Articles | Volume 13, issue 2
https://doi.org/10.5194/essd-13-343-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/essd-13-343-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Database of global glendonite and ikaite records throughout the Phanerozoic
Geological Institute of RAS, Moscow 119017, Russia
Victoria Ershova
Geological Institute of RAS, Moscow 119017, Russia
Institute of Earth Sciences, St. Petersburg State University, 199034
St. Petersburg, Russia
Oleg Vereshchagin
Institute of Earth Sciences, St. Petersburg State University, 199034
St. Petersburg, Russia
Kseniia Vasileva
Institute of Earth Sciences, St. Petersburg State University, 199034
St. Petersburg, Russia
Kseniia Mikhailova
Institute of Earth Sciences, St. Petersburg State University, 199034
St. Petersburg, Russia
Aleksei Krylov
Institute of Earth Sciences, St. Petersburg State University, 199034
St. Petersburg, Russia
VNIIOkeangeologia, 190121, St. Petersburg, Russia
Related authors
Thomas Letulle, Guillaume Suan, Mathieu Daëron, Mikhail Rogov, Christophe Lécuyer, Arnauld Vinçon-Laugier, Bruno Reynard, Gilles Montagnac, Oleg Lutikov, and Jan Schlögl
Clim. Past, 18, 435–448, https://doi.org/10.5194/cp-18-435-2022, https://doi.org/10.5194/cp-18-435-2022, 2022
Short summary
Short summary
In this study, we applied geochemical tools to well-preserved ∼180-million-year-old marine mollusc shells from polar and mid-latitude seas. These results indicate that polar shells grew at temperatures of 8–18°C, while mid-latitude shells grew at temperatures of 24–28°C. These results, together with previously published data, raise concerns about the ability of climate models to predict accurate polar temperatures under reasonably high atmospheric CO2 levels.
Kim Senger, Grace Shephard, Fenna Ammerlaan, Owen Anfinson, Pascal Audet, Bernard Coakley, Victoria Ershova, Jan Inge Faleide, Sten-Andreas Grundvåg, Rafael Kenji Horota, Karthik Iyer, Julian Janocha, Morgan Jones, Alexander Minakov, Margaret Odlum, Anna M. R. Sartell, Andrew Schaeffer, Daniel Stockli, Marie A. Vander Kloet, and Carmen Gaina
Geosci. Commun. Discuss., https://doi.org/10.5194/gc-2024-3, https://doi.org/10.5194/gc-2024-3, 2024
Revised manuscript accepted for GC
Short summary
Short summary
The article describes a course that we have developed at the University Centre in Svalbard that covers many aspects of Arctic Geology. The students experience this from a wide range of lecturers, focussing both on the small and larger scales, and covering many geoscientific disciplines.
Thomas Letulle, Guillaume Suan, Mathieu Daëron, Mikhail Rogov, Christophe Lécuyer, Arnauld Vinçon-Laugier, Bruno Reynard, Gilles Montagnac, Oleg Lutikov, and Jan Schlögl
Clim. Past, 18, 435–448, https://doi.org/10.5194/cp-18-435-2022, https://doi.org/10.5194/cp-18-435-2022, 2022
Short summary
Short summary
In this study, we applied geochemical tools to well-preserved ∼180-million-year-old marine mollusc shells from polar and mid-latitude seas. These results indicate that polar shells grew at temperatures of 8–18°C, while mid-latitude shells grew at temperatures of 24–28°C. These results, together with previously published data, raise concerns about the ability of climate models to predict accurate polar temperatures under reasonably high atmospheric CO2 levels.
Related subject area
Geosciences – Geology
Greenland Geothermal Heat Flow Database and Map (Version 1)
MIS 5e sea-level history along the Pacific coast of North America
A spectral library for laser-induced fluorescence analysis as a tool for rare earth element identification
Slope deformation, reservoir variation and meteorological data at the Khoko landslide, Enguri hydroelectric basin (Georgia), during 2016–2019
Marine terraces of the last interglacial period along the Pacific coast of South America (1° N–40° S)
A standardized database of Marine Isotope Stage 5e sea-level proxies in southern Africa (Angola, Namibia and South Africa)
A status report on a section-based stratigraphic and palaeontological database – the Geobiodiversity Database
Lake and mire isolation data set for the estimation of post-glacial land uplift in Fennoscandia
William Colgan, Agnes Wansing, Kenneth Mankoff, Mareen Lösing, John Hopper, Keith Louden, Jörg Ebbing, Flemming G. Christiansen, Thomas Ingeman-Nielsen, Lillemor Claesson Liljedahl, Joseph A. MacGregor, Árni Hjartarson, Stefan Bernstein, Nanna B. Karlsson, Sven Fuchs, Juha Hartikainen, Johan Liakka, Robert S. Fausto, Dorthe Dahl-Jensen, Anders Bjørk, Jens-Ove Naslund, Finn Mørk, Yasmina Martos, Niels Balling, Thomas Funck, Kristian K. Kjeldsen, Dorthe Petersen, Ulrik Gregersen, Gregers Dam, Tove Nielsen, Shfaqat A. Khan, and Anja Løkkegaard
Earth Syst. Sci. Data, 14, 2209–2238, https://doi.org/10.5194/essd-14-2209-2022, https://doi.org/10.5194/essd-14-2209-2022, 2022
Short summary
Short summary
We assemble all available geothermal heat flow measurements collected in and around Greenland into a new database. We use this database of point measurements, in combination with other geophysical datasets, to model geothermal heat flow in and around Greenland. Our geothermal heat flow model is generally cooler than previous models of Greenland, especially in southern Greenland. It does not suggest any high geothermal heat flows resulting from Icelandic plume activity over 50 million years ago.
Daniel R. Muhs
Earth Syst. Sci. Data, 14, 1271–1330, https://doi.org/10.5194/essd-14-1271-2022, https://doi.org/10.5194/essd-14-1271-2022, 2022
Short summary
Short summary
The last interglacial period, known as marine isotope substage (MIS) 5e, was the last time in recent geologic history when sea level was substantially higher than present. It is an important time period to understand because climate models forecast a higher global sea level in the not-too-distant future. Geologic records of this high-sea stand (marine terraces, reefs) along the Pacific coast of North America are reviewed here with the identification of knowledge gaps where more work is needed.
Margret C. Fuchs, Jan Beyer, Sandra Lorenz, Suchinder Sharma, Axel D. Renno, Johannes Heitmann, and Richard Gloaguen
Earth Syst. Sci. Data, 13, 4465–4483, https://doi.org/10.5194/essd-13-4465-2021, https://doi.org/10.5194/essd-13-4465-2021, 2021
Short summary
Short summary
We present a library of high-resolution laser-induced fluorescence (LiF) reference spectra using the Smithsonian rare earth phosphate standards for electron microprobe analysis. With the recurring interest in rare earth elements (REEs), LiF may provide a powerful tool for their rapid and accurate identification. Applications of the spectral LiF library to natural materials such as rocks could complement the spectroscopy-based toolkit for innovative, non-invasive exploration technologies.
Alessandro Tibaldi, Federico Pasquaré Mariotto, Paolo Oppizzi, Fabio Luca Bonali, Nino Tsereteli, Levan Mebonia, and Johni Chania
Earth Syst. Sci. Data, 13, 3321–3335, https://doi.org/10.5194/essd-13-3321-2021, https://doi.org/10.5194/essd-13-3321-2021, 2021
Short summary
Short summary
Under a NATO project, we installed a monitoring system at the Khoko landslide facing the Enguri artificial reservoir (Greater Caucasus). During 2016–2019, we compare slope deformation with meteorological factors and variations in the water level of the reservoir. Our results indicate that the landslide displacements appear to be controlled by variations in hydraulic load and partially by rainfall.
Roland Freisleben, Julius Jara-Muñoz, Daniel Melnick, José Miguel Martínez, and Manfred R. Strecker
Earth Syst. Sci. Data, 13, 2487–2513, https://doi.org/10.5194/essd-13-2487-2021, https://doi.org/10.5194/essd-13-2487-2021, 2021
Short summary
Short summary
Tectonically active coasts are dynamic environments that host densely populated areas and associated infrastructure. We measured and described last interglacial marine terraces along 5000 km of the western South American coast. The pattern of terrace elevations displays short- to long-wavelength structures that may be controlled by crustal faults and the subduction of major bathymetric anomalies. Latitudinal climate characteristics may further influence their generation and preservation.
J. Andrew G. Cooper and Andrew N. Green
Earth Syst. Sci. Data, 13, 953–968, https://doi.org/10.5194/essd-13-953-2021, https://doi.org/10.5194/essd-13-953-2021, 2021
Short summary
Short summary
A standardized database compiled to a common format is presented for indicators of sea level during the last interglacial from the southern African coast (Angola, Namibia and South Africa). These enable further analysis of the nature of the sea-level highstand and its regional variability.
Hong-He Xu, Zhi-Bin Niu, and Yan-Sen Chen
Earth Syst. Sci. Data, 12, 3443–3452, https://doi.org/10.5194/essd-12-3443-2020, https://doi.org/10.5194/essd-12-3443-2020, 2020
Short summary
Short summary
We introduce here a comprehensive database of stratigraphy and palaeontology biodiversity, the Geobiodiversity Database (GBDB). The GBDB collects and provides a big volume of fossil and stratum record data and aims to be more widely used by geoscientists and contribute to better quantitative research on palaeontology and stratigraphy, and furthermore, to a deeper understanding of the evolution of life and of Earth's history.
Jari Pohjola, Jari Turunen, and Tarmo Lipping
Earth Syst. Sci. Data, 12, 869–873, https://doi.org/10.5194/essd-12-869-2020, https://doi.org/10.5194/essd-12-869-2020, 2020
Short summary
Short summary
When modelling land uplift processes, there is a need for historical data in which dating, elevation and consequently spatial data are connected to the shore level at that time. In addition, human settlements were located above the seawater level in Fennoscandia. This information can be used to validate and update the post-glacial land uplift model. In this paper, a collection of data consisting of geological and archaeological data sets is presented.
Cited articles
Astakhova, N. V. and Sorochinskaya, A. V.: Authigenic carbonates of the
upper Pleistocene-Holocene deposits in the Northwest Pacific Marginal Seas,
Russ. J. Pacific Geol., 16, 65–78, 2000.
Bazhenov, M. L., Burtman, V. S., Krezhovshikh, O. A. and Shapiro, M. N.: Paleomagnetism of Paleogene rocks of the Central–East Kamchatka and Komanorsky Islands: tectonic implications, Tectonophysics, 201,
157–173, https://doi.org/10.1016/0040-1951(92)90181-5, 1992.
Biakov, A. S., Goryachev, N. A., Davydov, V. I., and Vedernikov, I. L.: The first finds of glendonite in permian deposits of the North Okhotsk Region,
Northeastern Asia, Dokl. Earth Sci., 451, 716–718, https://doi.org/10.1134/S1028334X13070210, 2013.
Bischoff, J. L., Stine, S., Rosenbauer, R. J., Fitzpatrick, J. A., and Stafford Jr., T. W.: Ikaite precipitation by mixing of shoreline springs and
lake water, Mono Lake, California, USA, Geochim. Cosmochim. Ac., 57,
3855–3865, https://doi.org/10.1016/0016-7037(93)90339-X, 1993.
Bloem, M.: The Petrology and Inorganic Geochemistry of Glendonites: Insights into the enigmatic ikaite-to-glendonite transformation using a detailed combinative approach, Master thesis, Utrecht University, Netherlands, 75 pp., 2019.
Boggs Jr., S.: Petrography and geochemistry of rhombic, calcite pseudomorphs from mid Tertiary mudstones of the Pacific Northwest, U.S.A, Sedimentology, 19, 219–235, https://doi.org/10.1111/j.1365-3091.1972.tb00022.x, 1972.
Brandley, R. T. and Krause, F. F.: Thinolite type pseudomorphs after ikaite: Indicators of coldwater on the subequatorial western margin of Lower Carboniferous North America, GSPG Memoir, 17, 333–334, https://doi.org/10.11575/PRISM/30223, 1994.
Brooks, R., Clark, L. M., and Thurston, E. F.: Calcium carbonate and its hydrates, Philos. T. Roy. Soc. Lond. A, 243, 145–167, https://doi.org/10.1098/rsta.1950.0016, 1950.
Chaikovskiy, I. I. and Kadebskaya, O. I.: Mineral bodies of the Eranka cave in the Northern Urals, Probl. Mineral. Petrogr. Metal., 17, 92–107, 2014 (in Russian).
Chon, S.-J.: First report of glendonite in the uppermost Cambrian, in GSA Annual Meeting, Indiana, USA, 4–7 November 2018, 265–3, https://doi.org/10.1130/abs/2018am-321990, 2018.
Clarkson, J. R., Price, T. J., and Adams, C. J.: Role of metastable phases in the spontaneous precipitation of calcium carbonate, J. Chem. Soc. Faraday Trans., 88, 243–249, https://doi.org/10.1039/ft9928800243, 1992.
Council, T. C. and Bennett, P. C.: Geochemistry of ikaite formation at Mono Lake, California: Implications for the origin of tufa mounds, Geology, 21, 971–974, https://doi.org/10.1130/0091-7613(1993)021<0971:GOIFAM>2.3.CO;2, 1993.
Dahl, K. and Buchardt, B.: Monohydrocalcite in the Arctic Ikka Fjord, SW Greenland: first reported marine occurrence, SEPM, 76, 460–471,
https://doi.org/10.2110/jsr.2006.035, 2006.
Dana, J. D.: United States Exploring Expedition. During the years 1838, 1839, 1840, 1841, 1842. Under the command of Charles Wilkes, 735 pp., available at: https://www.biodiversitylibrary.org/item/135966#page/11/mode/1up (last access: 8 February 2021), 1849.
David, T. W. E., Taylor, T. G., Woolnough, W. G., and Foxall, H. G.: Occurrence of the pseudomorph glendonites in New South Wales, Records of the Geological Survey of New South Wales, 8, 162–179, 1905.
Derkachev, A. N., Nikolaeva, N. A., Mozherovsky, A. V., Grigor'eva, T. N.,
Ivanova, E. D., Pletnev, S. P., Barinov, N. N., and Chubarov, V. M.:
Mineralogical and geochemical indicators of anoxic sedimentation conditions
in local depressions within the Sea of Okhotsk in the Late
Pleistocene-Holocene, Russ. J. Pac. Geol., 1, 203–229,
https://doi.org/10.1134/S1819714007030013, 2007.
Dieckmann, G. S., Nehrke, G., Papadimitriou, S., Gottlicher, J., Steininger, R., Kennedy, H., Wolf-Gladrow, D., and Thomas, D. N.: Calcium carbonate as ikaite crystals in Antarctic sea ice, Geophys. Res. Lett., 35, L08501, https://doi.org/10.1029/2008GL033540, 2008.
Fairchild, I. J., Fleming, E. J., Bao, H., Benn, D. I., Boomer, I., Dublyansky, Y. V., Halverson, G. P., Hambrey, M. J., Hendy, C., Mcmillan, E. A., Spotl, C., Stevenson C. T. E., and Wynn, P. M.: Continental carbonate facies of a Neoproterozoic panglaciation, north-east Svalbard, Sedimentology, 63, 443–497, https://doi.org/10.1111/sed.12252, 2016.
Fink, H. G., Strasser M., Römer, M., Kölling, M., Ikehara, K., Kanamatsu, T., Dinten, D., Kioka, A., Fujiwara, T., Kawamura, K., Kodaira, S., and Wefer, G.: Evidence for Mass Transport Deposits at the IODP JFAST-Site in the Japan Trench, Adv. Nat. Technol. Haz., 37, 33–43, https://doi.org/10.1007/978-3-319-00972-8_4, 2014.
Frakes, L. A., Francis, J. E., and Syktus, J. I.: Climate Modes of the Phanerozoic, Cambridge Univ. Press, Cambridge, 2005.
Frank, T. D., Thomas, S. G., and Fielding, C. R.: On using carbon and oxygen isotope data from glendonites as paleoenvironmental proxies: a case study from the Permian system of eastern Australia, J. Sediment. Res., 78, 713–723. https://doi.org/10.2110/jsr.2008.081, 2008.
Freisleben, J. K.: Ueber einige interessante Vorkommnisse im
Schlotztenleimen (Alluvialthon) bey Obersdorf, ohnweit Sangerhausen, Isis
von Oken, 20, 334–337, 1827 (in German).
Geptner, A. R., Pokrovsky, B. G., Sadchikova, T. A., Sulerzhitsky, L. D., and Chernyakhovsky, A. G.: Local carbonatization of the White Sea sediments (concept of microbiological formation), Lithol. Mineral. Resour., 5, 3–22, 1994.
Geptner, A. R., Vetoshkina, O. S., and Petrova V. V.: New data on the composition of stable isotopes in glendonites of the White Sea and their genesis, Lithol. Mineral. Resour., 49, 473–490,
https://doi.org/10.1134/S0024490214060042, 2014.
Greinert, J. and Derkachev, A.: Glendonites and methane-derived Mg-calcites in the Sea of Okhotsk, Eastern Siberia: implications of a venting-related ikaite/glendonite formation, Mar. Geol., 204, 129–144,
https://doi.org/10.1016/S0025-3227(03)00354-2, 2004.
Harbert, W., Kepezhinskas, P., Krylov, K., Grigoriev, V., Sokolov, S., and Aleksuitin, M.: Paleomagnetism and Tectonics of the Kamchatka Region, Northeastern Russia: Implications for Development and Evolution of the Northwest Pacific Basin, Polarforschung, 68, 297–308, 2000.
Herrle, J. O., Schroder-Adams, C., Davis, W., Pugh, A. T., Galloway, J. M., and Fath, J.: Mid-Cretaceous High Arctic stratigraphy, climate, and oceanic anoxic events, Geology, 43, 403–406, https://doi.org/10.1130/G36439.1, 2015.
Hesse, K.-F., Kuppers, H., and Suess, E.: Refinement of the structure of Ikaite, CaCO3*6H2O, Z. Kristallographie, 231,
227–231, https://doi.org/10.1524/zkri.1983.163.3-4.227, 1983.
Hu, Y. B., Wolf-Gladrow, D. A., Dieckmann, G. S., Völker, C., and Nehrke, G.: A laboratory study of ikaite (CaCO3· 6H2O) precipitation as a function of pH, salinity, temperature and phosphate concentration, Mar. Chem., 162, 10–18, https://doi.org/10.1016/j.marchem.2014.02.003, 2014.
Hu, Y. B., Wolthers, M., Wolf-Gladrow, D. A., and Nehrke, G.: Effect of pH and phosphate on calcium carbonate polymorphs precipitated at near-freezing temperature, Cryst. Growth Des., 15, 1596–1601, https://doi.org/10.1021/cg500829p, 2015.
Huggett, J. M., Schultz, B. P., Shearman, J., and Smith, A. J.: The petrology of ikaite pseudomorphs and their diagenesis, Proc. Geol. Assoc., 116, 207–220, https://doi.org/10.1016/S0016-7878(05)80042-2, 2005.
Ito, T.: Ikaite from cold spring water at Shiowakka, Hokkaido, Japan, J. Mineral. Petrol. Econ. Geol., 91, 209–219,
https://doi.org/10.2465/ganko.91.209, 1996.
Ito, T.: Factors controlling the transformation of natural ikaite from Shiowakka, Japan, Geochem. J., 32, 267–273, https://doi.org/10.2343/geochemj.32.267, 1998.
Ito, T., Matsubara, S., and Miyawaki, R.: Vaterite after ikaite in carbonate sediment, J. Petrol. Mineral. Econ. Geol., 94, 176–182,
https://doi.org/10.2465/ganko.94.176, 1999.
Kaplan, M. E.: Calcite pseudomorphoses from the Jurassic and lower
Cretaceous deposits of northern East Siberia, Sov. Geol. Geophys.,
12, 62–70, 1978 (in Russian).
Kaplan, M. E.: Calcite pseudomorphs (pseudogaylussite, jarrowite, thinolite, glendonite, gennoishi, White Sea hornlets) in sedimentary rocks, Review of major localities, VINITI, 39 pp., 1979 (in Russian).
Kaplan, M. E.: Calcite pseudomorphs (pseudogaylussite, jarrowite, thinolite, glendonite, gennoishi, White Sea hornlets) in sedimentary rocks: origins of the pseudomorphs, Lithol. Miner. Resour., 14, 623–636, 1980.
Kemper, E. and Schmitz, H. H.: Stellate nodules from the upper Deer Bay formation (Valanginian) of Arctic Canada, Geol. Surv. Can. Pap., 75, 109–119, https://doi.org/10.4095/103040, 1975.
Kemper, E. and Schmitz, H. H.: Glendonite – Indikatoren des polarmarinen Ablagerungsmilieus, Geol. Rundsch., 70, 759–773, https://doi.org/10.1007/bf01822149, 1981.
Kemper, E.: Das Klima der Kreide-Zeit, Geologisches Jahrbuch Reiche A, 96, 5–185, 1987 (in German).
Kodina, L. A., Tokarev, V. G., Vlasova, L. N., and Korobeinik, G. S.: Contribution of biogenic methane to ikaite formation in the Kara Sea: evidence from the stable carbon isotope geochemistry, in: Siberian River Run-off in the Kara Sea: Characterisation, Quantification, Variability, and Environmental Significance, edited by: Stein, R., Fahl, K., Fütterer, D. K., Galimov, E. M., and Stepanets, O. V., 488 pp., Proceedings in Marine Sciences, Elsevier, Amsterdam, 6, 349–374,
2003.
Korte, C., Hesselbo, S. P., Ullmann, C. V., Dietl, G., Ruhl, M., Schweigert, G., and Thibault, N.: Jurassic climate mode governed by ocean gateway, Nat. Commun., 6, 10015, https://doi.org/10.1038/ncomms10015, 2015.
Kostecka, A.: Calcite paramorphs in the aragonite concretions, Ann. Soc. Geol. Pol., 42, 289–296, 1975.
Kovalenko, D. V. and Chernov, Y. Y.: Paleomagnetism and tectonic evolution of Kamchatka and Southern Koryakia, Russ. J. Pac. Geol., 22, 48–73, 2003.
Krylov, A. A., Logvina, E. A., Matveeva, T. M., Prasolov, E. M., Sapega, V. F., Demidova, A. L. and Radchenko, M. S.: Ikaite (CaCO3*6H2O) in bottom sediments of the Laptev Sea and the role of anaerobic methane oxidation in this mineral-forming process, Proc. Russ. Mineral. Soc., 4, 61–75, 2015 (in Russian).
Larsen, D.: Origin and paleoenvironmental significance of calcite
pseudomorphs after ikaite in the Oligocene Creede Formation, Colorado, J.
Sediment. Res., 64, 593–603, https://doi.org/10.1306/D4267E1A-2B26-11D7-8648000102C1865D, 1994.
Last, F. M. and Last, W. M.: Lacustrine carbonates of the northern Great Plains of Canada, Sediment. Geol., 277–278, 1–31,
https://doi.org/10.1016/j.sedgeo.2012.07.011, 2012.
Last, F. M., Last, W. M., Fayek, M., and Halden, N. M.: Occurrence and significance of a cold-water carbonate pseudomorph in microbialites from a saline lake, J. Paleolimnol., 50, 505–517, https://doi.org/10.1007/s10933-013-9742-6, 2013.
Lennie, A. R., Tang, C. C., and Thompson, S. P.: The structure and thermal expansion behaviour of ikaite, CaCO3*6H2O, from T=114 to T = 293 K, Mineral. Mag., 68, 135–146, https://doi.org/10.1180/0026461046810176, 2004.
Loog, A.: On the geochemistry of postsedimentary mineral formation in the Tremadocian graptolithic argillites of North Estonia, Acta et Commentationes Universitatis Tartuensis, 527, 44–50, 1980 (in Russian).
Lu, Z., Rickaby, R. E., Kennedy, H., Kennedy, P., Pancost, R. D., Shaw, S., Lennie, A., Wellner, J. and Anderson, J. B.: An ikaite record of late Holocene climate at the Antarctic Peninsula, Earth Planet. Sc. Lett., 325, 108–115, https://doi.org/10.1016/j.epsl.2012.01.036, 2012.
de Lurio, J. and Frakes, L. A.: Glendonites as a paleoenvironmental tool: implications for early Cretaceous high latitude climates in Australia – its
composition and evolution, Geochim. Cosmochim. Ac., 63, 1039–1048,
https://doi.org/10.1016/S0016-7037(99)00019-8, 1999.
Marland, G.: The stability of CaCO3*6H2O, Geochim. Cosmochim. Ac., 39, 83–91, https://doi.org/10.1016/0016-7037(75)90186-6, 1975.
McLachlan, I. R., Tsikos, H., and Cairncross, B.: Glendonites (pseudomorphs after ikaite) in late carboniferous Marine Dwyka beds in Southern Africa, S. Afr. J. Geol., 104, 265–272, https://doi.org/10.2113/1040265, 2001.
Mikhailova, K., Vasileva, K., Fedorov, P., Ershova, V., Vereshchagin, O., Rogov, M., and Pokrovsky, B.: Glendonite-Like Carbonate Aggregates from the Lower Ordovician Koporye Formation (Russian Part of the Baltic Klint): Detailed Mineralogical and Geochemical Data and Paleogeographic Implications, Minerals, 9, 524, https://doi.org/10.3390/min9090524, 2019.
Morales, C., Rogov, M., Wierzbowski, H., Ershova, V., Suan, G., Adatte, T., Föllmi, K. B., Tegelaar, E., Reichart, G. J., de Lange, G. J., and Middelburg, J. J.: Glendonites track methane seepage in Mesozoic polar seas, Geology, 45, 503–506, https://doi.org/10.1130/G38967.1. 2017.
Nenning, F.: Mega-glendonites in the Early Eocene Fur Formation. Unraveling paleoenvironmental conditions in the Danish Basin and their influence on glendonite formation, PhD thesis, Westfälischen
Wilhelms-Universität Münster, 177 pp., 2017.
Nesbitt, E. A., Martin, R. A., and Campbell, K. A.: New records of Oligocene diffuse hydrocarbon seeps, northern Cascadia margin, Palaeogeogr. Palaeoclimatol. Palaeoecol., 390, 116–129, https://doi.org/10.1016/j.palaeo.2013.05.001, 2013.
Nikolaeva, N. A., Derkachev, A. N., and Obzhirov, A. I.: Characteristic features of the occurrence of gas-fluid emanations on the northeastern slope of Sakhalin Island, Sea of Okhotsk, Russ. J. Pac. Geol., 3, 234–248, https://doi.org/10.1134/S181971400903004X, 2009.
Oehlerich, M., Mayr, C., Griesshaber, E., Lucke, A., Oeckler, O. M., Ohlendorf, C., Schmahl, W. W., and Zolitschka, B.: Ikaite precipitation in a lacustrine environment–implications for palaeoclimatic studies using carbonates from Laguna Potrok Aike (Patagonia, Argentina), Quaternary Sci. Rev., 71, 46–53, https://doi.org/10.1016/j.quascirev.2012.05.024, 2013.
Oehlerich, M., Mayr, C., Gussone, N., Hahn, A., Holzl, S., Lucke, A., Ohlendorf, C., Rummael, S., Teichert, B. M. A., and Zolitschka, B.:
Lateglacial and Holocene climatic changes in south-eastern Patagonia
inferred from carbonate isotope records of Laguna Potrok Aike (Argentina),
Quaternary Sci. Rev., 114, 189–202, https://doi.org/10.1016/j.quascirev.2015.02.006, 2015.
Pander, C. H.: Beiträge zur Geognosie des Russischen Reiches,
Karl Kray, St.Petersburg, 1830.
Pauly, H.: “Ikaite”, a new mineral from Greenland, Arctic, 16,
263–264, https://doi.org/10.14430/arctic3545, 1963.
Pautot, G. and Fontes, J.-C.: Gypsum-calcite rosettes in sediments from the Congo deep-sea fan, Oceanol. Ac., 2, 329–334, 1979.
Popov, L. E., Alvaro, J. J., Holmer, L. E., Bauert, L. E., Pour, M. G., Dronov, A. V., Lehnert, O., Hints, O., Mannik, P., Zhang, Z., and Zhang, Z.: Glendonite occurrences in the Tremadocian of Baltica: first Early Palaeozoic evidence of massive ikaite precipitation at temperate latitudes, Sci. Rep.-UK, 9, 1–10, https://doi.org/10.1038/s41598-019-43707-4, 2019.
Price, G. D.: The evidence and implications of polar ice during the Mesozoic, Earth-Sci. Rev., 48, 183–210,
https://doi.org/10.1016/S0012-8252(99)00048-3, 1999.
Purgstaller, B., Dietzel, M., Baldermann, A., and Mavromatis, V.: Control of temperature and aqueous Mg2+/Ca2+ ratio on the (trans-)formation of ikaite, Geochim. Cosmochim. Ac., 217, 128–143,
https://doi.org/10.1016/j.gca.2017.08.016, 2017.
Qu, Y., Teichert, B. M. A., Birgel, D., Goedert, J. L., and Peckmann, J.: The prominent role of bacterial sulfate reduction in the formation of glendonite: a case study from Paleogene marine strata of western Washington State, Facies, 63, 10, https://doi.org/10.1007/s10347-017-0492-1, 2017.
Rodriguez-Ruiz, I., Veesler, S., Gomez-Morales, J., Delgado-Lopez, J. M., Grauby, O., Hammadi, Z., Candoni, N., and Garcia-Ruiz, J. M.: Transient Calcium Carbonate Hexahydrate (Ikaite) Nucleated and Stabilized in Confined Nano- and Picovolumes, Cryst. Growth. Des., 4, 792–802,
https://doi.org/10.1021/cg401672v, 2014.
Rogala, B., James, N. P., and Reid, C. M.: Deposition of polar carbonates during interglacial highstands on an Early Permian shelf, Tasmania, J. Sediment. Res., 77, 587–606, https://doi.org/10.2110/jsr.2007.060, 2007.
Rogov, M. A., Kuznetsov, A. B., Konstantinova, G. V., and Turchenko, T. L.: The Strontium Isotopic Composition in Glendonites of the Middle Jurassic in Northern Siberia, Dokl. Earth Sci., 482, 1168–1172, https://doi.org/10.1134/S1028334X1809009X, 2018.
Rogov, M. A., Ershova, V. B., Shchepetova, E. V., Zakharov, V. A.,
Pokrovsky, B. G., and Khudoley, A. K.: Earliest Cretaceous (late Berriasian)
glendonites from Northeast Siberia revise the timing of initiation of
transient Early Cretaceous cooling in the high latitudes, Cretac. Res., 71,
102–112, https://doi.org/10.1016/j.cretres.2016.11.011, 2017.
Rogov, M., Vasileva, K., Mikhailova, K., and Ershova, V.: Database of global glendonite and ikaite records throughout the Phanerozoic, Zenodo, https://doi.org/10.5281/zenodo.4386335, 2020.
Rysgaard, S., Søgaard, D. H., Cooper, M., Pućko, M., Lennert, K., Papakyriakou, T. N., Wang, F., Geilfus, N. X., Glud, R. N., Ehn, J., McGinnis, D. F., Attard, K., Sievers, J., Deming, J. W., and Barber, D.: Ikaite crystal distribution in winter sea ice and implications for CO2 system dynamics, The Cryosphere, 7, 707–718, https://doi.org/10.5194/tc-7-707-2013, 2013.
Rysgaard, S., Wang, F., Galley, R. J., Grimm, R., Notz, D., Lemes, M., Geilfus, N.-X., Chaulk, A., Hare, A. A., Crabeck, O., Else, B. G. T., Campbell, K., Sørensen, L. L., Sievers, J., and Papakyriakou, T.: Temporal dynamics of ikaite in experimental sea ice, The Cryosphere, 8, 1469–1478, https://doi.org/10.5194/tc-8-1469-2014, 2014.
Schlitzer, R.: Ocean Data View: available at: https://odv.awi.de, last access: 2 August 2020.
Schubert, C. J., Nürnberg, D., Scheele, N., Pauer, F., and Kriews, M.: 13C isotope depletion in ikaite crystals: evidence for methane release from the Siberian shelves?, Geo-Mar. Lett., 17, 169–174,
https://doi.org/10.1007/s003670050023, 1997.
Selleck, B. W., Carr, P. F., and Jones, B. G.: A review and synthesis of glendonites (pseudomorphs after ikaite) with new data: assessing applicability as recorders of ancient coldwater conditions, J. Sediment. Res., 77, 980–991, https://doi.org/10.2110/jsr.2007.087, 2007.
Shahar, A., Bassett, W. A., Mao, H.-K., Chou, I.-M., and Mao, W.: The stability and Raman spectra of ikaite, CaCO3⚫6H2O, at high pressure and temperature, Am. Mineral., 90, 1835–1839, https://doi.org/10.2138/am.2005.1783, 2005.
Shaikh, A. M.: A new crystal growth form of vaterite, CaCO3, J. Appl. Crystallogr., 23, 263–265, https://doi.org/10.1107/S0021889890002485, 1990.
Shearman, D. J. and Smith, A. J.: Ikaite, the parent mineral of
jarrowite-type pseudomorphs, Proc. Geol. Assoc., 96, 305–314,
doi.org/10.1016/S0016-7878(85)80019-5, 1985.
Sokolov, D.: On White Sea mineral, Mining journal (Gorny zhurnal), 6, 117–120, 1825 (in Russian).
Spielhagen, R. F. and Tripati, A.: Evidence from Svalbard for near-freezing temperatures and climate oscillations in the Arctic during the Paleocene and Eocene, Palaeogeogr. Palaeoclim., 278, 48–56, https://doi.org/10.1016/j.palaeo.2009.04.012, 2009.
Stein, C. L. and Smith, A. J.: Authigenic carbonate nodules in the Nankai Trough, Site 583, Init. Repts. DSDP., 87, 659–668,
https://doi.org/10.2973/dsdp.proc.87.115.1986, 1986.
Stockmann, G., Tollefsen, E., Skelton, A., Brüchert, V., Balic-Zunic, T., Langhof, J., Skogby, H., and Karlsson, A.: Control of a calcite inhibitor (phosphate) and temperature on ikaite precipitation in Ikka Fjord, southwest Greenland, Appl. Geochem., 89, 11–22, https://doi.org/10.1016/j.apgeochem.2017.11.005, 2018.
Suess, E., Balzer, W., Hesse, K.-F., Muller, P. J., Ungeree, C. A., and Wefer, G.: Calcium Carbonate Hexahydrate from Organic-Rich Sediments of the Antarctic Shelf: Precursors of Glendonites, Science, 216, 1128–1131, https://doi.org/10.1126/science.216.4550.1128, 1982.
Swainson, I. P. and Hammond, R. P.: Ikaite, CaCO3 ⋅
6H2O: Cold comfort for glendonites as paleothermometers, Am. Mineral., 86,
1530–1533, https://doi.org/10.2138/am-2001-11-1223, 2001.
Tang, C. C., Thompson, S., Parker, J., and Lennie, A. R.: The
ikaite-to-vaterite transformation: New evidence from diffraction and
imaging, J. Appl. Crystallogr., 42, 225–233,
https://doi.org/10.1107/S0021889809005810, 2009.
Teichert, B. M. A. and Luppold, F. W.: Glendonites from an Early Jurassic methane seep – Climate or methane indicators?, Palaeogeogr. Palaeoclim., 390, 81–93, https://doi.org/10.1016/j.palaeo.2013.03.001, 2013.
Tollefsen, E., Balic-Zunic, T., Morth, C.-M., Bruchert, V., Choo, C., Skelton, L., and Skelton, A.: Ikaite nucleation at 35 ∘C
challenges the use of glendonite as a paleotemperature indicator, Sci. Rep.-UK, 10, 8141, https://doi.org/10.1038/s41598-020-64751-5, 2020.
van Hinsbergen, D. J. J., de Groot, L. V., van Schaik, S. J., Spakman, W., Bijl, P. K., Sluijs, A., Langereis, C. G., and Brinkhuis, H.: A Paleolatitude Calculator for Paleoclimate Studies, Plos One, 10, e0126946,
https://doi.org/10.1371/journal.pone.0126946, 2015.
van Houten, F. B.: Crystal casts in Upper Triassic Lockatong and Brunswick Formations, Sedimentology, 4, 301–313,
https://doi.org/10.1111/j.1365-3091.1965.tb01553.x, 1965.
van Valkenberg, A., Mao, H. K., and Bell, P. M.: Ikaite
(CaCO3x6H2O), a phase more stable than calcite and aragonite
(CaCO3) at high water pressure, Carnegie Inst. Wash. Yearb., 70,
237–238, 1971.
Vasileva, K. Y., Rogov, M. A., Ershova, V. B. and Pokrovsky, B G.: New results of stable isotope and petrographic studies of Jurassic glendonites from Siberia, GFF, 141, 225–232, https://doi.org/10.1080/11035897.2019.1641549, 2019.
Vickers, M., Watkinson, M., Price, G. D., and Jerret, R.: An improved model for the ikaite-glendonite transformation: evidence from the Lower Cretaceous of Spitsbergen, Svalbard, Nor. J. Geol., 98, 1–15,
https://doi.org/10.17850/njg98-1-01, 2018.
Vickers, M. L., Lengger, S. K., Bernasconi, S. M., Thibault, N., Schultz, B. P., Fernandez, A., Ullmann, C. V., McCormack, P., Bjerrum, C. J., Rasmussen, J. A., Hougård I. W., and Korte, C.: Cold spells in the Nordic Seas during the early Eocene Greenhouse, Nat. Commun., 11, 4713, https://doi.org/10.1038/s41467-020-18558-7, 2020.
Wang, Z., Wang, J., Suess, E., Wang, G., Chen, C., and Xiao, S.: Silicified glendonites in the Ediacaran Doushantuo Formation (South China) and their potential paleoclimatic implications, Geology, 45, 115–118, https://doi.org/10.1130/G38613.1, 2017.
Weaver, R., Roberts, A. P., Flecker, R., Macdonald, D. I. M., and Fot`yanova, L. M.: Geodynamic implications of paleomagnetic data from Tertiary sediments in Sakhalin, Russia (NW Pacific), J. Geophys. Res., 108, 2066, https://doi.org/10.1029/2001JB001226, 2003.
Williscroft, K., Grasby, S. E., Beauchamp, B., Little, C. T. C., Dewing, K., Birgel, D., Poulton, T., and Hryniewicz, K.: Extensive Early Cretaceous (Albian) methane seepage on Ellef Ringnes Island, Canadian High Arctic, Geol. Soc. Am. Bull., 129, 788–805, https://doi.org/10.1130/B31601.1, 2017.
Zabel, M. and Schulz, H. D.: Importance of submarine landslides for non-steady state conditions in pore water systems–lower Zaire (Congo) deep-sea fan, Mar. Geol., 176, 87–99, https://doi.org/10.1016/S0025-3227(01)00164-5, 2001.
Zharov, A.: South Sakhalin tectonics and geodynamics: A model for the Cretaceous-Paleogene accretion of the East Asian continental margin, Russ. J. Earth Sci., 7, ES5002, https://doi.org/10.2205/2005ES000190, 2005.
Zhou, X., Lu, Z., Rickaby, R. E. M., and Domack, E.: Ikaite Abundance Controlled by Porewater Phosphorus Level: Potential Links to Dust and Productivity, J. Geol., 123, 269–281, https://doi.org/10.1086/681918, 2015.
Zou, Z., Bertinetti, L., Habraken, W. J. E. M., and Fratzl, P.: Reentrant Phase Transformation from Crystalline Ikaite to Amorphous Calcium Carbonate, Cryst. Eng. Comm., 20, 2902–2906, https://doi.org/10.1039/C8CE00171E, 2018.
Short summary
A database of a modern metastable cold-water mineral (ikaite) and its replacement mineral (glendonite) spanning 540 million years has been created to understand their distribution in space and time. A significant body of evidence suggests that glendonite occurrences are restricted mainly to cold-water settings; however they do not occur during every glaciation or cooling event reported from the Phanerozoic. This compilation improves our understanding of climatic conditions of the past.
A database of a modern metastable cold-water mineral (ikaite) and its replacement mineral...
Altmetrics
Final-revised paper
Preprint