Articles | Volume 14, issue 5
Earth Syst. Sci. Data, 14, 2501–2519, 2022
https://doi.org/10.5194/essd-14-2501-2022
Earth Syst. Sci. Data, 14, 2501–2519, 2022
https://doi.org/10.5194/essd-14-2501-2022
Data description paper
01 Jun 2022
Data description paper | 01 Jun 2022

Soil moisture observation in a forested headwater catchment: combining a dense cosmic-ray neutron sensor network with roving and hydrogravimetry at the TERENO site Wüstebach

Maik Heistermann et al.

Data sets

Soil moisture observation in a forested headwater catchment: combining a dense cosmic-ray neutron sensor network with roving and hydrogravimetry at the TERENO site Wüstebach M. Heistermann, H. Bogena, T. Francke, A. Güntner, J. Jakobi, D. Rasche, M. Schrön, B. Fersch, J. Groh, A. Patil, T. Pütz, M. Reich, S. Zacharias, C. Zengerle, and S. Oswald https://doi.org/10.23728/b2share.756ca0485800474e9dc7f5949c63b872

Download
Short summary
This paper presents a dense network of cosmic-ray neutron sensing (CRNS) to measure spatio-temporal soil moisture patterns during a 2-month campaign in the Wüstebach headwater catchment in Germany. Stationary, mobile, and airborne CRNS technology monitored the root-zone water dynamics as well as spatial heterogeneity in the 0.4 km2 area. The 15 CRNS stations were supported by a hydrogravimeter, biomass sampling, and a wireless soil sensor network to facilitate holistic hydrological analysis.