Articles | Volume 13, issue 12
https://doi.org/10.5194/essd-13-5847-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/essd-13-5847-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Modelling seabed sediment physical properties and organic matter content in the Firth of Clyde
Matthew C. Pace
CORRESPONDING AUTHOR
Institute of Biodiversity, Animal Health and Comparative Medicine,
University of Glasgow, Glasgow, G12 8QQ, UK
David M. Bailey
Institute of Biodiversity, Animal Health and Comparative Medicine,
University of Glasgow, Glasgow, G12 8QQ, UK
David W. Donnan
NatureScot, Perth, PH1 3EW, UK
Bhavani E. Narayanaswamy
Scottish Association for Marine Science, Oban, PA37 1QA, UK
Hazel J. Smith
Department of Mathematics and Statistics, University of Strathclyde,
Glasgow, G1 1XH, UK
Douglas C. Speirs
Department of Mathematics and Statistics, University of Strathclyde,
Glasgow, G1 1XH, UK
William R. Turrell
Marine Scotland Science, Aberdeen, AB11 9DB, UK
Michael R. Heath
Department of Mathematics and Statistics, University of Strathclyde,
Glasgow, G1 1XH, UK
Related authors
No articles found.
Ricardo González-Gil, Neil S. Banas, Eileen Bresnan, and Michael R. Heath
Biogeosciences, 19, 2417–2426, https://doi.org/10.5194/bg-19-2417-2022, https://doi.org/10.5194/bg-19-2417-2022, 2022
Short summary
Short summary
In oceanic waters, the accumulation of phytoplankton biomass in winter, when light still limits growth, is attributed to a decrease in grazing as the mixed layer deepens. However, in coastal areas, it is not clear whether winter biomass can accumulate without this deepening. Using 21 years of weekly data, we found that in the Scottish coastal North Sea, the seasonal increase in light availability triggers the accumulation of phytoplankton biomass in winter, when light limitation is strongest.
Charitha Pattiaratchi, Mirjam van der Mheen, Cathleen Schlundt, Bhavani E. Narayanaswamy, Appalanaidu Sura, Sara Hajbane, Rachel White, Nimit Kumar, Michelle Fernandes, and Sarath Wijeratne
Ocean Sci., 18, 1–28, https://doi.org/10.5194/os-18-1-2022, https://doi.org/10.5194/os-18-1-2022, 2022
Short summary
Short summary
The Indian Ocean receives a large proportion of plastics, but very few studies have addressed the sources, transport pathways, and sinks. There is a scarcity of observational data for the Indian Ocean. Most plastic sources are derived from rivers, although the amount derived from fishing activity (ghost nets, discarded ropes) is unknown. The unique topographic features of the Indian Ocean that create the monsoons and reversing currents have a large influence on the transport and sinks.
Robert J. Wilson and Michael R. Heath
Ocean Sci., 15, 1615–1625, https://doi.org/10.5194/os-15-1615-2019, https://doi.org/10.5194/os-15-1615-2019, 2019
Short summary
Short summary
The North Sea became much less clear during the 20th century, with potential consequences for primary production. This study analyses the hypothesis that changes in wave regime were a key driver of this change. We hindcast bed shear stress over the 20th century using a long-term wave reanalysis. Shear stress increased by over 20 % in large parts of the southern and central North Sea during the 20th century. An increase of this magnitude would have caused a large decline in water clarity.
Svein Østerhus, Rebecca Woodgate, Héðinn Valdimarsson, Bill Turrell, Laura de Steur, Detlef Quadfasel, Steffen M. Olsen, Martin Moritz, Craig M. Lee, Karin Margretha H. Larsen, Steingrímur Jónsson, Clare Johnson, Kerstin Jochumsen, Bogi Hansen, Beth Curry, Stuart Cunningham, and Barbara Berx
Ocean Sci., 15, 379–399, https://doi.org/10.5194/os-15-379-2019, https://doi.org/10.5194/os-15-379-2019, 2019
Short summary
Short summary
Two decades of observations of the Arctic Mediterranean (AM) exchanges show that the exchanges have been stable in terms of volume transport during a period when many other components of the global climate system have changed. The total AM import is found to be 9.1 Sv and has a seasonal variation in amplitude close to 1 Sv, and maximum import in October. Roughly one-third of the imported water leaves the AM as surface outflow.
Robert J. Wilson, Douglas C. Speirs, Alessandro Sabatino, and Michael R. Heath
Earth Syst. Sci. Data, 10, 109–130, https://doi.org/10.5194/essd-10-109-2018, https://doi.org/10.5194/essd-10-109-2018, 2018
Short summary
Short summary
We provide new maps of the sedimentary environment in the north-west European Continental Shelf. Maps are blended products of interpolated field estimates and statistical predictions. Data products include mud, sand and gravel percentages, median grain sizes, rock cover, carbon and nitrogen content, porosity and permeability, wave and tidal velocities, and natural disturbance rates. These maps can be used in applications such as species distribution modelling and ecosystem modelling.
A. R. Thurber, A. K. Sweetman, B. E. Narayanaswamy, D. O. B. Jones, J. Ingels, and R. L. Hansman
Biogeosciences, 11, 3941–3963, https://doi.org/10.5194/bg-11-3941-2014, https://doi.org/10.5194/bg-11-3941-2014, 2014
E. C. Pope, R. P. Ellis, M. Scolamacchia, J. W. S. Scolding, A. Keay, P. Chingombe, R. J. Shields, R. Wilcox, D. C. Speirs, R. W. Wilson, C. Lewis, and K. J. Flynn
Biogeosciences, 11, 2519–2530, https://doi.org/10.5194/bg-11-2519-2014, https://doi.org/10.5194/bg-11-2519-2014, 2014
N. Serpetti, E. Gontikaki, B. E. Narayanaswamy, and U. Witte
Biogeosciences, 10, 3705–3714, https://doi.org/10.5194/bg-10-3705-2013, https://doi.org/10.5194/bg-10-3705-2013, 2013
A. J. Chivers, B. E. Narayanaswamy, P. A. Lamont, A. Dale, and R. Turnewitsch
Biogeosciences, 10, 3535–3546, https://doi.org/10.5194/bg-10-3535-2013, https://doi.org/10.5194/bg-10-3535-2013, 2013
T. Morato, K. Ø. Kvile, G. H. Taranto, F. Tempera, B. E. Narayanaswamy, D. Hebbeln, G. M. Menezes, C. Wienberg, R. S. Santos, and T. J. Pitcher
Biogeosciences, 10, 3039–3054, https://doi.org/10.5194/bg-10-3039-2013, https://doi.org/10.5194/bg-10-3039-2013, 2013
Related subject area
Geosciences – Sedimentology
A worldwide meta-analysis (1977–2020) of sediment core dating using fallout radionuclides including 137Cs and 210Pbxs
A database of marine and terrestrial radiogenic Nd and Sr isotopes for tracing earth-surface processes
Surficial sediment texture database for the south-western Iberian Atlantic margin
A synthetic map of the north-west European Shelf sedimentary environment for applications in marine science
Anthony Foucher, Pierre-Alexis Chaboche, Pierre Sabatier, and Olivier Evrard
Earth Syst. Sci. Data, 13, 4951–4966, https://doi.org/10.5194/essd-13-4951-2021, https://doi.org/10.5194/essd-13-4951-2021, 2021
Short summary
Short summary
Sediment archives provide a powerful and unique tool for reconstructing the trajectory and the resilience of terrestrial and aquatic ecosystems facing major environmental changes. Establishing an age depth–model is the first prerequisite of any paleo-investigation. This study synthesizes the distribution of two radionuclides classically used to this aim, providing a worldwide reference to help the scientific community reach a consensus for dating recent sedimentary archives.
Cécile L. Blanchet
Earth Syst. Sci. Data, 11, 741–759, https://doi.org/10.5194/essd-11-741-2019, https://doi.org/10.5194/essd-11-741-2019, 2019
Short summary
Short summary
Processes occurring at the earth's surface (erosion, dust formation, weathering) determine the evolution of the landscape and play an important role in the global climate. The present database (compiled from a literature search) helps to determine the neodymium and strontium radioisotope signature of terrestrial and marine sediments to determine their provenance as well as present and past sediment transport pathways to oceanic basins.
Susana Costas, Margarida Ramires, Luisa B. de Sousa, Isabel Mendes, and Oscar Ferreira
Earth Syst. Sci. Data, 10, 1185–1195, https://doi.org/10.5194/essd-10-1185-2018, https://doi.org/10.5194/essd-10-1185-2018, 2018
Short summary
Short summary
This sample collection presents a database that integrates surficial sediment samples collected and analysed for textural characterization within the framework of a series of research projects. A total of 4727 samples within the framework of 24 projects developed between 1996 and 2015 along the southern Atlantic coast of the Iberian Peninsula, focusing along the Portuguese coast, including sediments from the continental shelf, beaches, estuaries, and coastal lagoons.
Robert J. Wilson, Douglas C. Speirs, Alessandro Sabatino, and Michael R. Heath
Earth Syst. Sci. Data, 10, 109–130, https://doi.org/10.5194/essd-10-109-2018, https://doi.org/10.5194/essd-10-109-2018, 2018
Short summary
Short summary
We provide new maps of the sedimentary environment in the north-west European Continental Shelf. Maps are blended products of interpolated field estimates and statistical predictions. Data products include mud, sand and gravel percentages, median grain sizes, rock cover, carbon and nitrogen content, porosity and permeability, wave and tidal velocities, and natural disturbance rates. These maps can be used in applications such as species distribution modelling and ecosystem modelling.
Cited articles
Aitchison, J.: Principles of compositional data analysis, Lecture Notes-Monograph Series, 24, 73–81, 1994.
Akima, H. and Gebhardt, A.: akima: Interpolation of Irregularly and
Regularly Spaced Data [code], available at:
https://cran.r-project.org/package=akima (last access: 15 March 2019), 2020.
Aldridge, J. N., Parker, E. R., Bricheno, L. M., Green, S. L., and van der
Molen, J.: Assessment of the physical disturbance of the northern European
Continental shelf seabed by waves and currents, Cont. Shelf Res., 108,
121–140, https://doi.org/10.1016/j.csr.2015.03.004, 2015.
Avelar, S., van der Voort, T. S., and Eglinton, T. I.: Relevance of carbon
stocks of marine sediments for national greenhouse gas inventories of
maritime nations, Carbon Balance and Management, 12, 10,
https://doi.org/10.1186/s13021-017-0077-x, 2017.
Blake, G. R. and Hartge, K. H.: Bulk density, in: Methods of Soil Analysis,
Part 1 – Physical and Mineralogical Methods, edited by: Klute, A., Soil Science Society of America (SSSA)/American Society of Agronomy, Inc. (ASA)), Madison, Wisconsin, 363–382, 1986.
Blott, S. J. and Pye, K.: GRADISTAT: a grain size distribution and
statistics package for the analysis of unconsolidated sediments, Earth Surf.
Proc. Land., 26, 1237–1248, https://doi.org/10.1002/esp.261, 2001.
Bockelmann, F. D., Puls, W., Kleeberg, U., Müller, D., and Emeis, K. C.:
Mapping mud content and median grain-size of North Sea sediments – A
geostatistical approach, Mar. Geol., 397, 60–71, https://doi.org/10.1016/j.margeo.2017.11.003, 2018.
Bolam, S. G., Garcia, C., Eggleton, J., Kenny, A. J., Buhl-Mortensen, L.,
Gonzalez-Mirelis, G., van Kooten, T., Dinesen, G., Hansen, J., Hiddink, J.
G., Sciberras, M., Smith, C., Papadopoulou, N., Gumus, A., Van Hoey, G.,
Eigaard, O. R., Bastardie, F., and Rijnsdorp, A. D.: Differences in
biological traits composition of benthic assemblages between unimpacted
habitats, Mar. Environ. Res., 126, 1–13,
https://doi.org/10.1016/j.marenvres.2017.01.004, 2017.
Breiman, L.: Random Forests, Mach. Learn., 45, 5–32, https://doi.org/10.1023/A:1010933404324, 2001.
Burrows, M. T., Kamenos, N. A., Hughes, D. J., Stahl, H., Howe, J. A., and
Tett, P.: Assessment of carbon budgets and potential blue carbon stores in
Scotland's coastal and marine environment:
Scottish Natural Heritage Commissioned Report No. 761, Scottish Natural Heritage, 90 pp., 2014.
Cavalli, M., Tarolli, P., Marchi, L., and Dalla Fontana, G.: The
effectiveness of airborne LiDAR data in the recognition of channel-bed
morphology, Catena, 73, 249–260, https://doi.org/10.1016/j.catena.2007.11.001, 2008.
Chesher, J. A., Deegan, C. E., Ardus, D. A., Binns, P. E., and Fannin, N. G.
T.: IGS marine drilling with m. v. Whitethorn in Scottish waters, 1970–71, in: Report Institute of Geological Sciences, HMSO, London, Report No. 72/10, 25 pp., 1972.
Cowling, R. M., Egoh, B., Knight, A. T., O'Farrell, P. J., Reyers, B.,
Rouget, M., Roux, D. J., Welz, A., and Wilhelm-Rechman, A.: An operational
model for mainstreaming ecosystem services for implementation, P. Natl.
Acad. Sci. USA, 105, 9483–9488, https://doi.org/10.1073/pnas.0706559105, 2008.
Craib, J. S.: A sampler for taking short undisturbed marine cores, ICES J.
Mar. Sci., 30, 34–39, https://doi.org/10.1093/icesjms/30.1.34, 1965.
Davies, A. M., Hall, P., Howarth, M. J., Knight, P. J., and Player, R. J.:
Tidal currents, energy flux and bottom boundary layer thickness in the Clyde
Sea and North Channel of the Irish Sea, Ocean Dynam., 54, 108–125,
https://doi.org/10.1007/s10236-003-0069-0, 2004.
Deegan, C. E., Kirby, R., Rae, I., and Floyd, R.: The superficial deposits of
the Firth of Clyde and its sea lochs, in: Report Institute of Geological Sciences, HMSO, London, Report No. 73/09, 42 pp., 1973.
Diesing, M., Kröger, S., Parker, R., Jenkins, C., Mason, C., and Weston,
K.: Predicting the standing stock of organic carbon in surface sediments of
the North–West European continental shelf, Biogeochemistry, 135, 183–200, https://doi.org/10.1007/s10533-017-0310-4, 2017.
Ehrenhauss, S., Witte, U., Janssen, F., and Huettel, M.: Decomposition of
diatoms and nutrient dynamics in permeable North Sea sediments, Cont. Shelf
Res., 24, 721–737, https://doi.org/10.1016/j.csr.2004.01.002, 2004.
Eigaard, O. R., Bastardie, F., Breen, M., Dinesen, G. E., Hintzen, N. T.,
Laffargue, P., Mortensen, L. O., Nielsen, J. R., Nilsson, H. C., O'Neill, F.
G., Polet, H., Reid, D. G., Sala, A., Sköld, M., Smith, C., Sørensen, T. K.,
Tully, O., Zengin, M., and Rijnsdorp, A. D.: Estimating seabed pressure from
demersal trawls, seines, and dredges based on gear design and dimensions,
ICES J. Mar. Sci., 73, i27–i43, https://doi.org/10.1093/icesjms/fsv099, 2016.
Eigaard, O. R., Bastardie, F., Hintzen, N. T., Buhl-Mortensen, L.,
Buhl-Mortensen, P., Catarino, R., Dinesen, G. E., Egekvist, J., Fock, H. O.,
Geitner, K., Gerritsen, H. D., González, M. M., Jonsson, P., Kavadas,
S., Laffargue, P., Lundy, M., Gonzalez-Mirelis, G., Nielsen, J. R.,
Papadopoulou, N., Posen, P. E., Pulcinella, J., Russo, T., Sala, A., Silva,
C., Smith, C. J., Vanelslander, B., and Rijnsdorp, A. D.: The footprint of
bottom trawling in European waters: Distribution, intensity, and seabed
integrity, ICES J. Mar. Sci., 74, 847–865, https://doi.org/10.1093/icesjms/fsw194,
2017.
Elliott, S. A. M., Sabatino, A. D., Heath, M. R., Turrell, W. R., and Bailey,
D. M.: Landscape effects on demersal fish revealed by field observations and
predictive seabed modelling, PLoS One, 12, 1–13,
https://doi.org/10.1371/journal.pone.0189011, 2017.
Fisher, P., Aumann, C., Chia, K., O'Halloran, N., and Chandra, S.: Adequacy
of laser diffraction for soil particle size analysis, PLoS One, 12,
1–20, https://doi.org/10.1371/journal.pone.0176510, 2017.
Folk, R. L.: The distinction between grain size and mineral composition in
sedimentary-rock nomenclature, J. Geol., 62, 344–359, 1954.
Gafeira, J., Green, S., Dove, D., Morando, A., Cooper, R., Long, D., and
Gatliff, R. W.: Developing the necessary data layers for Marine Conservation
Zone selection – Distribution of rock/hard substrate on the UK Continental
Shelf, British Geological Survey, MB0103 Final Report, 2010.
Garrett, R. C., Nar, A., and Fisher, T. J.: ggvoronoi: Voronoi Diagrams and
Heatmaps with “ggplot2”, R package version 0.8.3, CRAN [code], available at:
https://cran.r-project.org/package=ggvoronoi, last access: 29 May 2019.
Gregorutti, B., Michel, B., and Saint-Pierre, P.: Correlation and variable
importance in random forests, Stat. Comput., 27, 659–678,
https://doi.org/10.1007/s11222-016-9646-1, 2017.
Hastie, T., Tibshirani, R., and Friedman, J.: The Elements of Statistical
Learning, 2nd ed., Springer-Verlag, New York, 745 pp., https://doi.org/10.1007/b94608, 2009.
Heath, M. and Pace, M.: High resolution seabed sedimentology data for the
Firth of Clyde, University of Strathclyde [data set], https://doi.org/10.15129/2003faa2-ee93-4c11-bb16-48485f5f136d, 2021.
Hiddink, J. G., Moranta, J., Balestrini, S., Sciberras, M., Cendrier, M., Bowyer, R., Kaiser, M.J., Sköld, M., Jonsson, P., Bastardie, F., and Hinz, H.: Bottom trawling affects fish condition through changes in the ratio of prey availability to density of competitors, J. Appl. Ecol., 53, 1500–1510, https://doi.org/10.1111/1365-2664.12697, 2016.
Hijmans, R. J.: geosphere: Spherical Trigonometry, R package version 1.5-10, CRAN, available at: https://cran.r-project.org/package=geosphere, last access: 29 May 2019.
Huettel, M., Røy, H., Precht, E., and Ehrenhauss, S.: Hydrodynamical
impact on biogeochemical processes in aquatic sediments, Hydrobiologia, 494, 231–236, https://doi.org/10.1023/A:1025426601773, 2003.
Janssen, F., Huettel, M., and Witte, U.: Pore-water advection and solute
fluxes in permeable marine sediments (II): Benthic respiration at three
sandy sites with different permeabilities (German Bight, North Sea), Limnol.
Oceanogr., 50, 779–792, https://doi.org/10.4319/lo.2005.50.3.0779, 2005.
Kamann, P. J., Ritzi, R. W., Dominic, D. F., and Conrad, C. M.: Porosity and
permeability in sediment mixtures, Ground Water, 45, 429–438,
https://doi.org/10.1111/j.1745-6584.2007.00313.x, 2007.
Klute, A. (Ed.) and Dirksen, C.: Hydraulic Conductivity and Diffusivity:
Laboratory Methods, in: Methods of Soil Analysis, Part 1 – Physical and
Mineralogical Methods, Soil Science Society of America (SSSA)/American Society of Agronomy, Inc. (ASA)), Madison, Wisconsin, Wisconsin, 687–734, 1986.
Knudby, A., LeDrew, E., and Brenning, A.: Predictive mapping of reef fish
species richness, diversity and biomass in Zanzibar using IKONOS imagery and
machine-learning techniques, Remote Sens. Environ., 114, 1230–1241, https://doi.org/10.1016/j.rse.2010.01.007, 2010.
Kuhn, M.: caret: Classification and Regression Training, CRAN [code], available at:
https://cran.r-project.org/package=caret (last access: 15 March 2021), 2020.
Kvalseth, T. O.: Cautionary Note about R2, Am. Stat., 39, 279–285, 1985.
Lawson, C. R., Hodgson, J. A., Wilson, R. J., and Richards, S. A.:
Prevalence, thresholds and the performance of presence-absence models,
Methods Ecol. Evol., 5, 54–64, https://doi.org/10.1111/2041-210X.12123, 2014.
Lepland, A., Rybalko, A., and Lepland, A.: Seabed Sediments of the Barents Sea, Scale 1:3000000, Geological Survey of Norway (Trondheim) and SEVMORGEO (St. Petersburg) [data set], available at: http://www.mareano.no/en/maps/mareano_en.html (last access: 24 July 2020), 2014.
Li, J., Heap, A. D., Potter, A., and Daniell, J. J.: Application of machine
learning methods to spatial interpolation of environmental variables,
Environ. Model. Softw., 26, 1647–1659, https://doi.org/10.1016/j.envsoft.2011.07.004, 2011.
Lohse, L., Malschaert, J. F. P., Slomp, C. P., Helder, W., and Vanraaphorst,
W.: Nitrogen cycling in North Sea sediments – Interaction of denitrification
and nitrification in offshore and coastal areas, Mar. Ecol. Prog. Ser.,
101, 283–296, https://doi.org/10.3354/meps101283, 1993.
Luisetti, T., Turner, R. K., Andrews, J. E., Jickells, T. D., Kröger,
S., Diesing, M., Paltriguera, L., Johnson, M. T., Parker, E. R., Bakker, D.
C. E., and Weston, K.: Quantifying and valuing carbon flows and stores in
coastal and shelf ecosystems in the UK, Ecosyst. Serv., 35, 67–76, https://doi.org/10.1016/j.ecoser.2018.10.013, 2019.
Luisetti, T., Ferrini, S., Grilli, G., Jickells, T. D., Kennedy, H.,
Kröger, S., Lorenzoni, I., Milligan, B., van der Molen, J., Parker, R.,
Pryce, T., Turner, R. K., and Tyllianakis, E.: Climate action requires new
accounting guidance and governance frameworks to manage carbon in shelf
seas, Nat. Commun., 11, 4599, https://doi.org/10.1038/s41467-020-18242-w, 2020.
Maureaud, A., Hodapp, D., Daniël Van Denderen, P., Hillebrand, H.,
Gislason, H., Dencker, T. S., Beukhof, E., and Lindegren, M.:
Biodiversity-ecosystem functioning relationships in fish communities:
Biomass is related to evenness and the environment, not to species richness,
P. Roy. Soc. B-Biol. Sci., 286, 20191189, https://doi.org/10.1098/rspb.2019.1189, 2019.
McIntyre, F., Fernandes, P. G., and Turrell, W. R.: Clyde Ecosystem Review, Scottish Marine and Freshwater Science, 3, 119 pp., 2012.
Misiuk, B., Diesing, M., Aitken, A., Brown, C. J., Edinger, E. N., and Bell,
T.: A spatially explicit comparison of quantitative and categorical
modelling approaches for mapping seabed sediments using random forest,
Geosciences, 9, 1–34, https://doi.org/10.3390/geosciences9060254, 2019.
Mitchell, P. J., Aldridge, J., and Diesing, M.: Legacy data: How decades of
seabed sampling can produce robust predictions and versatile products,
Geosciences, 9, 182, https://doi.org/10.3390/geosciences9040182, 2019.
Moore, D. G. and Keller, G. H.: Marine sediments, geotechnical properties,
in: Applied Geology, edited by: Finkl, C. W., Springer US,
Boston, MA, 343–350, 1984.
Neumann, A., Möbius, J., Hass, H. C., Puls, W., and Friedrich, J.:
Empirical model to estimate permeability of surface sediments in the German
Bight (North Sea), J. Sea Res., 127, 36–45,
https://doi.org/10.1016/j.seares.2016.12.002, 2017a.
Neumann, A., van Beusekom, J. E. E., Holtappels, M., and Emeis, K. C.:
Nitrate consumption in sediments of the German Bight (North Sea), J. Sea
Res., 127, 26–35, https://doi.org/10.1016/j.seares.2017.06.012, 2017b.
Palanques, A., Puig, P., Guillén, J., Demestre, M., and Martín, J.:
Effects of bottom trawling on the Ebro continental shelf sedimentary system
(NW Mediterranean), Cont. Shelf Res., 72, 83–98,
https://doi.org/10.1016/j.csr.2013.10.008, 2014.
Pearson, T. H., Ansell, A. D., and Robb, L.: The Benthos of the Deeper
Sediments of the Firth of Clyde, With Particular Reference to Organic
Enrichment, P. Roy. Soc. Edinb. B., 90, 329–350, 1986.
Portela, J., Cristobo, J., Ríos, P., Acosta, J., Parra, S., del Rio, J.
L., Tel, E., Polonio, V., Muñoz, A., Patrocinio, T., Vilela, R., Barba,
M., and Marín, P.: A First Approach to Assess the Impact of Bottom
Trawling Over Vulnerable Marine Ecosystems on the High Seas of the Southwest
Atlantic, in: Biodiversity in Ecosystems – Linking Structure and Function, edited by: Lo, Y.-H., Blanco, J. A., and Roy, S., IntechOpen, https://doi.org/10.5772/59268, 2015.
Pusceddu, A., Bianchelli, S., Martín, J., Puig, P., Palanques, A.,
Masqué, P., and Danovaro, R.: Chronic and intensive bottom trawling
impairs deep-sea biodiversity and ecosystem functioning,, P. Natl. Acad. Sci. USA, 111, 8861–8866, https://doi.org/10.1073/pnas.1405454111, 2014.
Qi, S., Wen, Z., Lu, C., Shu, L., Shao, J., Huang, Y., Zhang, S., and Huang, Y.: A new empirical model for estimating the hydraulic conductivity of low permeability media, Proc. IAHS, 368, 478–483, https://doi.org/10.5194/piahs-368-478-2015, 2015.
R Core Team: R: A Language and Environment for Statistical Computing, R Foundation for Statistical computing, Vienna, Austria, available at: https://www.r-project.org/, last access: 26 April 2019.
Rijnsdorp, A. D., Bastardie, F., Bolam, S. G., Buhl-Mortensen, L., Eigaard,
O. R., Hamon, K. G., Hiddink, J. G., Hintzen, N. T., Ivanović, A.,
Kenny, A., Laffargue, P., Nielsen, J. R., O'Neill, F. G., Piet, G. J.,
Polet, H., Sala, A., Smith, C., van Denderen, P. D., van Kooten, T., and
Zengin, M.: Towards a framework for the quantitative assessment of trawling
impact on the seabed and benthic ecosystem, ICES J. Mar. Sci., 73,
i127–i138, https://doi.org/10.1093/icesjms/fsv207, 2016.
Rijnsdorp, A. D., Bolam, S. G., Garcia, C., Hiddink, J. G., Hintzen, N. T.,
van Denderen, P. D., and van Kooten, T.: Estimating sensitivity of seabed
habitats to disturbance by bottom trawling based on the longevity of benthic
fauna, Ecol. Appl., 28, 1302–1312, https://doi.org/10.1002/eap.1731, 2018.
Roberts, D. R., Bahn, V., Ciuti, S., Boyce, M. S., Elith, J.,
Guillera-Arroita, G., Hauenstein, S., Lahoz-Monfort, J. J., Schröder,
B., Thuiller, W., Warton, D. I., Wintle, B. A., Hartig, F., and Dormann, C.
F.: Cross-validation strategies for data with temporal, spatial,
hierarchical, or phylogenetic structure, Ecography, 40, 913–929,
https://doi.org/10.1111/ecog.02881, 2017.
Ruardij, P. and Van Raaphorst, W.: Benthic nutrient regeneration in the
ERSEM ecosystem model of the North Sea, Neth. J. Sea Res., 33,
453–483, https://doi.org/10.1016/0077-7579(95)90057-8, 1995.
Sabatino, A. D., O'Hara Murray, R. B., Hills, A., Speirs, D. C., and Heath,
M. R.: Modelling sea level surges in the Firth of Clyde, a fjordic embayment
in south-west Scotland, Nat. Hazards, 84, 1601–1623, https://doi.org/10.1007/s11069-016-2506-7, 2016.
Sala, E., Mayorga, J., Bradley, D., Cabral, R. B., Atwood, T. B., Auber, A.,
Cheung, W., Costello, C., Ferretti, F., Friedlander, A. M., Gaines, S. D.,
Garilao, C., Goodell, W., Halpern, B. S., Hinson, A., Kaschner, K.,
Kesner-Reyes, K., Leprieur, F., McGowan, J., Morgan, L. E., Mouillot, D.,
Palacios-Abrantes, J., Possingham, H. P., Rechberger, K. D., Worm, B., and
Lubchenco, J.: Protecting the global ocean for biodiversity, food and
climate, Nature, 592, 397–402, https://doi.org/10.1038/s41586-021-03371-z, 2021.
Schiele, K. S., Darr, A., Zettler, M. L., Friedland, R., Tauber, F., von
Weber, M., and Voss, J.: Biotope map of the German Baltic Sea, Mar. Pollut.
Bull., 96, 127–135, https://doi.org/10.1016/j.marpolbul.2015.05.038, 2015.
Serpetti, N., Heath, M., Armstrong, E., and Witte, U.: Blending single beam
RoxAnn and multi-beam swathe QTC hydro-acoustic discrimination techniques
for the Stonehaven area, Scotland, UK, J. Sea Res., 65, 442–455,
https://doi.org/10.1016/j.seares.2011.04.001, 2011.
Serpetti, N., Witte, U. F. M., and Heath, M. R.: Statistical modelling of
variability in sediment-water nutrient and oxygen fluxes, Front. Earth Sci.,
4, 1–17, https://doi.org/10.3389/feart.2016.00065, 2016.
Shepherd, R. G.: Correlations of Permeability and Grain Size, Ground Water,
27, 633–638, https://doi.org/10.1111/j.1745-6584.1989.tb00476.x, 1989.
Silburn, B., Kröger, S., Parker, E. R., Sivyer, D. B., Hicks, N.,
Powell, C. F., Johnson, M., and Greenwood, N.: Benthic pH gradients across a
range of shelf sea sediment types linked to sediment characteristics and
seasonal variability, Biogeochemistry, 135, 69–88,
https://doi.org/10.1007/s10533-017-0323-z, 2017.
Smeaton, C. and Austin, W. E. N.: Where's the Carbon: Exploring the Spatial
Heterogeneity of Sedimentary Carbon in Mid-Latitude Fjords, Front. Earth
Sci., 7, 1–16, https://doi.org/10.3389/feart.2019.00269, 2019.
Smeaton, C., Austin, W., and Turrell, W. R.: Re-Evaluating Scotland's
Sedimentary Carbon Stocks, Scottish Marine and Freshwater Science, 11, 16 pp., https://doi.org/10.7489/12267-1, 2020.
Smeaton, C., Hunt, C. A., Turrell, W. R., and Austin, W. E. N.: Marine
Sedimentary Carbon Stocks of the United Kingdom's Exclusive Economic Zone,
Front. Earth Sci., 9, 1–21, https://doi.org/10.3389/feart.2021.593324, 2021.
Soulsby, R. L.: Dynamics of marine sands: A manual for practical
applications, in: Dynamics of marine sands, Thomas Telford Publishing, London, UK, https://doi.org/10.1680/doms.25844, 1997.
Stephens, D. and Diesing, M.: Towards quantitative spatial models of seabed
sediment composition, PLoS One, 10, e0142502,
https://doi.org/10.1371/journal.pone.0142502, 2015.
Townsend, M., Thrush, S. F., Lohrer, A. M., Hewitt, J. E., Lundquist, C. J.,
Carbines, M., and Felsing, M.: Overcoming the challenges of data scarcity in
mapping marine ecosystem service potential, Ecosyst. Serv., 8, 44–55,
https://doi.org/10.1016/j.ecoser.2014.02.002, 2014.
Turner, R.: deldir: Delaunay Triangulation and Dirichlet (Voronoi) Tessellation, R package version 0.1-16, CRAN [code], available at: https://cran.r-project.org/package=deldir, last access: 29 May 2019.
Valentine, P. C.: Sediment classification and the characterization,
identification, and mapping of geologic substrates for the glaciated Gulf of
Maine seabed and other terrains, providing a physical framework for
ecological research and seabed management, Scientific Investigations Report 2019-5073, https://doi.org/10.3133/sir20195073, 2019.
Van Der Wal, J., Falconi, L., Januchowski, S., Shoo, L., and Storlie, C.:
SDMTools: Species Distribution Modelling Tools: Tools for processing data
associated with species distribution modelling exercises, R package version
1.1-221.1, CRAN [code], available at: https://cran.r-project.org/package=SDMTools, last access: 29 May 2019
Wei, C. L., Rowe, G. T., Briones, E. E., Boetius, A., Soltwedel, T., Caley,
M. J., Soliman, Y., Huettmann, F., Qu, F., Yu, Z., Pitcher, C. R., Haedrich,
R. L., Wicksten, M. K., Rex, M. A., Baguley, J. G., Sharma, J., Danovaro,
R., MacDonald, I. R., Nunnally, C. C., Deming, J. W., Montagna, P.,
Lévesque, M., Weslawski, J. M., Wlodarska-Kowalczuk, M., Ingole, B. S.,
Bett, B. J., Billett, D. S. M., Yool, A., Bluhm, B. A., Iken, K., and
Narayanaswamy, B. E.: Global patterns and predictions of seafloor biomass
using random forests, PLoS One, 5, e15323, https://doi.org/10.1371/journal.pone.0015323, 2010.
Wentworth, C. K.: A Scale of Grade and Class Terms for Clastic Sediments, J.
Geol., 30, 377–392, https://doi.org/10.1086/622910, 1922.
Wickham, H.: ggplot2: Elegant Graphics for Data Analysis, Springer-Verlag
New York [code], available at: https://ggplot2.tidyverse.org/ (last access: 29 January 2021), 2016.
Wiesner, M. G., Haake, B., and Wirth, H.: Organic facies of surface sediments
in the North Sea, Org. Geochem., 15, 419–432,
https://doi.org/10.1016/0146-6380(90)90169-Z, 1990.
Wilson, A. M., Huettel, M., and Klein, S.: Grain size and depositional
environment as predictors of permeability in coastal marine sands, Estuar.
Coast. Shelf S., 80, 193–199, https://doi.org/10.1016/j.ecss.2008.06.011, 2008.
Wilson, R. and Heath, M.: bedshear: Calculations for bed shear stress and wave orbital velocity, R package version 0.1.0, GitHub [code], available at: https://github.com/r4ecology/bedshear (last access: 11 September 2021), 2019.
Wilson, R. J., Speirs, D. C., Sabatino, A., and Heath, M. R.: A synthetic map of the north-west European Shelf sedimentary environment for applications in marine science, Earth Syst. Sci. Data, 10, 109–130, https://doi.org/10.5194/essd-10-109-2018, 2018.
Wright, M. N. and Ziegler, A.: ranger: A Fast Implementation of Random
Forests for High Dimensional Data in C++ and R, J. Stat. Softw., 77,
1–17, https://doi.org/10.18637/jss.v077.i01, 2017.
Short summary
We present synthetic maps of continuous properties of seabed sediments in the Firth of Clyde, SW Scotland. The data include proportions of mud, sand, and gravel fractions; whole-sediment median grain size; permeability; porosity; organic carbon and nitrogen content; and rates of natural disturbance by tidal currents. We show that the firth stores 3.42 and 0.33 million tonnes of organic carbon and nitrogen, respectively, in the upper 10 cm of sediment.
We present synthetic maps of continuous properties of seabed sediments in the Firth of Clyde, SW...
Altmetrics
Final-revised paper
Preprint