Articles | Volume 13, issue 9
https://doi.org/10.5194/essd-13-4465-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/essd-13-4465-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
A spectral library for laser-induced fluorescence analysis as a tool for rare earth element identification
Helmholtz-Zentrum Dresden-Rossendorf, Helmholtz Institute Freiberg for Resource Technology, Chemnitzer Str. 40, 09599 Freiberg, Germany
Jan Beyer
Institute of Applied Physics, TU Bergakademie Freiberg, Leipziger Strasse 23, 09599 Freiberg, Germany
Sandra Lorenz
Helmholtz-Zentrum Dresden-Rossendorf, Helmholtz Institute Freiberg for Resource Technology, Chemnitzer Str. 40, 09599 Freiberg, Germany
Suchinder Sharma
Helmholtz-Zentrum Dresden-Rossendorf, Helmholtz Institute Freiberg for Resource Technology, Chemnitzer Str. 40, 09599 Freiberg, Germany
Institute of Applied Physics, TU Bergakademie Freiberg, Leipziger Strasse 23, 09599 Freiberg, Germany
Axel D. Renno
Helmholtz-Zentrum Dresden-Rossendorf, Helmholtz Institute Freiberg for Resource Technology, Chemnitzer Str. 40, 09599 Freiberg, Germany
Johannes Heitmann
Institute of Applied Physics, TU Bergakademie Freiberg, Leipziger Strasse 23, 09599 Freiberg, Germany
Richard Gloaguen
Helmholtz-Zentrum Dresden-Rossendorf, Helmholtz Institute Freiberg for Resource Technology, Chemnitzer Str. 40, 09599 Freiberg, Germany
Related authors
Lutz Schirrmeister, Margret C. Fuchs, Thomas Opel, Andrei Andreev, Frank Kienast, Andrea Schneider, Larisa Nazarova, Larisa Frolova, Svetlana Kuzmina, Tatiana Kuznetsova, Vladimir Tumskoy, Heidrun Matthes, Gerrit Lohmann, Guido Grosse, Viktor Kunitsky, Hanno Meyer, Heike H. Zimmermann, Ulrike Herzschuh, Thomas Böhmer, Stuart Umbo, Sevi Modestou, Sebastian F. M. Breitenbach, Anfisa Pismeniuk, Georg Schwamborn, Stephanie Kusch, and Sebastian Wetterich
Clim. Past, 21, 1143–1184, https://doi.org/10.5194/cp-21-1143-2025, https://doi.org/10.5194/cp-21-1143-2025, 2025
Short summary
Short summary
Geochronological, cryolithological, paleoecological, and modeling data reconstruct the Last Interglacial (LIG) climate around the New Siberian Islands and reveal significantly warmer conditions compared to today. The critical challenges in predicting future ecosystem responses lie in the fact that the land–ocean distribution during the LIG was markedly different from today, affecting the degree of continentality, which played a major role in modulating climate and ecosystem dynamics.
Michael Dietze, Sebastian Kreutzer, Margret C. Fuchs, and Sascha Meszner
Geochronology, 4, 323–338, https://doi.org/10.5194/gchron-4-323-2022, https://doi.org/10.5194/gchron-4-323-2022, 2022
Short summary
Short summary
The R package sandbox is a collection of functions that allow the creation, sampling and analysis of fully virtual sediment sections, like having a virtual twin of real-world deposits. This article introduces the concept, features, and workflows required to use sandbox. It shows how a real-world sediment section can be mapped into the model and subsequently addresses a series of theoretical and practical questions, exploiting the flexibility of the model framework.
Lutz Schirrmeister, Margret C. Fuchs, Thomas Opel, Andrei Andreev, Frank Kienast, Andrea Schneider, Larisa Nazarova, Larisa Frolova, Svetlana Kuzmina, Tatiana Kuznetsova, Vladimir Tumskoy, Heidrun Matthes, Gerrit Lohmann, Guido Grosse, Viktor Kunitsky, Hanno Meyer, Heike H. Zimmermann, Ulrike Herzschuh, Thomas Böhmer, Stuart Umbo, Sevi Modestou, Sebastian F. M. Breitenbach, Anfisa Pismeniuk, Georg Schwamborn, Stephanie Kusch, and Sebastian Wetterich
Clim. Past, 21, 1143–1184, https://doi.org/10.5194/cp-21-1143-2025, https://doi.org/10.5194/cp-21-1143-2025, 2025
Short summary
Short summary
Geochronological, cryolithological, paleoecological, and modeling data reconstruct the Last Interglacial (LIG) climate around the New Siberian Islands and reveal significantly warmer conditions compared to today. The critical challenges in predicting future ecosystem responses lie in the fact that the land–ocean distribution during the LIG was markedly different from today, affecting the degree of continentality, which played a major role in modulating climate and ecosystem dynamics.
Akshay V. Kamath, Samuel T. Thiele, Hernan Ugalde, Bill Morris, Raimon Tolosana-Delgado, Moritz Kirsch, and Richard Gloaguen
EGUsphere, https://doi.org/10.5194/egusphere-2025-2345, https://doi.org/10.5194/egusphere-2025-2345, 2025
Short summary
Short summary
We present a new machine learning approach to reconstruct gravity and magnetic tensor data from sparse airborne surveys. By treating the data as derivatives of a hidden potential field and enforcing physical laws, our method improves accuracy and captures geological features more clearly. This enables better subsurface imaging in regions where traditional interpolation methods fall short.
Akshay V. Kamath, Samuel T. Thiele, Moritz Kirsch, and Richard Gloaguen
Solid Earth, 16, 351–365, https://doi.org/10.5194/se-16-351-2025, https://doi.org/10.5194/se-16-351-2025, 2025
Short summary
Short summary
We developed a deep learning model that uses hyperspectral imaging data to predict key physical rock properties, specifically density, slowness, and gamma-ray values. Our model successfully learned to translate hyperspectral information into predicted physical properties. Tests on independent data gave accurate results, demonstrating the potential of hyperspectral data for mapping physical rock properties.
Samuel T. Thiele, Gabor Kereszturi, Michael J. Heap, Andréa de Lima Ribeiro, Akshay Kamath, Maia Kidd, Matías Tramontini, Marina Rosas-Carbajal, and Richard Gloaguen
EGUsphere, https://doi.org/10.5194/egusphere-2025-1904, https://doi.org/10.5194/egusphere-2025-1904, 2025
Short summary
Short summary
Volcanic rocks are shaped by many processes, including volcanism, chemical alteration and weathering. These processes change the rock's properties, making it difficult to predict volcanic hazards or design tunnels and mines in volcanic areas. In this study, we build on earlier research to connect unique spectral signatures that can be remotely imaged using hyperspectral cameras to the density, porosity, strength, and stiffness of volcanic rocks.
Aldino Rizaldy, Pedram Ghamisi, and Richard Gloaguen
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-4-W11-2024, 103–109, https://doi.org/10.5194/isprs-archives-XLVIII-4-W11-2024-103-2024, https://doi.org/10.5194/isprs-archives-XLVIII-4-W11-2024-103-2024, 2024
Léa Géring, Moritz Kirsch, Samuel Thiele, Andréa De Lima Ribeiro, Richard Gloaguen, and Jens Gutzmer
Solid Earth, 14, 463–484, https://doi.org/10.5194/se-14-463-2023, https://doi.org/10.5194/se-14-463-2023, 2023
Short summary
Short summary
We apply multi-range hyperspectral imaging on drill core material from a Kupferschiefer-type Cu–Ag deposit in Germany, mapping minerals such as iron oxides, kaolinite, sulfate, and carbonates at millimetre resolution and in a rapid, cost-efficient, and continuous manner to track hydrothermal fluid flow paths and vectors towards base metal deposits in sedimentary basins.
Michael Dietze, Sebastian Kreutzer, Margret C. Fuchs, and Sascha Meszner
Geochronology, 4, 323–338, https://doi.org/10.5194/gchron-4-323-2022, https://doi.org/10.5194/gchron-4-323-2022, 2022
Short summary
Short summary
The R package sandbox is a collection of functions that allow the creation, sampling and analysis of fully virtual sediment sections, like having a virtual twin of real-world deposits. This article introduces the concept, features, and workflows required to use sandbox. It shows how a real-world sediment section can be mapped into the model and subsequently addresses a series of theoretical and practical questions, exploiting the flexibility of the model framework.
Trond Ryberg, Moritz Kirsch, Christian Haberland, Raimon Tolosana-Delgado, Andrea Viezzoli, and Richard Gloaguen
Solid Earth, 13, 519–533, https://doi.org/10.5194/se-13-519-2022, https://doi.org/10.5194/se-13-519-2022, 2022
Short summary
Short summary
Novel methods for mineral exploration play an important role in future resource exploration. The methods have to be environmentally friendly, socially accepted and cost effective by integrating multidisciplinary methodologies. We investigate the potential of passive, ambient noise tomography combined with 3D airborne electromagnetics for mineral exploration in Geyer, Germany. We show that the combination of the two geophysical data sets has promising potential for future mineral exploration.
I. C. Contreras, M. Khodadadzadeh, and R. Gloaguen
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLIII-B3-2020, 383–388, https://doi.org/10.5194/isprs-archives-XLIII-B3-2020-383-2020, https://doi.org/10.5194/isprs-archives-XLIII-B3-2020-383-2020, 2020
Cited articles
Ahmed, Z. and Iftikhar, K.: Red, orange-red and near-infrared light emitting
ternary lanthanide tris β-diketonate complexes with distorted C4v
geometrical structures, Dalton Trans., 48, 4973–4986,
https://doi.org/10.1039/C9DT00198K, 2019. a
Barakos, G., Gutzmer, J., and Mischo, H.: An outlook on the rare earth elements
mining industry, AusIMM Bulletin, 2, 62–66, 2016. a
Barmarin, G.: Luminescent Mineral Database, available at:
http://www.fluomin.org/uk/accueil.php, last access: 25 April 2020. a
Beleites, C. and Sergo, V.: hyperSpec: a package to handle hyperspectral data
sets in R, r package
version 0.99-20180627, available at: http://hyperspec.r-forge.r-project.org (last access: 27 November 2020), 2018. a
Binnemans, K.: Interpretation of europium(III) spectra, Coordin. Chem. Rev., 295, 1–45, https://doi.org/10.1016/j.ccr.2015.02.015, 2015. a
Boesche, N. K., Rogass, C., Lubitz, C., Brell, M., Herrmann, S., Mielke, C.,
Tonn, S., Appelt, O., Altenberger, U., and Kaufmann, H.: Hyperspectral REE
(Rare Earth Element) Mapping of Outcrops – Applications for Neodymium
Detection, Remote Sensing, 7, 5160, https://doi.org/10.3390/rs70505160, 2015. a, b
Booysen, R., Zimmermann, R., Lorenz, S., Gloaguen, R., Nex, P. A. M., Andreani,
L., and Möckel, R.: Towards Multiscale and Multisource Remote Sensing
Mineral Exploration Using RPAS: A Case Study in the Lofdal Carbonatite-Hosted
REE Deposit, Namibia, Remote Sensing, 11, 2500, https://doi.org/10.3390/rs11212500, 2019. a
Broicher, H.: Bulk sorting by LIF: quality control of ores for bulk sorting
and blending – by laser-induced fluorescence analysis, Min. Eng.,
52, 24–28, 2000. a
Broicher, H.: Dilution control – online and real-time recognition of ore and
waste by LIF, SME Annual Meeting, 28 February–2 March 2005, Salt Lake City, UT 1–5, 2005. a
Chakraborty, A., Debnath, G. H., Saha, N. R., Chattopadhyay, D., Waldeck,
D. H., and Mukherjee, P.: Identifying the Correct Host–Guest Combination To
Sensitize Trivalent Lanthanide (Guest) Luminescence: Titanium Dioxide
Nanoparticles as a Model Host System, J. Phys. Chem. C,
120, 23870–23882, 2016. a
Chen, H., Ni, Y., and Ma, X.: Phase-controllable synthesis, shape evolution
and optical performances of CePO4 nanocrystals via a simple oil-bath
route, RSC Adv., 4, 36553–36559, https://doi.org/10.1039/C4RA07052F, 2014. a
CSIRO: CSIRO Luminescence database, available at:
https://luminescence.csiro.au/luminescence/default.aspx, last access:
1 August 2019. a
Czaja, M., Bodyl-Gajowska, S., Gluchowski, P., Mazurak, Z., and Strek, W.:
Luminescence properties of rare earth ions in fluorite, apatite and
scheelite mineral, J. Alloy. Compd., 451, 290–292,
https://doi.org/10.1016/j.jallcom.2007.04.058, 2008. a
Czaja, M., Bodyl-Gajowska, S., and Mazurak, Z. G.: Steady-state luminescence
measurement for qualitative identification of rare earth ions in minerals,
J. Miner. Petrol. Sci., 108, 47–54,
https://doi.org/10.2465/jmps.111229, 2013. a
Donovan, J., Hanchar, J., Piccoli, P., Schrier, M., Boatner, L., and
Jarosewich, E.: A reexamination of the rare-earth element orthophosphate
reference samples for electron microprobe analysis, Can. Mineral.,
41, 221–232, https://doi.org/10.2113/gscanmin.41.1.221, 2003. a, b, c
Emsbo, P., McLaughlin, P. I., Breit, G. N., du Bray, E. A., and Koenig, A. E.:
Rare earth elements in sedimentary phosphate deposits: Solution to the
global REE crisis?, Gondwana Res., 27, 776–785,
https://doi.org/10.1016/j.gr.2014.10.008, 2015. a
European Commission: Report on critical raw materials for the EU, Report of
the Ad-hoc Working Group on defining critical raw materials, European
Commission, availablea at: https://ec.europa.eu/docsroom/documents/10010/attachments/1/translations/en/renditions/pdf (last access: 20 July 2021), 2014. a
European Commission: Report on critical raw materials and the Circular
Economy, European Commission, Brussels, available at: https://op.europa.eu/de/publication-detail/-/publication/d1be1b43-e18f-11e8-b690-01aa75ed71a1/language-en/format-PDF/source-80004733 (last access: 20 July 2021), 2018. a
Fang, H., Wei, X., Zhou, S., Li, X., Chen, Y., Duan, C.-K., and Yin, M.:
Terbium and holmium codoped yttrium phosphate as non-contact optical
temperature sensors, RSC Adv., 7, 10200–10205,
https://doi.org/10.1039/C6RA27971F, 2017. a
Fasnacht, L., Vogt, M.-L., Renard, P., and Brunner, P.: A 2D hyperspectral
library of mineral reflectance, from 900 to 2500 nm, Sci. Data, 6,
268, https://doi.org/10.1038/s41597-019-0261-9, 2019. a
Fuchs, M. C., Beyer, J., Lorenz, S., Sharma, S., Renno, A. D., Heitmann, J.,
and Gloaguen, R.: Spectral library of laser-induced fluorescence (LiF)
properties from Smithsonian rare-earth element (REE) orthophosphate
standards, Zenodo [data set],
https://doi.org/10.5281/zenodo.4054606, 2020. a, b, c, d, e
Gaft, M. and Panczer, G.: Laser-induced time-resolved luminescence
spectroscopy of minerals – a powerful tool for studying the nature of
emission centres, Miner. Petrol., 107, 363–373,
https://doi.org/10.1007/s00710-013-0293-3, 2013. a
Gaft, M., Reisfeld, R., Panczer, G., Blank, P., and Boulon, G.: Laser-induced
time-resolved luminescence of minerals, Spectrochim. Acta A, 54, 2163–2175,
https://doi.org/10.1016/S1386-1425(98)00134-6, 1998. a, b
Gandhi, M., Agrawal, N., and Bhatia, H.: Quantum Cutting down Conversion by
Cooperative Energy Transfer from Tb3+ to Yb3+ in CeF3
Nanophosphors, in: Energy Development, vol. 860 of Advanced Materials
Research, Trans Tech Publications Ltd, 124–127,
https://doi.org/10.4028/www.scientific.net/AMR.860-863.124, 2014. a
Gavrilović, T. V., Jovanović, D. J., Trandafilović, L. V., and Dramićanin,
M. D.: Effects of Ho3+ and Yb3+ doping concentrations and Li+
co-doping on the luminescence of GdVO4 powders, Opt. Mater., 45,
76–81, https://doi.org/10.1016/j.optmat.2015.03.013, 2015. a
Goodenough, K., Schilling, J., Jonsson, E., Kalvig, P., Charles, N., Tuduri,
J., Deady, E., Sadeghi, M., Schiellerup, H., Müller, A., Bertrand, G.,
Arvanitidis, N., Eliopoulos, D., Shaw, R., Thrane, K., and Keulen, N.:
Europe's rare earth element resource potential: An overview of REE
metallogenetic provinces and their geodynamic setting, Ore Geol. Rev.,
72, 838–856, https://doi.org/10.1016/j.oregeorev.2015.09.019, 2016. a
Guan, H., Sheng, Y., Song, Y., Zheng, K., Xu, C., Xie, X., Dai, Y., and Zou,
H.: White light-emitting, tunable color luminescence, energy transfer and
paramagnetic properties of terbium and samarium doped BaGdF5
multifunctional nanomaterials, RSC Adv., 6, 73160–73169,
https://doi.org/10.1039/C6RA14296F, 2016. a, b
Ha, H. M., Hoa, T. T. Q., Vu, L. V., and Long, N. N.: Photoluminescence and
Energy Transfer Between Sm3+ Ions in LaF3 Nanocrystals Prepared by
Hydrothermal Method, International Journal of Materials Science and
Applications, 5, 284–289, https://doi.org/10.11648/j.ijmsa.20160506.18, 2016. a
He, S., Xia, H., Zhang, J., Zhu, Y., and Chen, B.: Highly efficient
up-conversion luminescence in Er3+/Yb3+ co-doped
Na5Lu9F32 single crystals by vertical Bridgman method,
Sci. Rep., 7, 8751, https://doi.org/10.1038/s41598-017-09222-0, 2017. a
Kalashnikov, A., Konopleva, N., Ivanyuk, G., and Pakhomovsky, Y.: Rare Earth
Deposits of the Murmansk Region, Russia – A Review, Econ. Geol., 111,
1529–1559, https://doi.org/10.2113/econgeo.111.7.1529, 2016. a
Kang, X., Lü, W., Wang, H., and Ling, D.: Multicolor-tunable up-conversion
emissions of Yb3+, Er3+/Ho3+ co-doped
Ba3Lu2Zn5O11: crystal structure, luminescence and
energy transfer properties, Dalton Trans., 48, 2917–2925,
https://doi.org/10.1039/C8DT04577A, 2019. a, b
Kauppinen, T., Khajehzadeh, N., and Haavisto, O.: Laser-induced fluorescence
images and Raman spectroscopy studies on rapid scanning of rock drillcore
samples, Int. J. Miner. Process., 132, 26–33,
https://doi.org/10.1016/j.minpro.2014.09.003, 2014. a
Lafuente, B., Downs, R. T., Yang, H., and Stone, N.: he power of databases:
the RRUFF project, in: Highlights in Mineralogical Crystallography, edited by: Armbruster, T.
and Danisi, R. M., W. De Gruyter, Berlin, Germany, 1–30,
2015. a
Lenz, C., Talla, D., Ruschel, K., Škoda, R., Götze, J., and Nasdala,
L.: Factors affecting the Nd3+ (REE3+) luminescence of minerals,
Miner. Petrol., 107, 415–428, https://doi.org/10.1007/s00710-013-0286-2,
2013. a
Liang, Y.-J., Liu, F., Chen, Y.-F., Wang, X.-J., Sun, K.-N., and Pan, Z.: New
function of the Yb3+ ion as an efficient emitter of persistent
luminescence in the short-wave infrared, Light Science Applications, 5,
e16124, https://doi.org/10.1038/lsa.2016.124, 2016. a, b
Liang, Y.-J., Liu, F., Chen, Y., Wang, X., Sun, K., and Pan, Z.:
Red/near-infrared/short-wave infrared multi-band persistent luminescence in
Pr3+-doped persistent phosphors, Dalton Trans., 46, 11149,
https://doi.org/10.1039/c7dt02271a, 2017. a
Lima, I. B. D. and Filho, W. L. (Eds.): Rare Earths Industry – Technological,
Economic, and Environmental Implications, Elsevier, Boston,
https://doi.org/10.1016/C2014-0-01863-1, 2015. a, b
Lorenz, S., Beyer, J., Fuchs, M., Seidel, P., Turner, D., Heitmann, J., and
Gloaguen, R.: The Potential of Reflectance and Laser Induced Luminescence
Spectroscopy for Near-Field Rare Earth Element Detection in Mineral
Exploration, Remote Sensing, 11, 21, https://doi.org/10.3390/rs11010021, 2019. a, b, c, d
National Research Council: Minerals, Critical Minerals, and the U.S.
Economy, The National Academies Press, Washington, DC, https://doi.org/10.17226/12034,
2008. a
Nazarov, M., Tsukerblat, B., Byeon, C., Arellano, I., Popovici, E.-J., and Noh,
D.: Polarization selection rules and optical transitions in terbium
activated yttrium tantalate phosphor under x-ray, vacuum-ultraviolet, and
ultraviolet excitations, Appl. Optics, 48, 17–21,
https://doi.org/10.1364/AO.48.000017, 2009. a
Neave, D. A., Black, M., Riley, T. R., Gibson, S. A., Ferrier, G., Wall, F.,
and Broom-Fendley, S.: On the Feasibility of Imaging Carbonatite-Hosted Rare
Earth Element Deposits Using Remote Sensing, Econ. Geol., 111,
641–665, https://doi.org/10.2113/econgeo.111.3.641, 2016. a
Nienhaus, K. and Bayer, A.: Innovative Systems for Horizon Control of Mining
Machines by Means of Laser Induced Fluorescence (LIF), Mine Planning and
Equipment Selection, Kalgoorlie, WA, 1–7, 2003. a
Pandey, A. and Swart, H. C.: Luminescence investigation of visible light
emitting Ho3+ doped tellurite glass, J. Lumin., 169,
93–98, https://doi.org/10.1016/j.jlumin.2015.08.060, 2016. a, b, c
Prasad, V. R., Damodaraiah, S., Devara, S., and Ratnakaram, Y.:
Photoluminescence studies on holmium (III) and praseodymium (III) doped
calcium borophosphate (CBP) phosphors, J. Mol. Struct., 1160,
383–392, https://doi.org/10.1016/j.molstruc.2018.02.034, 2018. a, b, c, d
Qin, F., Zheng, Y., Yu, Y., Cheng, Z., Tayebi, P. S., Cao, W., and Zhang, Z.:
Ultraviolet and violet upconversion luminescence in Ho3+-doped
Y2O3 ceramic induced by 532-nm CW laser, J. Alloy. Compd., 509, 1115–1118, https://doi.org/10.1016/j.jallcom.2010.09.188, 2011. a, b, c
R Core Team: R: A Language and Environment for Statistical Computing, R
Foundation for Statistical Computing, Vienna, Austria,
available at: http://www.R-project.org (last access: 20 July 2021), 2014. a
Ropp, R.: Phosphors Based on Rare Earth Phosphates: II. Reflection Spectra of
Rare Earth Phosphates, J. Electrochem. Soc., 116,
623–629, https://doi.org/10.1149/1.2411989, 1969. a, b
Runowski, M., Woźny, P., Martín, I. R., Lavín, V., and Lis, S.:
Praseodymium doped YF3:Pr3+ nanoparticles as optical thermometer based on
luminescence intensity ratio (LIR) – Studies in visible and NIR range,
J. Lumin., 214, 116571, https://doi.org/10.1016/j.jlumin.2019.116571,
2019. a, b, c, d
Samanta, T., Sarkar, S., Adusumalli, V. N. K. B., Praveen, A. E., and
Mahalingam, V.: Enhanced visible and near infrared emissions via Ce3+
to Ln3+ energy transfer in Ln3+-doped CeF3 nanocrystals (Ln =
Nd and Sm), Dalton Trans., 45, 78–84, https://doi.org/10.1039/c5dt02974k, 2016. a
Seidel, P., Lorenz, S., Heinig, T., Zimmermann, R., Booysen, R., Beyer, J.,
Heitmann, J., and Gloaguen, R.: Fast 2D Laser-Induced Fluorescence
Spectroscopy Mapping of Rare Earth Elements in Rock Samples, Sensors, 19, 2219,
https://doi.org/10.3390/s19102219, 2019. a
Sharma, S. K., Köhler, T., Beyer, J., Fuchs, M., Gloaguen, R., and Heitmann,
J.: Extending the temperature sensing range using Eu3+ luminescence up to
865 K in a single crystal of EuPO4, Phys. Chem. Chem. Phys., 21,
16329–16336, https://doi.org/10.1039/C9CP03501J, 2019. a
Tang, L., Ye, H., and Xiao, D.: Photo-induced luminescence degradation in
Ce, Yb co-doped yttrium aluminum garnet phosphors, Appl. Optics, 57,
7627–7633, https://doi.org/10.1364/AO.57.007627, 2018. a
Turner, D. J., Rivard, B., and Groat, L. A.: Visible and short-wave infrared
reflectance spectroscopy of REE fluorocarbonates, Am/ Mineral/, 99,
1335–1346, https://doi.org/10.2138/am.2014.4674, 2014. a, b
Wang, S., Xu, J., Wang, J., Wang, K.-Y., Dang, S., Song, S., Liu, D., and Wang,
C.: Luminescence of samarium(iii) bis-dithiocarbamate frameworks: codoped
lanthanide emitters that cover visible and near-infrared domains, J. Mater.
Chem. C, 5, 6620–6628, https://doi.org/10.1039/C7TC01844D, 2017. a
Wang, X., Li, X., Zhong, H., Xu, S., Cheng, L., Sun, J., Zhang, J., Li, L., and
Chen, B.: Up-conversion luminescence, temperature sensing properties and
laser-induced heating effect of Er3+/Yb3+ co-doped YNbO4
phosphors under 1550 nm excitation, Sci. Rep., 8, 5736,
https://doi.org/10.1038/s41598-018-23981-4, 2018. a
Wantana, N., Kaewjaeng, S., Kothan, S., Kim, H. J., and Kaewkhao, J.: Energy
transfer from Gd3+ to Sm3+ and luminescence characteristics of
CaO–Gd2O3–SiO2–B2O3 scintillating glasses,
J. Lumin., 181, 382–386, https://doi.org/10.1016/j.jlumin.2016.09.050,
2017. a
Wei, X., Li, Y., Cheng, X., Chen, Y., and Yin, M.: Strong dependence of
upconversion luminescence on doping concentration in holmium and ytterbium
co-doped Y2O3 phosphor, J. Rare Earths, 29, 536–539,
https://doi.org/10.1016/S1002-0721(10)60493-0, 2011. a
White, W. B.: Diffuse-reflectance spectra of rare-earth oxides, Appl.
Spectrosc., 21, 167–171, 1967. a
Yashodha, S. R., Dhananjaya, N., and Manjunath, C.: Synthesis and
photoluminescence properties of Sm3+ doped LaOCl phosphor with reddish
orange emission and it's Judd-Ofelt analysis, Mater. Res Express, 7,
015003, https://doi.org/10.1088/2053-1591/ab57a6, 2019. a
Yu, D. C., Ye, S., Huang, X. Y., and Zhang, Q. Y.: Enhanced three-photon
near-infrared quantum splitting in β-NaYF4:Ho3+ by codoping
Yb3+, AIP Adv., 2, 022124, https://doi.org/10.1063/1.4718412, 2012. a, b
Zhou, B., Tao, L., Tsang, Y. H., Jin, W., and Pun, E. Y.-B.: Superbroadband
near-IR photoluminescence from Pr3+-doped fluorotellurite glasses, Opt.
Express, 20, 3803–3813, https://doi.org/10.1364/OE.20.003803, 2012. a, b, c
Zimmermann, R., Brandmeier, M., Andreani, L., Mhopjeni, K., and Gloaguen, R.:
Remote Sensing Exploration of Nb-Ta-LREE-Enriched Carbonatite
(Epembe/Namibia), Remote Sensing, 8, 620, https://doi.org/10.3390/rs8080620, 2016.
a
Zirner, A. L., Marks, M. A., Wenzel, T., Jacob, D. E., and Markl, G.: Rare
earth elements in apatite as a monitor of magmatic and metasomatic processes:
The Ilímaussaq complex, South Greenland, Lithos, 228–229, 12–22,
https://doi.org/10.1016/j.lithos.2015.04.013, 2015. a
Short summary
We present a library of high-resolution laser-induced fluorescence (LiF) reference spectra using the Smithsonian rare earth phosphate standards for electron microprobe analysis. With the recurring interest in rare earth elements (REEs), LiF may provide a powerful tool for their rapid and accurate identification. Applications of the spectral LiF library to natural materials such as rocks could complement the spectroscopy-based toolkit for innovative, non-invasive exploration technologies.
We present a library of high-resolution laser-induced fluorescence (LiF) reference spectra using...
Altmetrics
Final-revised paper
Preprint