5194/hess-24-93-2020, https://doi.org/10.5194/hess-24-93-2020, 2020
Short summary
Short summary
In 1941, the glacial lagoon Lake Palcacocha in the Cordillera Blanca (Peru) drained suddenly. The resulting outburst flood/debris flow consumed another lake and had a disastrous impact on the town of Huaraz 23 km downstream. We reconstuct this event through a numerical model to learn about the possibility of prediction of similar processes in the future. Remaining challenges consist of the complex process interactions and the lack of experience due to the rare occurrence of such process chains.
Leila Saberi, Rachel T. McLaughlin, G.-H. Crystal Ng, Jeff La Frenierre, Andrew D. Wickert, Michel Baraer, Wei Zhi, Li Li, and Bryan G. Mark
Hydrol. Earth Syst. Sci., 23, 405–425, https://doi.org/10.5194/hess-23-405-2019, https://doi.org/10.5194/hess-23-405-2019, 2019
Short summary
Short summary
The relationship among glacier melt, groundwater, and streamflow remains highly uncertain, especially in tropical glacierized watersheds in response to climate. We implemented a multi-method approach and found that melt contribution varies considerably and may drive streamflow variability at hourly to multi-year timescales, rather than buffer it, as commonly thought. Some of the melt contribution occurs through groundwater pathways, resulting in longer timescale interactions with streamflow.
G.-H. Crystal Ng, Andrew D. Wickert, Lauren D. Somers, Leila Saberi, Collin Cronkite-Ratcliff, Richard G. Niswonger, and Jeffrey M. McKenzie
Geosci. Model Dev., 11, 4755–4777, https://doi.org/10.5194/gmd-11-4755-2018, https://doi.org/10.5194/gmd-11-4755-2018, 2018
Short summary
Short summary
The profound importance of water has led to the development of increasingly complex hydrological models. However, implementing these models is usually time-consuming and requires specialized expertise, stymieing their widespread use to support science-driven decision-making. In response, we have developed GSFLOW–GRASS, a robust and comprehensive set of software tools that can be readily used to set up and execute GSFLOW, the U.S. Geological Survey's coupled groundwater–surface-water flow model.
Thomas Condom, Marie Dumont, Lise Mourre, Jean Emmanuel Sicart, Antoine Rabatel, Alessandra Viani, and Alvaro Soruco
Geosci. Instrum. Method. Data Syst., 7, 169–178, https://doi.org/10.5194/gi-7-169-2018, https://doi.org/10.5194/gi-7-169-2018, 2018
Short summary
Short summary
This study presents a new instrument called a low-cost albedometer (LCA) composed of two illuminance sensors. The ratio between reflected vs. incident illuminances is called the albedo index and can be compared with actual albedo values. We demonstrate that our system performs well and thus provides relevant opportunities to document spatiotemporal changes in the surface albedo from direct observations at the scale of an entire catchment at a low cost.
Pan Wu, Sihai Liang, Xu-Sheng Wang, Yuqing Feng, and Jeffrey M. McKenzie
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2017-744, https://doi.org/10.5194/hess-2017-744, 2018
Manuscript not accepted for further review
Short summary
Short summary
This study provides a new assessment of climate change impacts on discharge change in the source region of the Yellow River in considering vary perrmafrost.
Oliver Wigmore and Bryan Mark
The Cryosphere, 11, 2463–2480, https://doi.org/10.5194/tc-11-2463-2017, https://doi.org/10.5194/tc-11-2463-2017, 2017
Short summary
Short summary
Using a drone custom built for high altitude flight (4000–6000 m) we completed repeat surveys of Llaca Glacier in the Cordillera Blanca, Peru. Analysis of high resolution imagery and elevation data reveals highly heterogeneous patterns of glacier change and the important role of ice cliffs in glacier melt dynamics. Drones are found to provide a viable and potentially transformative method for studying glacier change at high spatial resolution, on demand and at relatively low cost.
L. Mourre, T. Condom, C. Junquas, T. Lebel, J. E. Sicart, R. Figueroa, and A. Cochachin
Hydrol. Earth Syst. Sci., 20, 125–141, https://doi.org/10.5194/hess-20-125-2016, https://doi.org/10.5194/hess-20-125-2016, 2016
Short summary
Short summary
Three different types of gridded precipitation products are compared in a high glaciated tropical mountain environment (Cordillera Blanca, Peru): ground-based interpolation, a satellite-derived product (TRMM3B42), and outputs from the WRF regional climate model. While none of the products meets the challenge of representing both accumulated quantities and frequency of occurrence at the short timescale, we concluded that new methods should be used to merge those various precipitation products.
R. Marti, S. Gascoin, T. Houet, O. Ribière, D. Laffly, T. Condom, S. Monnier, M. Schmutz, C. Camerlynck, J. P. Tihay, J. M. Soubeyroux, and P. René
The Cryosphere, 9, 1773–1795, https://doi.org/10.5194/tc-9-1773-2015, https://doi.org/10.5194/tc-9-1773-2015, 2015
Short summary
Short summary
Pyrenean glaciers are currently the southernmost glaciers in Europe. Using an exceptional archive of historical data sets and recent accurate observations, we propose the reconstruction of the length, area, elevation, and mass balance of Ossoue Glacier (French Pyrenees) since the Little Ice Age. We show that its evolution is in good agreement with climatic data. Assuming that the current ablation rate stays constant, Ossoue Glacier will disappear midway through the 21st century.
B. L. Kurylyk, K. T. B. MacQuarrie, D. Caissie, and J. M. McKenzie
Hydrol. Earth Syst. Sci., 19, 2469–2489, https://doi.org/10.5194/hess-19-2469-2015, https://doi.org/10.5194/hess-19-2469-2015, 2015
Short summary
Short summary
Changes in climate and land cover are known to warm streams by altering surface heat fluxes. However, the influence of these disturbances on shallow groundwater temperature are not as well understood. In small streams, groundwater discharge may also exert a control on stream temperature, and thus groundwater warming may eventually produce additional stream warming not considered in most existing models. This study investigates these processes and suggests stream temperature model improvements.
S. Cauvy-Fraunié, T. Condom, A. Rabatel, M. Villacis, D. Jacobsen, and O. Dangles
Hydrol. Earth Syst. Sci., 17, 4803–4816, https://doi.org/10.5194/hess-17-4803-2013, https://doi.org/10.5194/hess-17-4803-2013, 2013
S. B. Morera, T. Condom, P. Vauchel, J.-L. Guyot, C. Galvez, and A. Crave
Hydrol. Earth Syst. Sci., 17, 4641–4657, https://doi.org/10.5194/hess-17-4641-2013, https://doi.org/10.5194/hess-17-4641-2013, 2013
A. Rabatel, B. Francou, A. Soruco, J. Gomez, B. Cáceres, J. L. Ceballos, R. Basantes, M. Vuille, J.-E. Sicart, C. Huggel, M. Scheel, Y. Lejeune, Y. Arnaud, M. Collet, T. Condom, G. Consoli, V. Favier, V. Jomelli, R. Galarraga, P. Ginot, L. Maisincho, J. Mendoza, M. Ménégoz, E. Ramirez, P. Ribstein, W. Suarez, M. Villacis, and P. Wagnon
The Cryosphere, 7, 81–102, https://doi.org/10.5194/tc-7-81-2013, https://doi.org/10.5194/tc-7-81-2013, 2013
Related subject area
Hydrology
A globally sampled high-resolution hand-labeled validation dataset for evaluating surface water extent maps
Satellite-based near-real-time global daily terrestrial evapotranspiration estimates
Multivariate characterisation of a blackberry–alder agroforestry system in South Africa: hydrological, pedological, dendrological and meteorological measurements
SHIFT: a spatial-heterogeneity improvement in DEM-based mapping of global geomorphic floodplains
First comprehensive stable isotope dataset of diverse water units in a permafrost-dominated catchment on the Qinghai–Tibet Plateau
LamaH-Ice: LArge-SaMple DAta for Hydrology and Environmental Sciences for Iceland
High-resolution mapping of monthly industrial water withdrawal in China from 1965 to 2020
Evapotranspiration evaluation using three different protocols on a large green roof in the greater Paris area
Simbi: historical hydro-meteorological time series and signatures for 24 catchments in Haiti
CAMELE: Collocation-Analyzed Multi-source Ensembled Land Evapotranspiration Data
A hydrogeomorphic dataset for characterizing catchment hydrological behavior across the Tibetan Plateau
A synthesis of Global Streamflow Characteristics, Hydrometeorology, and Catchment Attributes (GSHA) for large sample river-centric studies
FOCA: a new quality-controlled database of floods and catchment descriptors in Italy
A Copernicus-based evapotranspiration dataset at 100-m spatial resolution over the Mediterranean region
Dams in the Mekong: a comprehensive database, spatiotemporal distribution, and hydropower potentials
A global dataset of the shape of drainage systems
An extensive spatiotemporal water quality dataset covering four decades (1980–2022) in China
CIrrMap250: Annual maps of China’s irrigated cropland from 2000 to 2020 developed through multisource data integration
Gridded dataset of nitrogen and phosphorus point sources from wastewater in Germany (1950–2019)
Flood simulation with the RiverCure approach: the open dataset of the 2016 Águeda flood event
GloLakes: water storage dynamics for 27 000 lakes globally from 1984 to present derived from satellite altimetry and optical imaging
AltiMaP: altimetry mapping procedure for hydrography data
CAMELS-CH: hydro-meteorological time series and landscape attributes for 331 catchments in hydrologic Switzerland
The use of GRDC gauging stations for calibrating large-scale hydrological models
A long-term dataset of simulated epilimnion and hypolimnion temperatures in 401 French lakes (1959–2020)
GTWS-MLrec: global terrestrial water storage reconstruction by machine learning from 1940 to present
A global 5 km monthly potential evapotranspiration dataset (1982–2015) estimated by the Shuttleworth–Wallace model
A gridded dataset of consumptive water footprints, evaporation, transpiration, and associated benchmarks related to crop production in China during 2000–2018
An improved database of flood impacts in Europe, 1870–2020: HANZE v2.1
Hydro-PE: gridded datasets of historical and future Penman–Monteith potential evaporation for the United Kingdom
A global streamflow indices time series dataset for large-sample hydrological analyses on streamflow regime (until 2022)
Soil water retention and hydraulic conductivity measured in a wide saturation range
A high-frequency, long-term data set of hydrology and sediment yield: the alpine badland catchments of Draix-Bléone Observatory
Geospatial dataset for hydrologic analyses in India (GHI): a quality-controlled dataset on river gauges, catchment boundaries and hydrometeorological time series
Lake-TopoCat: a global lake drainage topology and catchment database
Three years of soil moisture observations by a dense cosmic-ray neutron sensing cluster at an agricultural research site in north-east Germany
A long-term monthly surface water storage dataset for the Congo basin from 1992 to 2015
A global database of historic glacier lake outburst floods
Past and future discharge and stream temperature at high spatial resolution in a large European basin (Loire basin, France)
Res-CN (Reservoir dataset in China): hydrometeorological time series and landscape attributes across 3254 Chinese reservoirs
An ensemble of 48 physically perturbed model estimates of the 1∕8° terrestrial water budget over the conterminous United States, 1980–2015
The UKSCAPE-G2G river flow and soil moisture datasets: Grid-to-Grid model estimates for the UK for historical and potential future climates
The enhanced future Flows and Groundwater dataset: development and evaluation of nationally consistent hydrological projections based on UKCP18
RC4USCoast: a river chemistry dataset for regional ocean model applications in the US East Coast, Gulf of Mexico, and US West Coast
Generation of global 1 km daily soil moisture product from 2000 to 2020 using ensemble learning
Panta Rhei benchmark dataset: socio-hydrological data of paired events of floods and droughts
Twelve years of profile soil moisture and temperature measurements in Twente, the Netherlands
Shallow-groundwater-level time series and a groundwater chemistry survey from a boreal headwater catchment, Krycklan, Sweden
Weekly high-resolution multi-spectral and thermal uncrewed-aerial-system mapping of an alpine catchment during summer snowmelt, Niwot Ridge, Colorado
Nunataryuk field campaigns: understanding the origin and fate of terrestrial organic matter in the coastal waters of the Mackenzie Delta region
Rohit Mukherjee, Frederick Policelli, Ruixue Wang, Elise Arellano-Thompson, Beth Tellman, Prashanti Sharma, Zhijie Zhang, and Jonathan Giezendanner
Earth Syst. Sci. Data, 16, 4311–4323, https://doi.org/10.5194/essd-16-4311-2024, https://doi.org/10.5194/essd-16-4311-2024, 2024
Short summary
Short summary
Global water resource monitoring is crucial due to climate change and population growth. This study presents a hand-labeled dataset of 100 PlanetScope images for surface water detection, spanning diverse biomes. We use this dataset to evaluate two state-of-the-art mapping methods. Results highlight performance variations across biomes, emphasizing the need for diverse, independent validation datasets to enhance the accuracy and reliability of satellite-based surface water monitoring techniques.
Lei Huang, Yong Luo, Jing M. Chen, Qiuhong Tang, Tammo Steenhuis, Wei Cheng, and Wen Shi
Earth Syst. Sci. Data, 16, 3993–4019, https://doi.org/10.5194/essd-16-3993-2024, https://doi.org/10.5194/essd-16-3993-2024, 2024
Short summary
Short summary
Timely global terrestrial evapotranspiration (ET) data are crucial for water resource management and drought forecasting. This study introduces the VISEA algorithm, which integrates satellite data and shortwave radiation to provide daily 0.05° gridded near-real-time ET estimates. By employing a vegetation index–temperature method, this algorithm can estimate ET without requiring additional data. Evaluation results demonstrate VISEA's comparable accuracy with accelerated data availability.
Sibylle Kathrin Hassler, Rafael Bohn Reckziegel, Ben du Toit, Svenja Hoffmeister, Florian Kestel, Anton Kunneke, Rebekka Maier, and Jonathan Paul Sheppard
Earth Syst. Sci. Data, 16, 3935–3948, https://doi.org/10.5194/essd-16-3935-2024, https://doi.org/10.5194/essd-16-3935-2024, 2024
Short summary
Short summary
Agroforestry systems (AFSs) combine trees and crops within the same land unit, providing a sustainable land use option which protects natural resources and biodiversity. Introducing trees into agricultural systems can positively affect water resources, soil characteristics, biomass and microclimate. We studied an AFS in South Africa in a multidisciplinary approach to assess the different influences and present the resulting dataset consisting of water, soil, tree and meteorological variables.
Kaihao Zheng, Peirong Lin, and Ziyun Yin
Earth Syst. Sci. Data, 16, 3873–3891, https://doi.org/10.5194/essd-16-3873-2024, https://doi.org/10.5194/essd-16-3873-2024, 2024
Short summary
Short summary
We develop a globally applicable thresholding scheme for DEM-based floodplain delineation to improve the representation of spatial heterogeneity. It involves a stepwise approach to estimate the basin-level floodplain hydraulic geometry parameters that best respect the scaling law while approximating the global hydrodynamic flood maps. A ~90 m resolution global floodplain map, the Spatial Heterogeneity Improved Floodplain by Terrain analysis (SHIFT), is delineated with demonstrated superiority.
Yuzhong Yang, Qingbai Wu, Xiaoyan Guo, Lu Zhou, Helin Yao, Dandan Zhang, Zhongqiong Zhang, Ji Chen, and Guojun Liu
Earth Syst. Sci. Data, 16, 3755–3770, https://doi.org/10.5194/essd-16-3755-2024, https://doi.org/10.5194/essd-16-3755-2024, 2024
Short summary
Short summary
We present the temporal data of stable isotopes in different waterbodies in the Beiluhe Basin in the hinterland of the Qinghai–Tibet Plateau (QTP) produced between 2017 and 2022. In this article, the first detailed stable isotope data of 359 ground ice samples are presented. This first data set provides a new basis for understanding the hydrological effects of permafrost degradation on the QTP.
Hordur Bragi Helgason and Bart Nijssen
Earth Syst. Sci. Data, 16, 2741–2771, https://doi.org/10.5194/essd-16-2741-2024, https://doi.org/10.5194/essd-16-2741-2024, 2024
Short summary
Short summary
LamaH-Ice is a large-sample hydrology (LSH) dataset for Iceland. The dataset includes daily and hourly hydro-meteorological time series, including observed streamflow and basin characteristics, for 107 basins. LamaH-Ice offers most variables that are included in existing LSH datasets and additional information relevant to cold-region hydrology such as annual time series of glacier extent and mass balance. A large majority of the basins in LamaH-Ice are unaffected by human activities.
Chengcheng Hou, Yan Li, Shan Sang, Xu Zhao, Yanxu Liu, Yinglu Liu, and Fang Zhao
Earth Syst. Sci. Data, 16, 2449–2464, https://doi.org/10.5194/essd-16-2449-2024, https://doi.org/10.5194/essd-16-2449-2024, 2024
Short summary
Short summary
To fill the gap in the gridded industrial water withdrawal (IWW) data in China, we developed the China Industrial Water Withdrawal (CIWW) dataset, which provides monthly IWWs from 1965 to 2020 at a spatial resolution of 0.1°/0.25° and auxiliary data including subsectoral IWW and industrial output value in 2008. This dataset can help understand the human water use dynamics and support studies in hydrology, geography, sustainability sciences, and water resource management and allocation in China.
Pierre-Antoine Versini, Leydy Alejandra Castellanos-Diaz, David Ramier, and Ioulia Tchiguirinskaia
Earth Syst. Sci. Data, 16, 2351–2366, https://doi.org/10.5194/essd-16-2351-2024, https://doi.org/10.5194/essd-16-2351-2024, 2024
Short summary
Short summary
Nature-based solutions (NBSs), such as green roofs, have appeared as relevant solutions to mitigate urban heat islands. The evapotranspiration (ET) process allows NBSs to cool the air. To improve our knowledge about ET assessment, this paper presents some experimental measurement campaigns carried out during three consecutive summers. Data are available for three different (large, small, and point-based) spatial scales.
Ralph Bathelemy, Pierre Brigode, Vazken Andréassian, Charles Perrin, Vincent Moron, Cédric Gaucherel, Emmanuel Tric, and Dominique Boisson
Earth Syst. Sci. Data, 16, 2073–2098, https://doi.org/10.5194/essd-16-2073-2024, https://doi.org/10.5194/essd-16-2073-2024, 2024
Short summary
Short summary
The aim of this work is to provide the first hydroclimatic database for Haiti, a Caribbean country particularly vulnerable to meteorological and hydrological hazards. The resulting database, named Simbi, provides hydroclimatic time series for around 150 stations and 24 catchment areas.
Changming Li, Ziwei Liu, Wencong Yang, Zhuoyi Tu, Juntai Han, Sien Li, and Hanbo Yang
Earth Syst. Sci. Data, 16, 1811–1846, https://doi.org/10.5194/essd-16-1811-2024, https://doi.org/10.5194/essd-16-1811-2024, 2024
Short summary
Short summary
Using a collocation-based approach, we developed a reliable global land evapotranspiration product (CAMELE) by merging multi-source datasets. The CAMELE product outperformed individual input datasets and showed satisfactory performance compared to reference data. It also demonstrated superiority for different plant functional types. Our study provides a promising solution for data fusion. The CAMELE dataset allows for detailed research and a better understanding of land–atmosphere interactions.
Yuhan Guo, Hongxing Zheng, Yuting Yang, Yanfang Sang, and Congcong Wen
Earth Syst. Sci. Data, 16, 1651–1665, https://doi.org/10.5194/essd-16-1651-2024, https://doi.org/10.5194/essd-16-1651-2024, 2024
Short summary
Short summary
We have provided an inaugural version of the hydrogeomorphic dataset for catchments over the Tibetan Plateau. We first provide the width-function-based instantaneous unit hydrograph (WFIUH) for each HydroBASINS catchment, which can be used to investigate the spatial heterogeneity of hydrological behavior across the Tibetan Plateau. It is expected to facilitate hydrological modeling across the Tibetan Plateau.
Ziyun Yin, Peirong Lin, Ryan Riggs, George H. Allen, Xiangyong Lei, Ziyan Zheng, and Siyu Cai
Earth Syst. Sci. Data, 16, 1559–1587, https://doi.org/10.5194/essd-16-1559-2024, https://doi.org/10.5194/essd-16-1559-2024, 2024
Short summary
Short summary
Large-sample hydrology (LSH) datasets have been the backbone of hydrological model parameter estimation and data-driven machine learning models for hydrological processes. This study complements existing LSH studies by creating a dataset with improved sample coverage, uncertainty estimates, and dynamic descriptions of human activities, which are all crucial to hydrological understanding and modeling.
Pierluigi Claps, Giulia Evangelista, Daniele Ganora, Paola Mazzoglio, and Irene Monforte
Earth Syst. Sci. Data, 16, 1503–1522, https://doi.org/10.5194/essd-16-1503-2024, https://doi.org/10.5194/essd-16-1503-2024, 2024
Short summary
Short summary
FOCA (Italian FlOod and Catchment Atlas) is the first systematic collection of data on Italian river catchments. It comprises geomorphological, soil, land cover, NDVI, climatological and extreme rainfall catchment attributes. FOCA also contains 631 peak and daily discharge time series covering the 1911–2016 period. Using this first nationwide data collection, a wide range of applications, in particular flood studies, can be undertaken within the Italian territory.
Paulina Bartkowiak, Bartolomeo Ventura, Alexander Jacob, and Mariapina Castelli
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2023-466, https://doi.org/10.5194/essd-2023-466, 2024
Revised manuscript accepted for ESSD
Short summary
Short summary
This paper presents a Two-source Energy Balance evapotranspiration (ET) product driven by Copernicus Sentinel-2 and Sentinel-3 imagery together with ERA5 climate reanalysis data. Daily ET maps are available at 100-m spatial resolution for the period 2017–2021 across four Mediterranean basins: Ebro (Spain), Hérault (France), Medjerda (Tunisia), and Po (Italy). The product is highly beneficial for supporting vegetation monitoring and sustainable water management at the river basin scale.
Wei Jing Ang, Edward Park, Yadu Pokhrel, Dung Duc Tran, and Ho Huu Loc
Earth Syst. Sci. Data, 16, 1209–1228, https://doi.org/10.5194/essd-16-1209-2024, https://doi.org/10.5194/essd-16-1209-2024, 2024
Short summary
Short summary
Dams have burgeoned in the Mekong, but information on dams is scattered and inconsistent. Up-to-date evaluation of dams is unavailable, and basin-wide hydropower potential has yet to be systematically assessed. We present a comprehensive database of 1055 dams, a spatiotemporal analysis of the dams, and a total hydropower potential of 1 334 683 MW. Considering projected dam development and hydropower potential, the vulnerability and the need for better dam management may be highest in Laos.
Chuanqi He, Ci-Jian Yang, Jens M. Turowski, Richard F. Ott, Jean Braun, Hui Tang, Shadi Ghantous, Xiaoping Yuan, and Gaia Stucky de Quay
Earth Syst. Sci. Data, 16, 1151–1166, https://doi.org/10.5194/essd-16-1151-2024, https://doi.org/10.5194/essd-16-1151-2024, 2024
Short summary
Short summary
The shape of drainage basins and rivers holds significant implications for landscape evolution processes and dynamics. We used a global 90 m resolution topography to obtain ~0.7 million drainage basins with sizes over 50 km2. Our dataset contains the spatial distribution of drainage systems and their morphological parameters, supporting fields such as geomorphology, climatology, biology, ecology, hydrology, and natural hazards.
Jingyu Lin, Peng Wang, Jinzhu Wang, Youping Zhou, Xudong Zhou, Pan Yang, Hao Zhang, Yanpeng Cai, and Zhifeng Yang
Earth Syst. Sci. Data, 16, 1137–1149, https://doi.org/10.5194/essd-16-1137-2024, https://doi.org/10.5194/essd-16-1137-2024, 2024
Short summary
Short summary
Our paper provides a repository comprising over 330 000 observations encompassing daily, weekly, and monthly records of surface water quality spanning the period 1980–2022. It included 18 distinct indicators, meticulously gathered at 2384 monitoring sites, ranging from inland locations to coastal and oceanic areas. This dataset will be very useful for researchers and decision-makers in the fields of hydrology, ecological studies, climate change, policy development, and oceanography.
Ling Zhang, Yanhua Xie, Xiufang Zhu, Qimin Ma, and Luca Brocca
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-2, https://doi.org/10.5194/essd-2024-2, 2024
Revised manuscript accepted for ESSD
Short summary
Short summary
This study outlines the development of annual maps of irrigated cropland in China from 2000 to 2020 (CIrrMap250) by integrating remote sensing data, irrigated area statistics and surveys, and irrigation suitability map. CIrrMap250 showed superior performance than the existing products. CIrrMap250 revealed that China’s irrigated area has increased by about 180,000 km2 from 2000 to 2020, with the majority being water-unsustainable and occurring in regions facing high to severe water stress.
Fanny J. Sarrazin, Sabine Attinger, and Rohini Kumar
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2023-474, https://doi.org/10.5194/essd-2023-474, 2024
Revised manuscript accepted for ESSD
Short summary
Short summary
Nitrogen (N) and Phosphorus (P) contamination of water bodies is a long-term issue due to the long history of N and P inputs to the environment and their persistence. Here, we introduce a long-term and high-resolution dataset of N and P inputs from wastewater (point sources) for Germany combining data from different sources and conceptual understanding. We also account for uncertainties in modelling choices, thus facilitating robust long-term and large-scale water quality studies.
Ana M. Ricardo, Rui M. L. Ferreira, Alberto Rodrigues da Silva, Jacinto Estima, Jorge Marques, Ivo Gamito, and Alexandre Serra
Earth Syst. Sci. Data, 16, 375–385, https://doi.org/10.5194/essd-16-375-2024, https://doi.org/10.5194/essd-16-375-2024, 2024
Short summary
Short summary
Floods are among the most common natural disasters responsible for severe damages and human losses. Agueda.2016Flood, a synthesis of locally sensed data and numerically produced data, allows complete characterization of the flood event that occurred in February 2016 in the Portuguese Águeda River. The dataset was managed through the RiverCure Portal, a collaborative web platform connected to a validated shallow-water model.
Jiawei Hou, Albert I. J. M. Van Dijk, Luigi J. Renzullo, and Pablo R. Larraondo
Earth Syst. Sci. Data, 16, 201–218, https://doi.org/10.5194/essd-16-201-2024, https://doi.org/10.5194/essd-16-201-2024, 2024
Short summary
Short summary
The GloLakes dataset provides historical and near-real-time time series of relative (i.e. storage change) and absolute (i.e. total stored volume) storage for more than 27 000 lakes worldwide using multiple sources of satellite data, including laser and radar altimetry and optical remote sensing. These data can help us understand the influence of climate variability and anthropogenic activities on water availability and system ecology over the last 4 decades.
Menaka Revel, Xudong Zhou, Prakat Modi, Jean-François Cretaux, Stephane Calmant, and Dai Yamazaki
Earth Syst. Sci. Data, 16, 75–88, https://doi.org/10.5194/essd-16-75-2024, https://doi.org/10.5194/essd-16-75-2024, 2024
Short summary
Short summary
As satellite technology advances, there is an incredible amount of remotely sensed data for observing terrestrial water. Satellite altimetry observations of water heights can be utilized to calibrate and validate large-scale hydrodynamic models. However, because large-scale models are discontinuous, comparing satellite altimetry to predicted water surface elevation is difficult. We developed a satellite altimetry mapping procedure for high-resolution river network data.
Marvin Höge, Martina Kauzlaric, Rosi Siber, Ursula Schönenberger, Pascal Horton, Jan Schwanbeck, Marius Günter Floriancic, Daniel Viviroli, Sibylle Wilhelm, Anna E. Sikorska-Senoner, Nans Addor, Manuela Brunner, Sandra Pool, Massimiliano Zappa, and Fabrizio Fenicia
Earth Syst. Sci. Data, 15, 5755–5784, https://doi.org/10.5194/essd-15-5755-2023, https://doi.org/10.5194/essd-15-5755-2023, 2023
Short summary
Short summary
CAMELS-CH is an open large-sample hydro-meteorological data set that covers 331 catchments in hydrologic Switzerland from 1 January 1981 to 31 December 2020. It comprises (a) daily data of river discharge and water level as well as meteorologic variables like precipitation and temperature; (b) yearly glacier and land cover data; (c) static attributes of, e.g, topography or human impact; and (d) catchment delineations. CAMELS-CH enables water and climate research and modeling at catchment level.
Peter Burek and Mikhail Smilovic
Earth Syst. Sci. Data, 15, 5617–5629, https://doi.org/10.5194/essd-15-5617-2023, https://doi.org/10.5194/essd-15-5617-2023, 2023
Short summary
Short summary
We address an annoying problem every grid-based hydrological model must solve to compare simulated and observed river discharge. First, station locations do not fit the high-resolution river network. We update the database with stations based on a new high-resolution network. Second, station locations do not work with a coarser grid-based network. We use a new basin shape similarity concept for station locations on a coarser grid, reducing the error of assigning stations to the wrong basin.
Najwa Sharaf, Jordi Prats, Nathalie Reynaud, Thierry Tormos, Rosalie Bruel, Tiphaine Peroux, and Pierre-Alain Danis
Earth Syst. Sci. Data, 15, 5631–5650, https://doi.org/10.5194/essd-15-5631-2023, https://doi.org/10.5194/essd-15-5631-2023, 2023
Short summary
Short summary
We present a regional long-term (1959–2020) dataset (LakeTSim) of daily epilimnion and hypolimnion water temperature simulations in 401 French lakes. Overall, less uncertainty is associated with the epilimnion compared to the hypolimnion. LakeTSim is valuable for providing new insights into lake water temperature for assessing the impact of climate change, which is often hindered by the lack of observations, and for decision-making by stakeholders.
Jiabo Yin, Louise J. Slater, Abdou Khouakhi, Le Yu, Pan Liu, Fupeng Li, Yadu Pokhrel, and Pierre Gentine
Earth Syst. Sci. Data, 15, 5597–5615, https://doi.org/10.5194/essd-15-5597-2023, https://doi.org/10.5194/essd-15-5597-2023, 2023
Short summary
Short summary
This study presents long-term (i.e., 1940–2022) and high-resolution (i.e., 0.25°) monthly time series of TWS anomalies over the global land surface. The reconstruction is achieved by using a set of machine learning models with a large number of predictors, including climatic and hydrological variables, land use/land cover data, and vegetation indicators (e.g., leaf area index). Our proposed GTWS-MLrec performs overall as well as, or is more reliable than, previous TWS datasets.
Shanlei Sun, Zaoying Bi, Jingfeng Xiao, Yi Liu, Ge Sun, Weimin Ju, Chunwei Liu, Mengyuan Mu, Jinjian Li, Yang Zhou, Xiaoyuan Li, Yibo Liu, and Haishan Chen
Earth Syst. Sci. Data, 15, 4849–4876, https://doi.org/10.5194/essd-15-4849-2023, https://doi.org/10.5194/essd-15-4849-2023, 2023
Short summary
Short summary
Based on various existing datasets, we comprehensively considered spatiotemporal differences in land surfaces and CO2 effects on plant stomatal resistance to parameterize the Shuttleworth–Wallace model, and we generated a global 5 km ensemble mean monthly potential evapotranspiration (PET) dataset (including potential transpiration PT and soil evaporation PE) during 1982–2015. The new dataset may be used by academic communities and various agencies to conduct various studies.
Wei Wang, La Zhuo, Xiangxiang Ji, Zhiwei Yue, Zhibin Li, Meng Li, Huimin Zhang, Rong Gao, Chenjian Yan, Ping Zhang, and Pute Wu
Earth Syst. Sci. Data, 15, 4803–4827, https://doi.org/10.5194/essd-15-4803-2023, https://doi.org/10.5194/essd-15-4803-2023, 2023
Short summary
Short summary
The consumptive water footprint of crop production (WFCP) measures blue and green evapotranspiration of either irrigated or rainfed crops in time and space. A gridded monthly WFCP dataset for China is established. There are four improvements from existing datasets: (i) distinguishing water supply modes and irrigation techniques, (ii) distinguishing evaporation and transpiration, (iii) consisting of both total and unit WFCP, and (iv) providing benchmarks for unit WFCP by climatic zones.
Dominik Paprotny, Paweł Terefenko, and Jakub Śledziowski
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2023-321, https://doi.org/10.5194/essd-2023-321, 2023
Revised manuscript accepted for ESSD
Short summary
Short summary
Knowledge about past natural disasters can help adapting to their future occurrences. Here, we present a dataset of 2521 riverine, pluvial, coastal and compound floods that have occurred in 42 European countries between 1870 and 2020. The dataset contains available information on the area inundated, fatalities, persons affected or economic loss, and was obtained by extensive data-collection from more than 800 sources ranging from news reports through government databases to scientific papers.
Emma L. Robinson, Matthew J. Brown, Alison L. Kay, Rosanna A. Lane, Rhian Chapman, Victoria A. Bell, and Eleanor M. Blyth
Earth Syst. Sci. Data, 15, 4433–4461, https://doi.org/10.5194/essd-15-4433-2023, https://doi.org/10.5194/essd-15-4433-2023, 2023
Short summary
Short summary
This work presents two new Penman–Monteith potential evaporation datasets for the UK, calculated with the same methodology applied to historical climate data (Hydro-PE HadUK-Grid) and an ensemble of future climate projections (Hydro-PE UKCP18 RCM). Both include an optional correction for evaporation of rain that lands on the surface of vegetation. The historical data are consistent with existing PE datasets, and the future projections include effects of rising atmospheric CO2 on vegetation.
Xinyu Chen, Liguang Jiang, Yuning Luo, and Junguo Liu
Earth Syst. Sci. Data, 15, 4463–4479, https://doi.org/10.5194/essd-15-4463-2023, https://doi.org/10.5194/essd-15-4463-2023, 2023
Short summary
Short summary
River flow is experiencing changes under the impacts of climate change and human activities. For example, flood events are occurring more often and are more destructive in many places worldwide. To deal with such issues, hydrologists endeavor to understand the features of extreme events as well as other hydrological changes. One key approach is analyzing flow characteristics, represented by hydrological indices. Building such a comprehensive global large-sample dataset is essential.
Tobias L. Hohenbrink, Conrad Jackisch, Wolfgang Durner, Kai Germer, Sascha C. Iden, Janis Kreiselmeier, Frederic Leuther, Johanna C. Metzger, Mahyar Naseri, and Andre Peters
Earth Syst. Sci. Data, 15, 4417–4432, https://doi.org/10.5194/essd-15-4417-2023, https://doi.org/10.5194/essd-15-4417-2023, 2023
Short summary
Short summary
The article describes a collection of 572 data sets of soil water retention and unsaturated hydraulic conductivity data measured with state-of-the-art laboratory methods. Furthermore, the data collection contains basic soil properties such as soil texture and organic carbon content. We expect that the data will be useful for various important purposes, for example, the development of soil hydraulic property models and related pedotransfer functions.
Sebastien Klotz, Caroline Le Bouteiller, Nicolle Mathys, Firmin Fontaine, Xavier Ravanat, Jean-Emmanuel Olivier, Frédéric Liébault, Hugo Jantzi, Patrick Coulmeau, Didier Richard, Jean-Pierre Cambon, and Maurice Meunier
Earth Syst. Sci. Data, 15, 4371–4388, https://doi.org/10.5194/essd-15-4371-2023, https://doi.org/10.5194/essd-15-4371-2023, 2023
Short summary
Short summary
Mountain badlands are places of intense erosion. They deliver large amounts of sediment to river systems, with consequences for hydropower sustainability, habitat quality and biodiversity, and flood hazard and river management. Draix-Bleone Observatory was created in 1983 to understand and quantify sediment delivery from such badland areas. Our paper describes how water and sediment fluxes have been monitored for almost 40 years in the small mountain catchments of this observatory.
Gopi Goteti
Earth Syst. Sci. Data, 15, 4389–4415, https://doi.org/10.5194/essd-15-4389-2023, https://doi.org/10.5194/essd-15-4389-2023, 2023
Short summary
Short summary
Data on river gauging stations, river basin boundaries and river flow paths are critical for hydrological analyses, but existing data for India's river basins have limited availability and reliability. This work fills the gap by building a new dataset. Data for 645 stations in 15 basins of India were compiled and checked against global data sources; data were supplemented with additional information where needed. This dataset will serve as a reliable building block in hydrological analyses.
Md Safat Sikder, Jida Wang, George H. Allen, Yongwei Sheng, Dai Yamazaki, Chunqiao Song, Meng Ding, Jean-François Crétaux, and Tamlin M. Pavelsky
Earth Syst. Sci. Data, 15, 3483–3511, https://doi.org/10.5194/essd-15-3483-2023, https://doi.org/10.5194/essd-15-3483-2023, 2023
Short summary
Short summary
We introduce Lake-TopoCat to reveal detailed lake hydrography information. It contains the location of lake outlets, the boundary of lake catchments, and a wide suite of attributes that depict detailed lake drainage relationships. It was constructed using lake boundaries from a global lake dataset, with the help of high-resolution hydrography data. This database may facilitate a variety of applications including water quality, agriculture and fisheries, and integrated lake–river modeling.
Maik Heistermann, Till Francke, Lena Scheiffele, Katya Dimitrova Petrova, Christian Budach, Martin Schrön, Benjamin Trost, Daniel Rasche, Andreas Güntner, Veronika Döpper, Michael Förster, Markus Köhli, Lisa Angermann, Nikolaos Antonoglou, Manuela Zude-Sasse, and Sascha E. Oswald
Earth Syst. Sci. Data, 15, 3243–3262, https://doi.org/10.5194/essd-15-3243-2023, https://doi.org/10.5194/essd-15-3243-2023, 2023
Short summary
Short summary
Cosmic-ray neutron sensing (CRNS) allows for the non-invasive estimation of root-zone soil water content (SWC). The signal observed by a single CRNS sensor is influenced by the SWC in a radius of around 150 m (the footprint). Here, we have put together a cluster of eight CRNS sensors with overlapping footprints at an agricultural research site in north-east Germany. That way, we hope to represent spatial SWC heterogeneity instead of retrieving just one average SWC estimate from a single sensor.
Benjamin M. Kitambo, Fabrice Papa, Adrien Paris, Raphael M. Tshimanga, Frederic Frappart, Stephane Calmant, Omid Elmi, Ayan Santos Fleischmann, Melanie Becker, Mohammad J. Tourian, Rômulo A. Jucá Oliveira, and Sly Wongchuig
Earth Syst. Sci. Data, 15, 2957–2982, https://doi.org/10.5194/essd-15-2957-2023, https://doi.org/10.5194/essd-15-2957-2023, 2023
Short summary
Short summary
The surface water storage (SWS) in the Congo River basin (CB) remains unknown. In this study, the multi-satellite and hypsometric curve approaches are used to estimate SWS in the CB over 1992–2015. The results provide monthly SWS characterized by strong variability with an annual mean amplitude of ~101 ± 23 km3. The evaluation of SWS against independent datasets performed well. This SWS dataset contributes to the better understanding of the Congo basin’s surface hydrology using remote sensing.
Natalie Lützow, Georg Veh, and Oliver Korup
Earth Syst. Sci. Data, 15, 2983–3000, https://doi.org/10.5194/essd-15-2983-2023, https://doi.org/10.5194/essd-15-2983-2023, 2023
Short summary
Short summary
Glacier lake outburst floods (GLOFs) are a prominent natural hazard, and climate change may change their magnitude, frequency, and impacts. A global, literature-based GLOF inventory is introduced, entailing 3151 reported GLOFs. The reporting density varies temporally and regionally, with most cases occurring in NW North America. Since 1900, the number of yearly documented GLOFs has increased 6-fold. However, many GLOFs have incomplete records, and we call for a systematic reporting protocol.
Hanieh Seyedhashemi, Florentina Moatar, Jean-Philippe Vidal, and Dominique Thiéry
Earth Syst. Sci. Data, 15, 2827–2839, https://doi.org/10.5194/essd-15-2827-2023, https://doi.org/10.5194/essd-15-2827-2023, 2023
Short summary
Short summary
This paper presents a past and future dataset of daily time series of discharge and stream temperature for 52 278 reaches over the Loire River basin (100 000 km2) in France, using thermal and hydrological models. Past data are provided over 1963–2019. Future data are available over the 1976–2100 period under different future climate change models (warm and wet, intermediate, and hot and dry) and scenarios (optimistic, intermediate, and pessimistic).
Youjiang Shen, Karina Nielsen, Menaka Revel, Dedi Liu, and Dai Yamazaki
Earth Syst. Sci. Data, 15, 2781–2808, https://doi.org/10.5194/essd-15-2781-2023, https://doi.org/10.5194/essd-15-2781-2023, 2023
Short summary
Short summary
Res-CN fills a gap in a comprehensive and extensive dataset of reservoir-catchment characteristics for 3254 Chinese reservoirs with 512 catchment-level attributes and significantly enhanced spatial and temporal coverage (e.g., 67 % increase in water level and 225 % in storage anomaly) of time series of reservoir water level (data available for 20 % of 3254 reservoirs), water area (99 %), storage anomaly (92 %), and evaporation (98 %), supporting a wide range of applications and disciplines.
Hui Zheng, Wenli Fei, Zong-Liang Yang, Jiangfeng Wei, Long Zhao, Lingcheng Li, and Shu Wang
Earth Syst. Sci. Data, 15, 2755–2780, https://doi.org/10.5194/essd-15-2755-2023, https://doi.org/10.5194/essd-15-2755-2023, 2023
Short summary
Short summary
An ensemble of evapotranspiration, runoff, and water storage is estimated here using the Noah-MP land surface model by perturbing model parameterization schemes. The data could be beneficial for monitoring and understanding the variability of water resources. Model developers could also gain insights by intercomparing the ensemble members.
Alison L. Kay, Victoria A. Bell, Helen N. Davies, Rosanna A. Lane, and Alison C. Rudd
Earth Syst. Sci. Data, 15, 2533–2546, https://doi.org/10.5194/essd-15-2533-2023, https://doi.org/10.5194/essd-15-2533-2023, 2023
Short summary
Short summary
Climate change will affect the water cycle, including river flows and soil moisture. We have used both observational data (1980–2011) and the latest UK climate projections (1980–2080) to drive a national-scale grid-based hydrological model. The data, covering Great Britain and Northern Ireland, suggest potential future decreases in summer flows, low flows, and summer/autumn soil moisture, and possible future increases in winter and high flows. Society must plan how to adapt to such impacts.
Jamie Hannaford, Jonathan D. Mackay, Matthew Ascott, Victoria A. Bell, Thomas Chitson, Steven Cole, Christian Counsell, Mason Durant, Christopher R. Jackson, Alison L. Kay, Rosanna A. Lane, Majdi Mansour, Robert Moore, Simon Parry, Alison C. Rudd, Michael Simpson, Katie Facer-Childs, Stephen Turner, John R. Wallbank, Steven Wells, and Amy Wilcox
Earth Syst. Sci. Data, 15, 2391–2415, https://doi.org/10.5194/essd-15-2391-2023, https://doi.org/10.5194/essd-15-2391-2023, 2023
Short summary
Short summary
The eFLaG dataset is a nationally consistent set of projections of future climate change impacts on hydrology. eFLaG uses the latest available UK climate projections (UKCP18) run through a series of computer simulation models which enable us to produce future projections of river flows, groundwater levels and groundwater recharge. These simulations are designed for use by water resource planners and managers but could also be used for a wide range of other purposes.
Fabian A. Gomez, Sang-Ki Lee, Charles A. Stock, Andrew C. Ross, Laure Resplandy, Samantha A. Siedlecki, Filippos Tagklis, and Joseph E. Salisbury
Earth Syst. Sci. Data, 15, 2223–2234, https://doi.org/10.5194/essd-15-2223-2023, https://doi.org/10.5194/essd-15-2223-2023, 2023
Short summary
Short summary
We present a river chemistry and discharge dataset for 140 rivers in the United States, which integrates information from the Water Quality Database of the US Geological Survey (USGS), the USGS’s Surface-Water Monthly Statistics for the Nation, and the U.S. Army Corps of Engineers. This dataset includes dissolved inorganic carbon and alkalinity, two key properties to characterize the carbonate system, as well as nutrient concentrations, such as nitrate, phosphate, and silica.
Yufang Zhang, Shunlin Liang, Han Ma, Tao He, Qian Wang, Bing Li, Jianglei Xu, Guodong Zhang, Xiaobang Liu, and Changhao Xiong
Earth Syst. Sci. Data, 15, 2055–2079, https://doi.org/10.5194/essd-15-2055-2023, https://doi.org/10.5194/essd-15-2055-2023, 2023
Short summary
Short summary
Soil moisture observations are important for a range of earth system applications. This study generated a long-term (2000–2020) global seamless soil moisture product with both high spatial and temporal resolutions (1 km, daily) using an XGBoost model and multisource datasets. Evaluation of this product against dense in situ soil moisture datasets and microwave soil moisture products showed that this product has reliable accuracy and more complete spatial coverage.
Heidi Kreibich, Kai Schröter, Giuliano Di Baldassarre, Anne F. Van Loon, Maurizio Mazzoleni, Guta Wakbulcho Abeshu, Svetlana Agafonova, Amir AghaKouchak, Hafzullah Aksoy, Camila Alvarez-Garreton, Blanca Aznar, Laila Balkhi, Marlies H. Barendrecht, Sylvain Biancamaria, Liduin Bos-Burgering, Chris Bradley, Yus Budiyono, Wouter Buytaert, Lucinda Capewell, Hayley Carlson, Yonca Cavus, Anaïs Couasnon, Gemma Coxon, Ioannis Daliakopoulos, Marleen C. de Ruiter, Claire Delus, Mathilde Erfurt, Giuseppe Esposito, Didier François, Frédéric Frappart, Jim Freer, Natalia Frolova, Animesh K. Gain, Manolis Grillakis, Jordi Oriol Grima, Diego A. Guzmán, Laurie S. Huning, Monica Ionita, Maxim Kharlamov, Dao Nguyen Khoi, Natalie Kieboom, Maria Kireeva, Aristeidis Koutroulis, Waldo Lavado-Casimiro, Hong-Yi Li, Maria Carmen LLasat, David Macdonald, Johanna Mård, Hannah Mathew-Richards, Andrew McKenzie, Alfonso Mejia, Eduardo Mario Mendiondo, Marjolein Mens, Shifteh Mobini, Guilherme Samprogna Mohor, Viorica Nagavciuc, Thanh Ngo-Duc, Huynh Thi Thao Nguyen, Pham Thi Thao Nhi, Olga Petrucci, Nguyen Hong Quan, Pere Quintana-Seguí, Saman Razavi, Elena Ridolfi, Jannik Riegel, Md Shibly Sadik, Nivedita Sairam, Elisa Savelli, Alexey Sazonov, Sanjib Sharma, Johanna Sörensen, Felipe Augusto Arguello Souza, Kerstin Stahl, Max Steinhausen, Michael Stoelzle, Wiwiana Szalińska, Qiuhong Tang, Fuqiang Tian, Tamara Tokarczyk, Carolina Tovar, Thi Van Thu Tran, Marjolein H. J. van Huijgevoort, Michelle T. H. van Vliet, Sergiy Vorogushyn, Thorsten Wagener, Yueling Wang, Doris E. Wendt, Elliot Wickham, Long Yang, Mauricio Zambrano-Bigiarini, and Philip J. Ward
Earth Syst. Sci. Data, 15, 2009–2023, https://doi.org/10.5194/essd-15-2009-2023, https://doi.org/10.5194/essd-15-2009-2023, 2023
Short summary
Short summary
As the adverse impacts of hydrological extremes increase in many regions of the world, a better understanding of the drivers of changes in risk and impacts is essential for effective flood and drought risk management. We present a dataset containing data of paired events, i.e. two floods or two droughts that occurred in the same area. The dataset enables comparative analyses and allows detailed context-specific assessments. Additionally, it supports the testing of socio-hydrological models.
Rogier van der Velde, Harm-Jan F. Benninga, Bas Retsios, Paul C. Vermunt, and M. Suhyb Salama
Earth Syst. Sci. Data, 15, 1889–1910, https://doi.org/10.5194/essd-15-1889-2023, https://doi.org/10.5194/essd-15-1889-2023, 2023
Short summary
Short summary
From 2009, a network of 20 profile soil moisture and temperature monitoring stations has been operational in the Twente region, east of the Netherlands. In addition, field campaigns have been conducted covering four growing seasons during which soil moisture was measured near 12 monitoring stations. We describe the monitoring network and field campaigns, and we provide an overview of open third-party datasets that may support the use of the Twente datasets.
Jana Erdbrügger, Ilja van Meerveld, Jan Seibert, and Kevin Bishop
Earth Syst. Sci. Data, 15, 1779–1800, https://doi.org/10.5194/essd-15-1779-2023, https://doi.org/10.5194/essd-15-1779-2023, 2023
Short summary
Short summary
Groundwater can respond quickly to precipitation and is the main source of streamflow in most catchments in humid, temperate climates. To better understand shallow groundwater dynamics, we installed a network of groundwater wells in two boreal headwater catchments in Sweden. We recorded groundwater levels in 75 wells for 2 years and sampled the water and analyzed its chemical composition in one summer. This paper describes these datasets.
Oliver Wigmore and Noah P. Molotch
Earth Syst. Sci. Data, 15, 1733–1747, https://doi.org/10.5194/essd-15-1733-2023, https://doi.org/10.5194/essd-15-1733-2023, 2023
Short summary
Short summary
We flew a custom-built drone fitted with visible, near-infrared and thermal cameras every week over a summer season at Niwot Ridge in Colorado's alpine tundra. We processed these images into seamless orthomosaics that record changes in snow cover, vegetation health and the movement of water over the land surface. These novel datasets provide a unique centimetre resolution snapshot of ecohydrologic processes, connectivity and spatial and temporal heterogeneity in the alpine zone.
Martine Lizotte, Bennet Juhls, Atsushi Matsuoka, Philippe Massicotte, Gaëlle Mével, David Obie James Anikina, Sofia Antonova, Guislain Bécu, Marine Béguin, Simon Bélanger, Thomas Bossé-Demers, Lisa Bröder, Flavienne Bruyant, Gwénaëlle Chaillou, Jérôme Comte, Raoul-Marie Couture, Emmanuel Devred, Gabrièle Deslongchamps, Thibaud Dezutter, Miles Dillon, David Doxaran, Aude Flamand, Frank Fell, Joannie Ferland, Marie-Hélène Forget, Michael Fritz, Thomas J. Gordon, Caroline Guilmette, Andrea Hilborn, Rachel Hussherr, Charlotte Irish, Fabien Joux, Lauren Kipp, Audrey Laberge-Carignan, Hugues Lantuit, Edouard Leymarie, Antonio Mannino, Juliette Maury, Paul Overduin, Laurent Oziel, Colin Stedmon, Crystal Thomas, Lucas Tisserand, Jean-Éric Tremblay, Jorien Vonk, Dustin Whalen, and Marcel Babin
Earth Syst. Sci. Data, 15, 1617–1653, https://doi.org/10.5194/essd-15-1617-2023, https://doi.org/10.5194/essd-15-1617-2023, 2023
Short summary
Short summary
Permafrost thaw in the Mackenzie Delta region results in the release of organic matter into the coastal marine environment. What happens to this carbon-rich organic matter as it transits along the fresh to salty aquatic environments is still underdocumented. Four expeditions were conducted from April to September 2019 in the coastal area of the Beaufort Sea to study the fate of organic matter. This paper describes a rich set of data characterizing the composition and sources of organic matter.
Cited articles
Ames, A.: A documentation of glacier tongue variations and lake development
in the Cordillera Blanca, Peru, Zeitschrift für Gletscherkunde und
Glazialgeologie, 34, 1–36, 1998.
Ames, A. and Hastenrath, S.: Mass balance and iceflow of the Uruashraju
Glacier, Cordillera Blanca, Peru, Zeitschrift für Gletscherkunde und
Glazialgeologie, 32, 83–89, 1996.
Ames, A., Munoz, G., Verastegui, J., Vigil, R., Zamora, M., and Zapata, M.:
Glacier inventory of Peru, Hidrandina, SA, Huaraz, Peru, 1989.
Baraer, M., McKenzie, J. M., Mark, B. G., Bury, J., and Knox, S.: Characterizing contributions of glacier melt and groundwater during the dry season in a poorly gauged catchment of the Cordillera Blanca (Peru), Adv. Geosci., 22, 41–49, https://doi.org/10.5194/adgeo-22-41-2009, 2009.
Baraër, M., Mark, B. G., McKenzie, J. M., Condom, T., Bury, J., Huh, K.,
Portocarrero, C., Gomez, J., and Rathay, S.: Glacier recession and water
resources in Peru's Cordillera Blanca, J. Glaciol., 58, 134–150,
https://doi.org/10.3189/2012JoG11J186, 2012.
Baraër, M., McKenzie, J., Mark, B. G., Gordon, R., Bury, J., Condom, T.,
Gomez, J., Knox, S., and Fortner, S. K.: Contribution of groundwater to the
outflow from ungauged glacierized catchments: a multi-site study in the
tropical Cordillera Blanca, Peru, Hydrol. Process., 29,
2561–2581, https://doi.org/10.1002/hyp.10386, 2015.
Bury, J. T., Mark, B. G., McKenzie, J. M., French, A., Baraër, M., Huh,
K. I., and Gómez López, R. J.: Glacier recession and human
vulnerability in the Yanamarey watershed of the Cordillera Blanca, Peru,
Climate Change, 105, 179–206, 2011.
Carey, M.: In the Shadow of Melting Glaciers: Climate Change and Andean
Society, Oxford University Press, New York, ISBN 978-0195396072, 2010.
Carey, M., Huggel., C., Bury, J., Portocarrero, C., and Haeberli, W.: An
integrated socio-environmental framework for glacier hazard management and
climate change adaptation: lessons from Lake 513, Cordillera Blanca, Peru,
Climate Change, 112, 733-767, 2012.
Condom, T., Escobar, M., Purkey, D., Pouget, J.C., Suarez, W., Ramos, C.,
Apaestegui, J., Tacsi, A., and Gomez, J.: Simulating the implications of
glaciers' retreat for water management: a case study in the Rio Santa basin,
Peru, Water Int., 37, 442–459, 2012.
Condom, T., Martínez, R., Pabón, J. D., Costa, F., Pineda, L.,
Nieto, J. J., López, F., and Villacis, M.: Climatological and
Hydrological Observations for the South American Andes: In situ Stations,
Satellite, and Reanalysis Data Sets, Front. Earth Sci., 8, https://doi.org/10.3389/feart.2020.00092,
2020.
Covert, J. M.: Observational Analysis of Inter-annual Boundary Layer
Processes within the Glaciated Llanganuco Valley, Peru, in: BSU Honors
Program Theses and Projects, Item 167,
http://vc.bridgew.edu/honors_proj/167 (last access: 15 January 2022), © 2016 Jason Covert, 2016.
Coxon, G., Freer, J., Wagener, T., Odoni, N. A., and Clark, M.: Diagnostic
evaluation of multiple hypotheses of hydrological behaviour in a
limits-of-acceptability framework for 24 UK catchments, Hydrol.
Process., 28, 6135–6150, https://doi.org/10.1002/hyp.10096, 2014.
Eddy, A. M., Mark, B. G., Baraër, M., McKenzie, J. M., Fernández,
A., Welch, S., and Fortner, S.: Exploring patterns and controls on the
hydrochemistry of proglacial streams in the Upper Santa River, Peru, Revista
de Glaciares y Ecosistemas de Montaña, 3, 41–57, 2017.
Garver, J. I., Reiners, P. W., Walker, L. J., Ramage, J. M., and Perry, S.
E.: Implications for timing of Andean uplift from thermal resetting of
radiation damaged zircon in the Cordillera Huayhuash, northern Peru, J.
Geol., 113, 117–138, 2005.
Georges, C. and Kaser, G.: Ventilated and unventilated air temperature
measurements for glacier-climate studies on a tropical high mountain site,
J. Geophys. Res., 107, 4775, https://doi.org/10.1029/2002JD002503,
2002.
Giovanni, M. K., Horton, B. K., Garzione, C. N., McNulty, B., and Grove, M.:
Extensional basin evolution in the Cordillera Blanca, Peru: Stratigraphic
and isotopic records of detachment faulting and orogenic collapse in the
Andean hinterland, Tectonics, 29, TC6007, https://doi.org/10.1029/2010TC002666,
2010.
Hastenrath, S. and Ames, A.: Recession of Yanamarey Glacier in Cordillera
Blanca, Peru, during the 20th century, J. Glaciol., 41, 191–196,
https://doi.org/10.1029/94JD03108, 1995.
Hellström, R. Å. and Mark, B. G.: An embedded sensor network for
measuring hydrometeorological variability within a tropical alpine valley,
Proceedings of the 63rd Eastern Snow Conference, U. Delaware, Newark, DE,
USA, 22, https://www.easternsnow.org/esc-2006 (last access: 15 January 2022), 2006.
Hellström, R. Å., Higgins, A., Ferris, D., Mark, B. G., and Levia,
D. F.: Impacts of complex terrain on evapotranspiration within a tropical
alpine valley in the Peruvian Andes, Proceedings of the 67th Eastern Snow
Conference, Jiminy Peak Mountain Resort, Hancock, MA, USA, 13, https://www.easternsnow.org/esc-2010 (last access: 15 January 2022), 2010.
Hellström, R. Å., Fernandez, A., Mark, B. G., Covert, J. M.,
Cochachin, A., Gomez, J.: Incorporating autonomous sensors and climate
modeling to gain insight into seasonal hydrometeorological processes within
a tropical glacierized valley, Ann. Am. Assoc.
Geogr., 107, 260–273,
https://doi.org/10.1080/24694452.2016.1232615, 2017.
Hofer, M., Mölg, T., Marzeion, B., and Kaser, G.: Empirical-statistical
downscaling of reanalysis data to high-resolution air temperature and
specific humidity above a glacier surface (Cordillera Blanca, Peru), J.
Geophys. Res., 115, D12120, https://doi.org/10.1029/2009JD012556, 2010.
Kaser, G. and Georges, C.: Changes of the equilibrium-line altitude in the
tropical Cordillera Blanca, Peru, 1930-50, and their spatial variations,
Ann. Glaciol., 24, 344–349, 1997.
Kaser, G. and Osmaston, H. A.: Tropical glaciers, Cambridge University
Press, Cambridge, United Kingdom, ISBN 978-0195396072, 2002.
Kaser, G., Ames, A., and Zamora, M.: Glacier fluctuations and climate in the
Cordillera Blanca, Peru, Ann. Glaciol., 14, 136–140, 1990.
Kaser, G., Fountain, A., and Jansson, P.: A Manual for Monitoring the Mass Balance of Mountain Glaciers, Unesco Paris, 2003.
Kiang, J. E., Gazoorian, C., McMillan, H., Coxon, G., Le Coz, J.,
Westerberg, I. K., Belleville, A., Sevrez, D., Sikorska, A. E., Peterson-Overleir, A., Reitan, T., Freer, J., Renard, B., Mansanarez, V., and Mason, R.: A comparison of methods for streamflow
uncertainty estimation, Water Resour. Res., 54, 7149–7176,
https://doi.org/10.1029/2018WR022708, 2018.
Lliboutry, L., Morales, B., Schneider, B.: Glaciological problems set by the
control of dangerous Lakes in Cordillera Blanca, Peru. III. Study of
Moraines and mass balances at Safuna, J. Glaciol., 18,
275–290, 1977.
Mark, B. G. and McKenzie, J. M.: Tracing increasing tropical Andean glacier
melt with stable isotopes in water, Environ. Sci. Technol., 41, 6955–6960, 2007.
Mark, B. G. and Seltzer, G. O.: Tropical glacier meltwater contribution to
stream discharge: A case study in the Cordillera Blanca, Peru, J.
Glaciol., 49, 271–281, 2003.
Mark, B. G., McKenzie, J. M., and Gomez, J.: Hydrochemical evaluation of
changing glacier meltwater contribution to stream discharge: Callejon de
Huaylas, Peru, Hydrolog. Sci. J., 50, 975–987, 2005.
Mark, B. G., Bury, J., McKenzie, J. M., French, A., and Baraer, M.: Climate
change and tropical Andean glacier recession: evaluating hydrologic changes
and livelihood vulnerability in the Cordillera Blanca, Peru, Ann.
Assoc. Am. Geogr., 100, 794–805, 2010.
Mateo, E. I., Mark, B. G., Hellström, R. Å., Baraer, M., McKenzie,
J. M., Condom, T., Rapre, A. C., Gonzales, G., Gómez, J. Q., and
Encarnación, R. C. C.: High temporal resolution hydrometeorological data
collected in the tropical Cordillera Blanca, Peru (2004–2020), HydroShare [data set],
https://doi.org/10.4211/hs.506c1f66f87e4004b84e6af4097853a4, 2021.
McMillan, H., Freer, J., Pappenberger, F., Krueger, T., and Clark, M.:
Impacts of uncertain river flow data on rainfall-runoff model calibration
and discharge predictions, Hydrol. Process., 24, 1270–1284,
https://doi.org/10.1002/hyp.7587, 2010.
McMillan, H., Krueger, T., and Freer, J.: Benchmarking observational
uncertainties for hydrology: Rainfall, river discharge and water quality.
Hydrol. Process., 26, 4078–4111,
https://doi.org/10.1002/hyp.9384, 2012.
McNulty, B. A., Farber, D. L., Wallace, G. S., Lopez, R., and Palacios, O.:
Role of plate kinematics and plate-slip-vector partitioning in continental
magmatic arcs: Evidence from the Cordillera Blanca, Peru, Geology, 26,
827–830, 1998.
Petersen, U., Sassarini, L., and Plenge, R.: Glaciar Yanasinga (Central Peru):
24 years of measurements, J. Glaciol., 8, 487–489, 1969.
RGI Consortium: Randolph Glacier Inventory – A Dataset of Global Glacier
Outlines: Version 6.0: Technical Report, Global Land Ice Measurements from
Space, Colorado, USA, Digital Media, https://doi.org/10.7265/N5-RGI-60,
2017.
Schwarb, M., Acuña, D., Konzelmann, Th., Rohrer, M., Salzmann, N., Serpa Lopez, B., and Silvestre, E.: A data portal for regional climatic trend analysis in a Peruvian High Andes region, Adv. Sci. Res., 6, 219–226, https://doi.org/10.5194/asr-6-219-2011, 2011.
Short summary
This article presents detailed and comprehensive hydrological and meteorological datasets collected over the past two decades throughout the Cordillera Blanca, Peru. With four weather stations and six streamflow gauges ranging from 3738 to 4750 m above sea level, this network displays a vertical breadth of data and enables detailed research of atmospheric and hydrological processes in a tropical high mountain region.
This article presents detailed and comprehensive hydrological and meteorological datasets...
Altmetrics
Final-revised paper
Preprint