Articles | Volume 13, issue 9
https://doi.org/10.5194/essd-13-4529-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/essd-13-4529-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
LamaH-CE: LArge-SaMple DAta for Hydrology and Environmental Sciences for Central Europe
Christoph Klingler
CORRESPONDING AUTHOR
Institute for Hydrology and Water Management, University of Natural
Resources and Life Sciences, Vienna, 1190, Austria
Karsten Schulz
Institute for Hydrology and Water Management, University of Natural
Resources and Life Sciences, Vienna, 1190, Austria
Mathew Herrnegger
Institute for Hydrology and Water Management, University of Natural
Resources and Life Sciences, Vienna, 1190, Austria
Viewed
Total article views: 7,363 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 18 Mar 2021)
HTML | XML | Total | BibTeX | EndNote | |
---|---|---|---|---|---|
5,282 | 1,945 | 136 | 7,363 | 132 | 134 |
- HTML: 5,282
- PDF: 1,945
- XML: 136
- Total: 7,363
- BibTeX: 132
- EndNote: 134
Total article views: 5,660 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 16 Sep 2021)
HTML | XML | Total | BibTeX | EndNote | |
---|---|---|---|---|---|
4,471 | 1,081 | 108 | 5,660 | 121 | 122 |
- HTML: 4,471
- PDF: 1,081
- XML: 108
- Total: 5,660
- BibTeX: 121
- EndNote: 122
Total article views: 1,703 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 18 Mar 2021)
HTML | XML | Total | BibTeX | EndNote | |
---|---|---|---|---|---|
811 | 864 | 28 | 1,703 | 11 | 12 |
- HTML: 811
- PDF: 864
- XML: 28
- Total: 1,703
- BibTeX: 11
- EndNote: 12
Viewed (geographical distribution)
Total article views: 7,363 (including HTML, PDF, and XML)
Thereof 6,863 with geography defined
and 500 with unknown origin.
Total article views: 5,660 (including HTML, PDF, and XML)
Thereof 5,390 with geography defined
and 270 with unknown origin.
Total article views: 1,703 (including HTML, PDF, and XML)
Thereof 1,473 with geography defined
and 230 with unknown origin.
Country | # | Views | % |
---|
Country | # | Views | % |
---|
Country | # | Views | % |
---|
Total: | 0 |
HTML: | 0 |
PDF: | 0 |
XML: | 0 |
- 1
1
Total: | 0 |
HTML: | 0 |
PDF: | 0 |
XML: | 0 |
- 1
1
Total: | 0 |
HTML: | 0 |
PDF: | 0 |
XML: | 0 |
- 1
1
Cited
44 citations as recorded by crossref.
- Simbi: historical hydro-meteorological time series and signatures for 24 catchments in Haiti R. Bathelemy et al. 10.5194/essd-16-2073-2024
- Disentangling coastal groundwater level dynamics in a global dataset A. Nolte et al. 10.5194/hess-28-1215-2024
- A Weak-Coupling Flow-Power Forecasting Method for Small Hydropower Station Group B. Chen et al. 10.1155/2023/1214269
- A framework on utilizing of publicly availability stream gauges datasets and deep learning in estimating monthly basin-scale runoff in ungauged regions M. Le et al. 10.1016/j.advwatres.2024.104694
- On the Evaluation of Both Spatial and Temporal Performance of Distributed Hydrological Models Using Remote Sensing Products T. Nguyen et al. 10.3390/rs14091959
- Vorhersage von hydrologischen Abflusskennwerten in unbeobachteten Einzugsgebieten mit Machine Learning C. Klingler et al. 10.1007/s00506-022-00891-4
- A review of machine learning concepts and methods for addressing challenges in probabilistic hydrological post-processing and forecasting G. Papacharalampous & H. Tyralis 10.3389/frwa.2022.961954
- Temporal Fusion Transformers for streamflow Prediction: Value of combining attention with recurrence S. Rasiya Koya & T. Roy 10.1016/j.jhydrol.2024.131301
- Impacts of observational uncertainty on analysis and modelling of hydrological processes: Preface H. McMillan et al. 10.1002/hyp.14481
- A global streamflow indices time series dataset for large-sample hydrological analyses on streamflow regime (until 2022) X. Chen et al. 10.5194/essd-15-4463-2023
- EStreams: An integrated dataset and catalogue of streamflow, hydro-climatic and landscape variables for Europe T. do Nascimento et al. 10.1038/s41597-024-03706-1
- AI4Water v1.0: an open-source python package for modeling hydrological time series using data-driven methods A. Abbas et al. 10.5194/gmd-15-3021-2022
- A dataset of lake-catchment characteristics for the Tibetan Plateau J. Liu et al. 10.5194/essd-14-3791-2022
- Massive feature extraction for explaining and foretelling hydroclimatic time series forecastability at the global scale G. Papacharalampous et al. 10.1016/j.gsf.2022.101349
- Where should hydrology go? An early-career perspective on the next IAHS Scientific Decade: 2023–2032 T. van Hateren et al. 10.1080/02626667.2023.2170754
- FOCA: a new quality-controlled database of floods and catchment descriptors in Italy P. Claps et al. 10.5194/essd-16-1503-2024
- BULL Database – Spanish Basin attributes for Unravelling Learning in Large-sample hydrology J. Senent-Aparicio et al. 10.1038/s41597-024-03594-5
- Multi-model hydrological reference dataset over continental Europe and an African basin B. Droppers et al. 10.1038/s41597-024-03825-9
- Large Scale Evaluation of Relationships Between Hydrologic Signatures and Processes H. McMillan et al. 10.1029/2021WR031751
- A novel statistical-dynamical method for a seasonal forecast of particular matter in South Korea J. Jeong et al. 10.1016/j.scitotenv.2022.157699
- Quantifying the Geomorphic Effect of Floods Using Satellite Observations of River Mobility A. Leenman et al. 10.1029/2023GL103875
- Temporal hydrological drought clustering varies with climate and land-surface processes M. Brunner & K. Stahl 10.1088/1748-9326/acb8ca
- A synthesis of Global Streamflow Characteristics, Hydrometeorology, and Catchment Attributes (GSHA) for large sample river-centric studies Z. Yin et al. 10.5194/essd-16-1559-2024
- Influence of irrigation on root zone storage capacity estimation F. van Oorschot et al. 10.5194/hess-28-2313-2024
- LamaH-Ice: LArge-SaMple DAta for Hydrology and Environmental Sciences for Iceland H. Helgason & B. Nijssen 10.5194/essd-16-2741-2024
- Ecosystem adaptation to climate change: the sensitivity of hydrological predictions to time-dynamic model parameters L. Bouaziz et al. 10.5194/hess-26-1295-2022
- Deep learning for cross-region streamflow and flood forecasting at a global scale B. Zhang et al. 10.1016/j.xinn.2024.100617
- Evaluation of satellite precipitation products for water allocation studies in the Sio-Malaba-Malakisi river basin of East Africa P. Omonge et al. 10.1016/j.ejrh.2021.100983
- Lateral terrestrial water fluxes in the LSM of WRF‐Hydro: Benefits of a 2D groundwater representation T. Rummler et al. 10.1002/hyp.14510
- Building Cross-Site and Cross-Network collaborations in critical zone science B. Arora et al. 10.1016/j.jhydrol.2023.129248
- Res-CN (Reservoir dataset in China): hydrometeorological time series and landscape attributes across 3254 Chinese reservoirs Y. Shen et al. 10.5194/essd-15-2781-2023
- CAMELS-CH: hydro-meteorological time series and landscape attributes for 331 catchments in hydrologic Switzerland M. Höge et al. 10.5194/essd-15-5755-2023
- Caravan - A global community dataset for large-sample hydrology F. Kratzert et al. 10.1038/s41597-023-01975-w
- Widespread deoxygenation in warming rivers W. Zhi et al. 10.1038/s41558-023-01793-3
- Setting expectations for hydrologic model performance with an ensemble of simple benchmarks W. Knoben 10.1002/hyp.15288
- Global patterns in vegetation accessible subsurface water storage emerge from spatially varying importance of individual drivers F. van Oorschot et al. 10.1088/1748-9326/ad8805
- Changes in the water retention of mountainous landscapes since the 1820s in the Austrian Alps G. Stecher et al. 10.3389/fenvs.2023.1219030
- Uncertainty in Environmental Micropollutant Modeling H. Ahkola et al. 10.1007/s00267-024-01989-z
- Potenzial von Machine Learning bei der kurzfristigen Leistungsprognose innerhalb einer Laufkraftwerkskette C. Klingler et al. 10.1007/s00506-022-00849-6
- QUADICA: water QUAlity, DIscharge and Catchment Attributes for large-sample studies in Germany P. Ebeling et al. 10.5194/essd-14-3715-2022
- Catchment characterization: Current descriptors, knowledge gaps and future opportunities L. Tarasova et al. 10.1016/j.earscirev.2024.104739
- Large-sample hydrology – a few camels or a whole caravan? F. Clerc-Schwarzenbach et al. 10.5194/hess-28-4219-2024
- Vorhersage der Fließgewässertemperaturen in österreichischen Einzugsgebieten mittels Machine Learning-Verfahren M. Feigl et al. 10.1007/s00506-021-00771-3
- LamaH | Large-Sample Data for Hydrology: Big data für die Hydrologie und Umweltwissenschaften C. Klingler et al. 10.1007/s00506-021-00769-x
42 citations as recorded by crossref.
- Simbi: historical hydro-meteorological time series and signatures for 24 catchments in Haiti R. Bathelemy et al. 10.5194/essd-16-2073-2024
- Disentangling coastal groundwater level dynamics in a global dataset A. Nolte et al. 10.5194/hess-28-1215-2024
- A Weak-Coupling Flow-Power Forecasting Method for Small Hydropower Station Group B. Chen et al. 10.1155/2023/1214269
- A framework on utilizing of publicly availability stream gauges datasets and deep learning in estimating monthly basin-scale runoff in ungauged regions M. Le et al. 10.1016/j.advwatres.2024.104694
- On the Evaluation of Both Spatial and Temporal Performance of Distributed Hydrological Models Using Remote Sensing Products T. Nguyen et al. 10.3390/rs14091959
- Vorhersage von hydrologischen Abflusskennwerten in unbeobachteten Einzugsgebieten mit Machine Learning C. Klingler et al. 10.1007/s00506-022-00891-4
- A review of machine learning concepts and methods for addressing challenges in probabilistic hydrological post-processing and forecasting G. Papacharalampous & H. Tyralis 10.3389/frwa.2022.961954
- Temporal Fusion Transformers for streamflow Prediction: Value of combining attention with recurrence S. Rasiya Koya & T. Roy 10.1016/j.jhydrol.2024.131301
- Impacts of observational uncertainty on analysis and modelling of hydrological processes: Preface H. McMillan et al. 10.1002/hyp.14481
- A global streamflow indices time series dataset for large-sample hydrological analyses on streamflow regime (until 2022) X. Chen et al. 10.5194/essd-15-4463-2023
- EStreams: An integrated dataset and catalogue of streamflow, hydro-climatic and landscape variables for Europe T. do Nascimento et al. 10.1038/s41597-024-03706-1
- AI4Water v1.0: an open-source python package for modeling hydrological time series using data-driven methods A. Abbas et al. 10.5194/gmd-15-3021-2022
- A dataset of lake-catchment characteristics for the Tibetan Plateau J. Liu et al. 10.5194/essd-14-3791-2022
- Massive feature extraction for explaining and foretelling hydroclimatic time series forecastability at the global scale G. Papacharalampous et al. 10.1016/j.gsf.2022.101349
- Where should hydrology go? An early-career perspective on the next IAHS Scientific Decade: 2023–2032 T. van Hateren et al. 10.1080/02626667.2023.2170754
- FOCA: a new quality-controlled database of floods and catchment descriptors in Italy P. Claps et al. 10.5194/essd-16-1503-2024
- BULL Database – Spanish Basin attributes for Unravelling Learning in Large-sample hydrology J. Senent-Aparicio et al. 10.1038/s41597-024-03594-5
- Multi-model hydrological reference dataset over continental Europe and an African basin B. Droppers et al. 10.1038/s41597-024-03825-9
- Large Scale Evaluation of Relationships Between Hydrologic Signatures and Processes H. McMillan et al. 10.1029/2021WR031751
- A novel statistical-dynamical method for a seasonal forecast of particular matter in South Korea J. Jeong et al. 10.1016/j.scitotenv.2022.157699
- Quantifying the Geomorphic Effect of Floods Using Satellite Observations of River Mobility A. Leenman et al. 10.1029/2023GL103875
- Temporal hydrological drought clustering varies with climate and land-surface processes M. Brunner & K. Stahl 10.1088/1748-9326/acb8ca
- A synthesis of Global Streamflow Characteristics, Hydrometeorology, and Catchment Attributes (GSHA) for large sample river-centric studies Z. Yin et al. 10.5194/essd-16-1559-2024
- Influence of irrigation on root zone storage capacity estimation F. van Oorschot et al. 10.5194/hess-28-2313-2024
- LamaH-Ice: LArge-SaMple DAta for Hydrology and Environmental Sciences for Iceland H. Helgason & B. Nijssen 10.5194/essd-16-2741-2024
- Ecosystem adaptation to climate change: the sensitivity of hydrological predictions to time-dynamic model parameters L. Bouaziz et al. 10.5194/hess-26-1295-2022
- Deep learning for cross-region streamflow and flood forecasting at a global scale B. Zhang et al. 10.1016/j.xinn.2024.100617
- Evaluation of satellite precipitation products for water allocation studies in the Sio-Malaba-Malakisi river basin of East Africa P. Omonge et al. 10.1016/j.ejrh.2021.100983
- Lateral terrestrial water fluxes in the LSM of WRF‐Hydro: Benefits of a 2D groundwater representation T. Rummler et al. 10.1002/hyp.14510
- Building Cross-Site and Cross-Network collaborations in critical zone science B. Arora et al. 10.1016/j.jhydrol.2023.129248
- Res-CN (Reservoir dataset in China): hydrometeorological time series and landscape attributes across 3254 Chinese reservoirs Y. Shen et al. 10.5194/essd-15-2781-2023
- CAMELS-CH: hydro-meteorological time series and landscape attributes for 331 catchments in hydrologic Switzerland M. Höge et al. 10.5194/essd-15-5755-2023
- Caravan - A global community dataset for large-sample hydrology F. Kratzert et al. 10.1038/s41597-023-01975-w
- Widespread deoxygenation in warming rivers W. Zhi et al. 10.1038/s41558-023-01793-3
- Setting expectations for hydrologic model performance with an ensemble of simple benchmarks W. Knoben 10.1002/hyp.15288
- Global patterns in vegetation accessible subsurface water storage emerge from spatially varying importance of individual drivers F. van Oorschot et al. 10.1088/1748-9326/ad8805
- Changes in the water retention of mountainous landscapes since the 1820s in the Austrian Alps G. Stecher et al. 10.3389/fenvs.2023.1219030
- Uncertainty in Environmental Micropollutant Modeling H. Ahkola et al. 10.1007/s00267-024-01989-z
- Potenzial von Machine Learning bei der kurzfristigen Leistungsprognose innerhalb einer Laufkraftwerkskette C. Klingler et al. 10.1007/s00506-022-00849-6
- QUADICA: water QUAlity, DIscharge and Catchment Attributes for large-sample studies in Germany P. Ebeling et al. 10.5194/essd-14-3715-2022
- Catchment characterization: Current descriptors, knowledge gaps and future opportunities L. Tarasova et al. 10.1016/j.earscirev.2024.104739
- Large-sample hydrology – a few camels or a whole caravan? F. Clerc-Schwarzenbach et al. 10.5194/hess-28-4219-2024
2 citations as recorded by crossref.
Discussed (final revised paper)
Discussed (preprint)
Latest update: 20 Nov 2024
Short summary
LamaH-CE is a large-sample catchment hydrology dataset for Central Europe. The dataset contains hydrometeorological time series (daily and hourly resolution) and various attributes for 859 gauged basins. Sticking closely to the CAMELS datasets, LamaH includes additional basin delineations and attributes for describing a large interconnected river network. LamaH further contains outputs of a conceptual hydrological baseline model for plausibility checking of the inputs and for benchmarking.
LamaH-CE is a large-sample catchment hydrology dataset for Central Europe. The dataset contains...
Altmetrics
Final-revised paper
Preprint