Articles | Volume 13, issue 4
https://doi.org/10.5194/essd-13-1737-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/essd-13-1737-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
COSMOS-UK: national soil moisture and hydrometeorology data for environmental science research
UK Centre for Ecology & Hydrology, Wallingford, OX10 8BB, UK
Emma Bennett
UK Centre for Ecology & Hydrology, Wallingford, OX10 8BB, UK
James Blake
UK Centre for Ecology & Hydrology, Wallingford, OX10 8BB, UK
Eleanor Blyth
UK Centre for Ecology & Hydrology, Wallingford, OX10 8BB, UK
David Boorman
UK Centre for Ecology & Hydrology, Wallingford, OX10 8BB, UK
Elizabeth Cooper
UK Centre for Ecology & Hydrology, Wallingford, OX10 8BB, UK
Jonathan Evans
UK Centre for Ecology & Hydrology, Wallingford, OX10 8BB, UK
Matthew Fry
UK Centre for Ecology & Hydrology, Wallingford, OX10 8BB, UK
Alan Jenkins
UK Centre for Ecology & Hydrology, Wallingford, OX10 8BB, UK
Ross Morrison
UK Centre for Ecology & Hydrology, Wallingford, OX10 8BB, UK
Daniel Rylett
UK Centre for Ecology & Hydrology, Wallingford, OX10 8BB, UK
Simon Stanley
UK Centre for Ecology & Hydrology, Wallingford, OX10 8BB, UK
Magdalena Szczykulska
UK Centre for Ecology & Hydrology, Wallingford, OX10 8BB, UK
Emily Trill
UK Centre for Ecology & Hydrology, Wallingford, OX10 8BB, UK
Vasileios Antoniou
UK Centre for Ecology & Hydrology, Wallingford, OX10 8BB, UK
Anne Askquith-Ellis
UK Centre for Ecology & Hydrology, Wallingford, OX10 8BB, UK
Lucy Ball
UK Centre for Ecology & Hydrology, Wallingford, OX10 8BB, UK
Milo Brooks
UK Centre for Ecology & Hydrology, Environment Centre Wales,
Bangor, Gwynedd, LL57 2UW, UK
Michael A. Clarke
UK Centre for Ecology & Hydrology, Lancaster Environment Centre,
Bailrigg, Lancaster, LA1 4AP, UK
Nicholas Cowan
UK Centre for Ecology & Hydrology, Bush Estate, Penicuik,
Midlothian, EH26 0QB, UK
Alexander Cumming
UK Centre for Ecology & Hydrology, Wallingford, OX10 8BB, UK
Philip Farrand
UK Centre for Ecology & Hydrology, Wallingford, OX10 8BB, UK
Olivia Hitt
UK Centre for Ecology & Hydrology, Wallingford, OX10 8BB, UK
formerly at: UK Centre for Ecology & Hydrology, Wallingford, OX10
8BB, UK
William Lord
UK Centre for Ecology & Hydrology, Wallingford, OX10 8BB, UK
Peter Scarlett
UK Centre for Ecology & Hydrology, Wallingford, OX10 8BB, UK
Oliver Swain
UK Centre for Ecology & Hydrology, Wallingford, OX10 8BB, UK
Jenna Thornton
UK Centre for Ecology & Hydrology, Wallingford, OX10 8BB, UK
now at: UK Met Office, Cardington Airfield, Shortstown, Bedford, MK42
0SY, UK
Alan Warwick
UK Centre for Ecology & Hydrology, Wallingford, OX10 8BB, UK
Ben Winterbourn
UK Centre for Ecology & Hydrology, Wallingford, OX10 8BB, UK
now at: School of Ocean Sciences, Bangor University, Bangor, Gwynedd,
LL59 5AB, UK
Related authors
Elizabeth Cooper, Eleanor Blyth, Hollie Cooper, Rich Ellis, Ewan Pinnington, and Simon J. Dadson
Hydrol. Earth Syst. Sci., 25, 2445–2458, https://doi.org/10.5194/hess-25-2445-2021, https://doi.org/10.5194/hess-25-2445-2021, 2021
Short summary
Short summary
Soil moisture estimates from land surface models are important for forecasting floods, droughts, weather, and climate trends. We show that by combining model estimates of soil moisture with measurements from field-scale, ground-based sensors, we can improve the performance of the land surface model in predicting soil moisture values.
Galina Y. Toteva, David Reay, Matthew Jones, Ajinkya Deshpande, Nicholas Cowan, Peter Levy, Duncan Harvey, Agata Iwanicka, and Julia Drewer
EGUsphere, https://doi.org/10.5194/egusphere-2025-3233, https://doi.org/10.5194/egusphere-2025-3233, 2025
This preprint is open for discussion and under review for Biogeosciences (BG).
Short summary
Short summary
The impacts of increasing nitrogen deposition on the fluxes of nitrous oxide from a temperate birch forest were investigated in-situ and ex-situ. Nitrogen levels had a limited effect on emissions. Instead, emissions of nitrous oxide were modulated by soil carbon availability and meeting a dual temperature-moisture threshold. An implication of these findings is that forests could be used for mitigating nitrogen pollution without incurring a greenhouse gas penalty, at least in the short term.
Nicholas Cowan, Toby Roberts, Mark Hanlon, Aurelia Bezanger, Galina Toteva, Alex Tweedie, Karen Yeung, Ajinkya Deshpande, Peter Levy, Ute Skiba, Eiko Nemitz, and Julia Drewer
Biogeosciences, 22, 3449–3461, https://doi.org/10.5194/bg-22-3449-2025, https://doi.org/10.5194/bg-22-3449-2025, 2025
Short summary
Short summary
We measured soil hydrogen (H2) fluxes from two field sites, a managed grassland and a planted deciduous woodland, with flux measurements of H2 covering full seasonal cycles. We estimate annual H2 uptake of −3.1 ± 0.1 and −12.0 ± 0.4 kg H2 ha−1 yr−1 for the grassland and woodland sites, respectively. Soil moisture was found to be the primary driver of H2 uptake, with the silt/clay content of the soils providing a physical barrier which limited H2 uptake.
William Veness, Alejandro Dussaillant, Gemma Coxon, Simon De Stercke, Gareth H. Old, Matthew Fry, Jonathan G. Evans, and Wouter Buytaert
EGUsphere, https://doi.org/10.5194/egusphere-2025-2035, https://doi.org/10.5194/egusphere-2025-2035, 2025
Short summary
Short summary
We investigated what users want from the next-generation of hydrological monitoring systems to better support science and innovation. Through literature review and interviews with experts, we found that beyond providing high-quality data, users particularly value additional support for collecting their own data, sharing it with others, and building collaborations with other data users. Designing systems with these needs in mind can greatly boost long-term engagement, data coverage and impact.
Maliko Tanguy, Michael Eastman, Amulya Chevuturi, Eugene Magee, Elizabeth Cooper, Robert H. B. Johnson, Katie Facer-Childs, and Jamie Hannaford
Hydrol. Earth Syst. Sci., 29, 1587–1614, https://doi.org/10.5194/hess-29-1587-2025, https://doi.org/10.5194/hess-29-1587-2025, 2025
Short summary
Short summary
Our research compares two techniques, bias correction (BC) and data assimilation (DA), for improving river flow forecasts across 316 UK catchments. BC, which corrects errors after simulation, showed broad improvements, while DA, adjusting model states before forecast, excelled under specific conditions like snowmelt and high baseflows. Each method's unique strengths suit different scenarios. These insights can enhance forecasting systems, offering reliable and user-friendly hydrological predictions.
Ramesh Visweshwaran, Elizabeth Cooper, and Sarah L. Dance
EGUsphere, https://doi.org/10.5194/egusphere-2024-3980, https://doi.org/10.5194/egusphere-2024-3980, 2025
Preprint archived
Short summary
Short summary
We developed a new approach to improve soil moisture predictions, which are vital for managing floods, and droughts. Traditional methods focus on either adjusting the initial soil moisture condition or model parameters. Instead, we optimized both simultaneously using field-scale data from 16 UK sites. This combined approach improved prediction accuracy by 143 %, showing great potential for enhancing soil moisture forecasts to support agriculture, disaster response, and water management.
John Robotham, Emily Trill, James Blake, Ponnambalam Rameshwaran, Peter Scarlett, Gareth Old, and Joanna Clark
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2023-402, https://doi.org/10.5194/essd-2023-402, 2023
Revised manuscript accepted for ESSD
Short summary
Short summary
There is currently limited evidence about how land-based “Natural Flood Management” measures affect soil properties. We therefore measured soil physical and hydraulic properties (n=1300) at seven field sites (Thames catchment, UK). The sites cover a range of geologies, land use and management. Dataset applications include hydrological and land surface modelling and validation of remote sensing observations. The dataset also provides a baseline against which future soil changes may be compared.
Emma L. Robinson, Matthew J. Brown, Alison L. Kay, Rosanna A. Lane, Rhian Chapman, Victoria A. Bell, and Eleanor M. Blyth
Earth Syst. Sci. Data, 15, 4433–4461, https://doi.org/10.5194/essd-15-4433-2023, https://doi.org/10.5194/essd-15-4433-2023, 2023
Short summary
Short summary
This work presents two new Penman–Monteith potential evaporation datasets for the UK, calculated with the same methodology applied to historical climate data (Hydro-PE HadUK-Grid) and an ensemble of future climate projections (Hydro-PE UKCP18 RCM). Both include an optional correction for evaporation of rain that lands on the surface of vegetation. The historical data are consistent with existing PE datasets, and the future projections include effects of rising atmospheric CO2 on vegetation.
Elizabeth Cooper, Rich Ellis, Eleanor Blyth, and Simon Dadson
EGUsphere, https://doi.org/10.5194/egusphere-2023-1596, https://doi.org/10.5194/egusphere-2023-1596, 2023
Preprint archived
Short summary
Short summary
We have tested a different way of simulating soil moisture and river flow. Instead of dividing the land up into over 10,000 squares to run our numerical model, we cluster the land into fewer, irregular areas with similar landscape characteristics. We show that different ways of clustering the landscape produce different patterns of soil moisture. We also show that with this method we can we match observations as well as our usual gridded approach for ten times less computational resource.
Bimal K. Bhattacharya, Kaniska Mallick, Devansh Desai, Ganapati S. Bhat, Ross Morrison, Jamie R. Clevery, William Woodgate, Jason Beringer, Kerry Cawse-Nicholson, Siyan Ma, Joseph Verfaillie, and Dennis Baldocchi
Biogeosciences, 19, 5521–5551, https://doi.org/10.5194/bg-19-5521-2022, https://doi.org/10.5194/bg-19-5521-2022, 2022
Short summary
Short summary
Evaporation retrieval in heterogeneous ecosystems is challenging due to empirical estimation of ground heat flux and complex parameterizations of conductances. We developed a parameter-sparse coupled ground heat flux-evaporation model and tested it across different limits of water stress and vegetation fraction in the Northern/Southern Hemisphere. The model performed particularly well in the savannas and showed good potential for evaporative stress monitoring from thermal infrared satellites.
Mathew Lipson, Sue Grimmond, Martin Best, Winston T. L. Chow, Andreas Christen, Nektarios Chrysoulakis, Andrew Coutts, Ben Crawford, Stevan Earl, Jonathan Evans, Krzysztof Fortuniak, Bert G. Heusinkveld, Je-Woo Hong, Jinkyu Hong, Leena Järvi, Sungsoo Jo, Yeon-Hee Kim, Simone Kotthaus, Keunmin Lee, Valéry Masson, Joseph P. McFadden, Oliver Michels, Wlodzimierz Pawlak, Matthias Roth, Hirofumi Sugawara, Nigel Tapper, Erik Velasco, and Helen Claire Ward
Earth Syst. Sci. Data, 14, 5157–5178, https://doi.org/10.5194/essd-14-5157-2022, https://doi.org/10.5194/essd-14-5157-2022, 2022
Short summary
Short summary
We describe a new openly accessible collection of atmospheric observations from 20 cities around the world, capturing 50 site years. The observations capture local meteorology (temperature, humidity, wind, etc.) and the energy fluxes between the land and atmosphere (e.g. radiation and sensible and latent heat fluxes). These observations can be used to improve our understanding of urban climate processes and to test the accuracy of urban climate models.
Marsailidh M. Twigg, Augustinus J. C. Berkhout, Nicholas Cowan, Sabine Crunaire, Enrico Dammers, Volker Ebert, Vincent Gaudion, Marty Haaima, Christoph Häni, Lewis John, Matthew R. Jones, Bjorn Kamps, John Kentisbeer, Thomas Kupper, Sarah R. Leeson, Daiana Leuenberger, Nils O. B. Lüttschwager, Ulla Makkonen, Nicholas A. Martin, David Missler, Duncan Mounsor, Albrecht Neftel, Chad Nelson, Eiko Nemitz, Rutger Oudwater, Celine Pascale, Jean-Eudes Petit, Andrea Pogany, Nathalie Redon, Jörg Sintermann, Amy Stephens, Mark A. Sutton, Yuk S. Tang, Rens Zijlmans, Christine F. Braban, and Bernhard Niederhauser
Atmos. Meas. Tech., 15, 6755–6787, https://doi.org/10.5194/amt-15-6755-2022, https://doi.org/10.5194/amt-15-6755-2022, 2022
Short summary
Short summary
Ammonia (NH3) gas in the atmosphere impacts the environment, human health, and, indirectly, climate. Historic NH3 monitoring was labour intensive, and the instruments were complicated. Over the last decade, there has been a rapid technology development, including “plug-and-play” instruments. This study is an extensive field comparison of the currently available technologies and provides evidence that for routine monitoring, standard operating protocols are required for datasets to be comparable.
Toby R. Marthews, Simon J. Dadson, Douglas B. Clark, Eleanor M. Blyth, Garry D. Hayman, Dai Yamazaki, Olivia R. E. Becher, Alberto Martínez-de la Torre, Catherine Prigent, and Carlos Jiménez
Hydrol. Earth Syst. Sci., 26, 3151–3175, https://doi.org/10.5194/hess-26-3151-2022, https://doi.org/10.5194/hess-26-3151-2022, 2022
Short summary
Short summary
Reliable data on global inundated areas remain uncertain. By matching a leading global data product on inundation extents (GIEMS) against predictions from a global hydrodynamic model (CaMa-Flood), we found small but consistent and non-random biases in well-known tropical wetlands (Sudd, Pantanal, Amazon and Congo). These result from known limitations in the data and the models used, which shows us how to improve our ability to make critical predictions of inundation events in the future.
Chandan Sarangi, TC Chakraborty, Sachchidanand Tripathi, Mithun Krishnan, Ross Morrison, Jonathan Evans, and Lina M. Mercado
Atmos. Chem. Phys., 22, 3615–3629, https://doi.org/10.5194/acp-22-3615-2022, https://doi.org/10.5194/acp-22-3615-2022, 2022
Short summary
Short summary
Transpiration fluxes by vegetation are reduced under heat stress to conserve water. However, in situ observations over northern India show that the strength of the inverse association between transpiration and atmospheric vapor pressure deficit is weakening in the presence of heavy aerosol loading. This finding not only implicates the significant role of aerosols in modifying the evaporative fraction (EF) but also warrants an in-depth analysis of the aerosol–plant–temperature–EF continuum.
Heye Reemt Bogena, Martin Schrön, Jannis Jakobi, Patrizia Ney, Steffen Zacharias, Mie Andreasen, Roland Baatz, David Boorman, Mustafa Berk Duygu, Miguel Angel Eguibar-Galán, Benjamin Fersch, Till Franke, Josie Geris, María González Sanchis, Yann Kerr, Tobias Korf, Zalalem Mengistu, Arnaud Mialon, Paolo Nasta, Jerzy Nitychoruk, Vassilios Pisinaras, Daniel Rasche, Rafael Rosolem, Hami Said, Paul Schattan, Marek Zreda, Stefan Achleitner, Eduardo Albentosa-Hernández, Zuhal Akyürek, Theresa Blume, Antonio del Campo, Davide Canone, Katya Dimitrova-Petrova, John G. Evans, Stefano Ferraris, Félix Frances, Davide Gisolo, Andreas Güntner, Frank Herrmann, Joost Iwema, Karsten H. Jensen, Harald Kunstmann, Antonio Lidón, Majken Caroline Looms, Sascha Oswald, Andreas Panagopoulos, Amol Patil, Daniel Power, Corinna Rebmann, Nunzio Romano, Lena Scheiffele, Sonia Seneviratne, Georg Weltin, and Harry Vereecken
Earth Syst. Sci. Data, 14, 1125–1151, https://doi.org/10.5194/essd-14-1125-2022, https://doi.org/10.5194/essd-14-1125-2022, 2022
Short summary
Short summary
Monitoring of increasingly frequent droughts is a prerequisite for climate adaptation strategies. This data paper presents long-term soil moisture measurements recorded by 66 cosmic-ray neutron sensors (CRNS) operated by 24 institutions and distributed across major climate zones in Europe. Data processing followed harmonized protocols and state-of-the-art methods to generate consistent and comparable soil moisture products and to facilitate continental-scale analysis of hydrological extremes.
Magdalena Szczykulska, David Boorman, James Blake, and Jonathan G. Evans
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2021-564, https://doi.org/10.5194/hess-2021-564, 2021
Preprint withdrawn
Short summary
Short summary
In this note, a revised incoming neutron intensity correction factor for soil moisture monitoring using cosmic-ray neutron sensors (CRNSs) is presented. The correction takes into account the incoming neutron flux differences at the reference neutron monitoring and soil moisture sites. When applied to the COSMOS-UK soil moisture data, it reduces the otherwise unexplained trend present in the data at wetter sites. It has implications for better soil moisture quantification using the CRNS method.
Claire M. Wood, Jamie Alison, Marc S. Botham, Annette Burden, François Edwards, R. Angus Garbutt, Paul B. L. George, Peter A. Henrys, Russel Hobson, Susan Jarvis, Patrick Keenan, Aidan M. Keith, Inma Lebron, Lindsay C. Maskell, Lisa R. Norton, David A. Robinson, Fiona M. Seaton, Peter Scarlett, Gavin M. Siriwardena, James Skates, Simon M. Smart, Bronwen Williams, and Bridget A. Emmett
Earth Syst. Sci. Data, 13, 4155–4173, https://doi.org/10.5194/essd-13-4155-2021, https://doi.org/10.5194/essd-13-4155-2021, 2021
Short summary
Short summary
The Glastir Monitoring and Evaluation Programme (GMEP) ran from 2013 until 2016, as a national programme of ecological study in Wales. GMEP included a large field survey component, collecting data on a range of elements including vegetation, land cover and land use, soils, freshwater, birds, and insect pollinators. GMEP was designed so that surveys could be repeated at regular intervals to monitor the Welsh environment. Data from GMEP have been used to address many applied policy questions.
Anna B. Harper, Karina E. Williams, Patrick C. McGuire, Maria Carolina Duran Rojas, Debbie Hemming, Anne Verhoef, Chris Huntingford, Lucy Rowland, Toby Marthews, Cleiton Breder Eller, Camilla Mathison, Rodolfo L. B. Nobrega, Nicola Gedney, Pier Luigi Vidale, Fred Otu-Larbi, Divya Pandey, Sebastien Garrigues, Azin Wright, Darren Slevin, Martin G. De Kauwe, Eleanor Blyth, Jonas Ardö, Andrew Black, Damien Bonal, Nina Buchmann, Benoit Burban, Kathrin Fuchs, Agnès de Grandcourt, Ivan Mammarella, Lutz Merbold, Leonardo Montagnani, Yann Nouvellon, Natalia Restrepo-Coupe, and Georg Wohlfahrt
Geosci. Model Dev., 14, 3269–3294, https://doi.org/10.5194/gmd-14-3269-2021, https://doi.org/10.5194/gmd-14-3269-2021, 2021
Short summary
Short summary
We evaluated 10 representations of soil moisture stress in the JULES land surface model against site observations of GPP and latent heat flux. Increasing the soil depth and plant access to deep soil moisture improved many aspects of the simulations, and we recommend these settings in future work using JULES. In addition, using soil matric potential presents the opportunity to include parameters specific to plant functional type to further improve modeled fluxes.
Elizabeth Cooper, Eleanor Blyth, Hollie Cooper, Rich Ellis, Ewan Pinnington, and Simon J. Dadson
Hydrol. Earth Syst. Sci., 25, 2445–2458, https://doi.org/10.5194/hess-25-2445-2021, https://doi.org/10.5194/hess-25-2445-2021, 2021
Short summary
Short summary
Soil moisture estimates from land surface models are important for forecasting floods, droughts, weather, and climate trends. We show that by combining model estimates of soil moisture with measurements from field-scale, ground-based sensors, we can improve the performance of the land surface model in predicting soil moisture values.
Ewan Pinnington, Javier Amezcua, Elizabeth Cooper, Simon Dadson, Rich Ellis, Jian Peng, Emma Robinson, Ross Morrison, Simon Osborne, and Tristan Quaife
Hydrol. Earth Syst. Sci., 25, 1617–1641, https://doi.org/10.5194/hess-25-1617-2021, https://doi.org/10.5194/hess-25-1617-2021, 2021
Short summary
Short summary
Land surface models are important tools for translating meteorological forecasts and reanalyses into real-world impacts at the Earth's surface. We show that the hydrological predictions, in particular soil moisture, of these models can be improved by combining them with satellite observations from the NASA SMAP mission to update uncertain parameters. We find a 22 % reduction in error at a network of in situ soil moisture sensors after combining model predictions with satellite observations.
Julia Drewer, Melissa M. Leduning, Robert I. Griffiths, Tim Goodall, Peter E. Levy, Nicholas Cowan, Edward Comynn-Platt, Garry Hayman, Justin Sentian, Noreen Majalap, and Ute M. Skiba
Biogeosciences, 18, 1559–1575, https://doi.org/10.5194/bg-18-1559-2021, https://doi.org/10.5194/bg-18-1559-2021, 2021
Short summary
Short summary
In Southeast Asia, oil palm plantations have largely replaced tropical forests. The impact of this shift in land use on greenhouse gas fluxes and soil microbial communities remains uncertain. We have found emission rates of the potent greenhouse gas nitrous oxide on mineral soil to be higher from oil palm plantations than logged forest over a 2-year study and concluded that emissions have increased over the last 42 years in Sabah, with the proportion of emissions from plantations increasing.
Simon J. Dadson, Eleanor Blyth, Douglas Clark, Helen Davies, Richard Ellis, Huw Lewis, Toby Marthews, and Ponnambalan Rameshwaran
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2021-60, https://doi.org/10.5194/hess-2021-60, 2021
Manuscript not accepted for further review
Short summary
Short summary
Flood prediction helps national and regional planning and real-time flood response. In this study we apply and test a new way to make wide area predictions of flooding which can be combined with weather forecasting and climate models to give faster predictions of flooded areas. By simplifying the detailed floodplain topography we can keep track of the fraction of land flooded for hazard mapping purposes. When tested this approach accurately reproduces benchmark datasets for England.
Gemma Coxon, Nans Addor, John P. Bloomfield, Jim Freer, Matt Fry, Jamie Hannaford, Nicholas J. K. Howden, Rosanna Lane, Melinda Lewis, Emma L. Robinson, Thorsten Wagener, and Ross Woods
Earth Syst. Sci. Data, 12, 2459–2483, https://doi.org/10.5194/essd-12-2459-2020, https://doi.org/10.5194/essd-12-2459-2020, 2020
Short summary
Short summary
We present the first large-sample catchment hydrology dataset for Great Britain. The dataset collates river flows, catchment attributes, and catchment boundaries for 671 catchments across Great Britain. We characterise the topography, climate, streamflow, land cover, soils, hydrogeology, human influence, and discharge uncertainty of each catchment. The dataset is publicly available for the community to use in a wide range of environmental and modelling analyses.
Cited articles
Albertson, K., Aylen, J., Cavan, G., and McMorrow, J.: Forecasting the
outbreak of moorland wildfires in the English Peak District, J. Environ.
Manage., 90, 2642–2651, https://doi.org/10.1016/j.jenvman.2009.02.011, 2009.
Allen, R. G., Pereira, L. S., Raes, D., and Smith, M.: FAO Irrigation and
Drainage Paper No. 56, Crop Evapotranspiration,
Food and Agriculture Organization of the United Nations, 1998.
Andreasen, M., Jensen, K. H., Desilets, D., Zreda, M., Bogena, H. R., and Looms, M. C.: Cosmic-ray neutron transport at a forest field site: the sensitivity to various environmental conditions with focus on biomass and canopy interception, Hydrol. Earth Syst. Sci., 21, 1875–1894, https://doi.org/10.5194/hess-21-1875-2017, 2017.
Baatz, R., Bogena, H. R., Hendricks Franssen, H. J., Huisman, J. A., Qu, W.,
Montzka, C., and Vereecken, H.: Calibration of a catchment scale cosmic-ray
probe network: A comparison of three parameterization methods, J. Hydrol.,
516, 231–244, https://doi.org/10.1016/j.jhydrol.2014.02.026, 2014.
Baatz, R., Bogena, H. R., Hendricks Franssen, H.-J., Huisman, J. A.,
Montzka, C., and Vereecken, H.: An empirical vegetation correction for soil
water content quantification using cosmic ray probes, Water Resour. Res.,
51, 2030–2046, https://doi.org/10.1002/2014WR016443, 2015.
Bayliss, A.: Flood Estimation Handbook: Catchment descriptors, Institute of
Hydrology, 1999.
Beale, J., Waine, T., Corstanje, R., and Evans, J.: A performance assessment method for SAR satellite-derived surface soil moisture data using a soil-water balance model, meteorological observations, and soil pedotransfer functions., EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-3387, https://doi.org/10.5194/egusphere-egu2020-3387, 2020.
Best, M. J., Pryor, M., Clark, D. B., Rooney, G. G., Essery, R. L. H., Ménard, C. B., Edwards, J. M., Hendry, M. A., Porson, A., Gedney, N., Mercado, L. M., Sitch, S., Blyth, E., Boucher, O., Cox, P. M., Grimmond, C. S. B., and Harding, R. J.: The Joint UK Land Environment Simulator (JULES), model description – Part 1: Energy and water fluxes, Geosci. Model Dev., 4, 677–699, https://doi.org/10.5194/gmd-4-677-2011, 2011.
Bliss, C., Wainwright, J., Donoghue, D., and Jordan, C.: Estimating soil moisture from COSMO-SkyMed data at an active landslide site in North Yorkshire, UK, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-22063, https://doi.org/10.5194/egusphere-egu2020-22063, 2020.
Blonquist, J. M., Jones, S. B., and Robinson, D. A.: A time domain
transmission sensor with TDR performance characteristics, J. Hydrol.,
314, 235–245, https://doi.org/10.1016/j.jhydrol.2005.04.005, 2005.
Bogena, H. R., Huisman, J. A., Güntner, A., Hübner, C., Kusche, J.,
Jonard, F., Vey, S., and Vereecken, H.: Emerging methods for noninvasive
sensing of soil moisture dynamics from field to catchment scale: a review,
WIREs Water, 2, 635–647, https://doi.org/10.1002/wat2.1097, 2015.
Boorman, D., Alton, J., Antoniou, V., Askquith-Ellis, A., Bagnoli, S., Ball,
L., Bennett, E., Blake, J., Brooks, M., Clarke, M., Cooper, H., Cowan, N.,
Cumming, A., Doughty, L., Evans, J., Farrand, P., Fry, M., Hewitt, N., Hitt,
O., Jenkins, A., Kral, F., Libre, J., Lord, W., Roberts, C., Morrison, R.,
Parkes, M., Nash, G., Newcomb, J., Rylett, D., Scarlett, P., Singer, A.,
Stanley, S., Swain, O., Szczykulska, M., Teagle, S., Thornton, J., Trill,
E., Vincent, H., Wallbank, J., Ward, H., Warwick, A., Winterbourn, B., and
Wright, G.: COSMOS-UK User Guide v3.00, available from:
http://nora.nerc.ac.uk/id/eprint/528535/1/N528535CR.pdf (last access: 22 April 2021),
2020.
Colli, M., Pollock, M., Stagnaro, M., Lanza, L. G., Dutton, M., and
O'Connell, E.: A Computational Fluid-Dynamics Assessment of the Improved
Performance of Aerodynamic Rain Gauges, Water Resour. Res., 54, 779–796,
https://doi.org/10.1002/2017WR020549, 2018.
Cooper, E., Pinnington, E., Ellis, R., Blyth, E., Dadson, S., and Cooper, H.: Improving estimates of UK soil moisture using the JULES land surface model with COSMOS-UK measurements in the LaVEnDAR data assimilation framework, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-11566, https://doi.org/10.5194/egusphere-egu2020-11566, 2020a.
Cooper, E., Blyth, E., Cooper, H., Ellis, R., Pinnington, E., and Dadson, S. J.: Using data assimilation to optimize pedotransfer functions using large-scale in-situ soil moisture observations, Hydrol. Earth Syst. Sci. Discuss. [preprint], https://doi.org/10.5194/hess-2020-359, in review, 2020b.
Cowan, N., Helfter, C., Langford, B., Coyle, M., Levy, P., Moxley, J.,
Simmons, I., Leeson, S., Nemitz, E., and Skiba, U.: Seasonal fluxes of carbon
monoxide from an intensively grazed grassland in Scotland, Atmos. Environ.,
194, 170–178, https://doi.org/10.1016/j.atmosenv.2018.09.039, 2018.
Cowan, N., Levy, P., Maire, J., Coyle, M., Leeson, S. R., Famulari, D.,
Carozzi, M., Nemitz, E., and Skiba, U.: An evaluation of four years of
nitrous oxide fluxes after application of ammonium nitrate and urea
fertilisers measured using the eddy covariance method, Agr. Forest
Meteorol., 280, 107812, https://doi.org/10.1016/j.agrformet.2019.107812, 2020.
Crowhurst, D., Morrison, R., Evans, J., Cooper, H., Cumming, A., Fry, M., and
Boorman, D.: Actual evaporation data system for COSMOS-UK [Poster], in: Hydro-JULES: Next Generation Land Surface and Hydrological Predictions, The Royal Society, London, 11 September 2019, available from: http://nora.nerc.ac.uk/id/eprint/525105 (last access: 22 April 2021), 2019.
Davidson, E. A., Keller, M., Erickson, H. E., Verchot, L. V., and Veldkamp,
E.: Testing a Conceptual Model of Soil Emissions of Nitrous and Nitric
OxidesUsing two functions based on soil nitrogen availability and soil water
content, the hole-in-the-pipe model characterizes a large fraction of the
observed variation of nitric oxide and nitrous oxide emissions from soils,
BioScience, 50, 667–680, 2000.
Desilets, D.: Calibrating a non-invasive cosmic ray soil moisture probe for
snow water equivalent, Dataset, Zenodo, https://doi.org/10.5281/zenodo.439105, 2017.
Desilets, D. and Zreda, M.: Spatial and temporal distribution of secondary
cosmic-ray nucleon intensities and applications to in situ cosmogenic
dating, Earth Planet. Sc. Lett., 206, 21–42,
https://doi.org/10.1016/S0012-821X(02)01088-9, 2003.
Desilets, D., Zreda, M., and Ferré, T. P. A.: Nature's neutron probe:
Land surface hydrology at an elusive scale with cosmic rays, Water Resour.
Res., 46, W11505, https://doi.org/10.1029/2009WR008726, 2010.
Dimitrova-Petrova, K., Geris, J., Wilkinson, M. E., Rosolem, R., Verrot, L.,
Lilly, A., and Soulsby, C.: Opportunities and challenges in using
catchment-scale storage estimates from cosmic ray neutron sensors for
rainfall-runoff modelling, J. Hydrol., 586, 124878,
https://doi.org/10.1016/j.jhydrol.2020.124878, 2020.
Dirmeyer, P. A., Balsamo, G., Blyth, E., Morrison, R., and Cooper, H.:
Land-Atmosphere Interactions Exacerbated the Drought and Heatwave over
Northern Europe during Summer 2018, Earth and Space Science Open Archive, 35,
https://doi.org/10.1029/2020AV000283, 2021.
Djennad, A., Lo Iacono, G., Sarran, C., Lane, C., Elson, R., Höser, C.,
Lake, I. R., Colón-González, F. J., Kovats, S., Semenza, J. C.,
Bailey, T. C., Kessel, A., Fleming, L. E., and Nichols, G. L.: Seasonality
and the effects of weather on Campylobacter infections, BMC Infect. Dis.,
19, 255, https://doi.org/10.1186/s12879-019-3840-7, 2019.
Evans, J. G., Ward, H. C., Blake, J. R., Hewitt, E. J., Morrison, R., Fry,
M., Ball, L. A., Doughty, L. C., Libre, J. W., Hitt, O. E., Rylett, D.,
Ellis, R. J., Warwick, A. C., Brooks, M., Parkes, M. A., Wright, G. M. H.,
Singer, A. C., Boorman, D. B., and Jenkins, A.: Soil water content in
southern England derived from a cosmic-ray soil moisture observing system –
COSMOS-UK, Hydrol. Process., 30, 4987–4999, https://doi.org/10.1002/hyp.10929,
2016.
Fersch, B., Francke, T., Heistermann, M., Schrön, M., Döpper, V., Jakobi, J., Baroni, G., Blume, T., Bogena, H., Budach, C., Gränzig, T., Förster, M., Güntner, A., Hendricks Franssen, H.-J., Kasner, M., Köhli, M., Kleinschmit, B., Kunstmann, H., Patil, A., Rasche, D., Scheiffele, L., Schmidt, U., Szulc-Seyfried, S., Weimar, J., Zacharias, S., Zreda, M., Heber, B., Kiese, R., Mares, V., Mollenhauer, H., Völksch, I., and Oswald, S.: A dense network of cosmic-ray neutron sensors for soil moisture observation in a highly instrumented pre-Alpine headwater catchment in Germany, Earth Syst. Sci. Data, 12, 2289–2309, https://doi.org/10.5194/essd-12-2289-2020, 2020.
Flückiger, E. O., Bütikofer, R., Moser, M. R., and Desorgher, L.: The
Cosmic Ray Ground Level Enhancement during the Forbush Decrease in January
2005, 29th International Cosmic Ray Conference, Pune, India, 3–10 August 2005.
Franz, T. E.: Installation and calibration of the cosmic-ray solar moisture
probe solar moisture probe, PhD, University of Arizona, 2012.
Franz, T. E., Zreda, M., Ferre, T. P. A., Rosolem, R., Zweck, C., Stillman,
S., Zeng, X., and Shuttleworth, W. J.: Measurement depth of the cosmic ray
soil moisture probe affected by hydrogen from various sources, Water Resour.
Res., 48, W08515, https://doi.org/10.1029/2012WR011871, 2012.
Franz, T. E., Zreda, M., Rosolem, R., and Ferre, T. P. A.: A universal calibration function for determination of soil moisture with cosmic-ray neutrons, Hydrol. Earth Syst. Sci., 17, 453–460, https://doi.org/10.5194/hess-17-453-2013, 2013.
Franz, T. E., Wahbi, A., Zhang, J., Vreugdenhil, M., Heng, L., Dercon, G.,
Strauss, P., Brocca, L., and Wagner, W.: Practical Data Products From
Cosmic-Ray Neutron Sensing for Hydrological Applications, Front. Water, 2,
9, https://doi.org/10.3389/frwa.2020.00009, 2020.
Hawdon, A., McJannet, D., and Wallace, J.: Calibration and correction
procedures for cosmic-ray neutron soil moisture probes located across
Australia, Water Resour. Res., 50, 5029–5043, https://doi.org/10.1002/2013WR015138,
2014.
Heidbüchel, I., Güntner, A., and Blume, T.: Use of cosmic-ray neutron sensors for soil moisture monitoring in forests, Hydrol. Earth Syst. Sci., 20, 1269–1288, https://doi.org/10.5194/hess-20-1269-2016, 2016.
Hertl, P. T., Brandenburg, R. L., and Barbercheck, M. E.: Effect of Soil
Moisture on Ovipositional Behavior in the Southern Mole Cricket (Orthoptera:
Gryllotalpidae), Environ. Entomol., 30, 466–473,
https://doi.org/10.1603/0046-225x-30.3.466, 2001.
Iwema, J., Rosolem, R., Baatz, R., Wagener, T., and Bogena, H. R.: Investigating temporal field sampling strategies for site-specific calibration of three soil moisture–neutron intensity parameterisation methods, Hydrol. Earth Syst. Sci., 19, 3203–3216, https://doi.org/10.5194/hess-19-3203-2015, 2015.
Köhli, M., Schrön, M., Zreda, M., Schmidt, U., Dietrich, P., and
Zacharias, S.: Footprint characteristics revised for field-scale soil
moisture monitoring with cosmic-ray neutrons, Water Resour. Res., 51,
5772–5790, https://doi.org/10.1002/2015WR017169, 2015a.
Köhli, M., Schrön, M., Zreda, M., Schmidt, U., Dietrich, P., and
Zacharias, S.: Footprint characteristics revised for field-scale soil
moisture monitoring with cosmic-ray neutrons, Water Resour. Res., 51,
5772–5790, https://doi.org/10.1002/2015WR017169, 2015b.
Moene, A. F. and van Dam, J. C.: Transport in the Atmosphere-Vegetation-Soil
Continuum, Cambridge University Press, Cambridge, 2014.
Montzka, C., Bogena, H., Zreda, M., Monerris, A., Morrison, R., Muddu, S.,
and Vereecken, H.: Validation of Spaceborne and Modelled Surface Soil
Moisture Products with Cosmic-Ray Neutron Probes, Remote Sens., 9, 103,
https://doi.org/10.3390/rs9020103, 2017.
Nelson, D. L. and Sommers, L. E.: Total Carbon, Organic Carbon, and Organic
Matter, in: Methods of Soil Analysis: Part 3 Chemical Methods, 5.3, edited by: Sparks, D. L., Soil Science Society of America, Madison, Wisconsin, USA, 1996.
Oertel, C., Matschullat, J., Zurba, K., Zimmermann, F., and Erasmi, S.:
Greenhouse gas emissions from soils – A review, Chemie der Erde, 76,
327–352, https://doi.org/10.1016/j.chemer.2016.04.002, 2016.
Oracle: Oracle SQL Developer, available at: https://www.oracle.com/tools/downloads/sqldev-downloads.html (last access: 22 April 2021), 2012.
Pansu, M. and Gautheyrou, J.: Handbook of Soil Analysis. Mineralogical,
Organic and Inorganic Methods, Springer, Berlin, 2006.
Peng, J., Quaife, T., Pinnington, E., Evans, J., Harris, P., Robinson, E., Blyth, E., and Dadson, S.: High resolution soil moisture estimation and evaluation from Earth observation, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-18099, https://doi.org/10.5194/egusphere-egu2020-18099, 2020.
Pinnington, E., Amezcua, J., Cooper, E., Dadson, S., Ellis, R., Peng, J., Robinson, E., Morrison, R., Osborne, S., and Quaife, T.: Improving soil moisture prediction of a high-resolution land surface model by parameterising pedotransfer functions through assimilation of SMAP satellite data, Hydrol. Earth Syst. Sci., 25, 1617–1641, https://doi.org/10.5194/hess-25-1617-2021, 2021.
Pritchard, O. G., Hallett, S. H., and Farewell, T. S.: Soil movement in the UK – Impacts on Critical Infrastructure Infrastructure,
Transitions Research Consortium, 2013.
Quinn, N. W., Newton, C., Boorman, D., Horswell, M., and West, H.: Progress in evaluating satellite soil moisture products in Great Britain against COSMOS-UK and in-situ soil moisture measurements, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-15831, https://doi.org/10.5194/egusphere-egu2020-15831, 2020.
Ragab, R., Evans, J. G., Battilani, A., and Solimando, D.: The Cosmic-ray
Soil Moisture Observation System (Cosmos) for Estimating the Crop Water
Requirement: New Approach, Irrig. Drain., 66, 456–468,
https://doi.org/10.1002/ird.2152, 2017.
Rivera Villarreyes, C. A., Baroni, G., and Oswald, S. E.: Integral quantification of seasonal soil moisture changes in farmland by cosmic-ray neutrons, Hydrol. Earth Syst. Sci., 15, 3843–3859, https://doi.org/10.5194/hess-15-3843-2011, 2011.
Robinson, E. L., Blyth, E. M., Clark, D. B., Comyn-Platt, E., and Rudd, A.
C.: Climate hydrology and ecology research support system potential
evapotranspiration dataset for Great Britain (1961–2017) [CHESS-PE], NERC
Environ. Inf. Data Centre,
https://doi.org/10.5285/9116e565-2c0a-455b-9c68-558fdd9179ad, 2020.
Rosolem, R., Shuttleworth, W. J., Zreda, M., Franz, T. E., Zeng, X., and
Kurc, S. A.: The Effect of Atmospheric Water Vapor on Neutron Count in the
Cosmic-Ray Soil Moisture Observing System, J. Hydrometeorol., 14,
1659–1671, https://doi.org/10.1175/JHM-D-12-0120.1, 2013.
Schrön, M., Köhli, M., Scheiffele, L., Iwema, J., Bogena, H. R., Lv, L., Martini, E., Baroni, G., Rosolem, R., Weimar, J., Mai, J., Cuntz, M., Rebmann, C., Oswald, S. E., Dietrich, P., Schmidt, U., and Zacharias, S.: Improving calibration and validation of cosmic-ray neutron sensors in the light of spatial sensitivity, Hydrol. Earth Syst. Sci., 21, 5009–5030, https://doi.org/10.5194/hess-21-5009-2017, 2017.
Seneviratne, S. I., Corti, T., Davin, E. L., Hirschi, M., Jaeger, E. B.,
Lehner, I., Orlowsky, B., and Teuling, A. J.: Investigating soil
moisture-climate interactions in a changing climate: A review, Earth-Science
Rev., 99, 125–161, https://doi.org/10.1016/j.earscirev.2010.02.004, 2010.
Stanley, S., Antoniou, V., Askquith-Ellis, A., Ball, L. A., Bennett, E. S.,
Blake, J. R., Boorman, D. B., Brooks, M., Clarke, M., Cooper, H. M., Cowan,
N., Cumming, A., Evans, J. G., Farrand, P., Fry, M., Hitt, O. E., Lord, W.
D., Morrison, R., Nash, G. V., Rylett, D., Scarlett, P. M., Swain, O. D.,
Szczykulska, M., Thornton, J. L., Trill, E. J., Warwick, A. C., and
Winterbourn, B.: Daily and sub-daily hydrometeorological and soil data
(2013-2019) [COSMOS-UK], NERC Environ. Inf. Data Centre., Dataset,
doi:https://doi.org/10.5285/b5c190e4-e35d-40ea-8fbe-598da03a1185, 2021.
Strangeways, I.: Improving precipitation measurement, Int. J. Climatol.,
24, 1443–1460, https://doi.org/10.1002/joc.1075, 2004.
Taylor, C. M., De Jeu, R. A. M., Guichard, F., Harris, P. P., and Dorigo, W.
A.: Afternoon rain more likely over drier soils, Nature, 489,
423–426, https://doi.org/10.1038/nature11377, 2012.
Upadhyaya, D. B., Evans, J., Muddu, S., Tomer, S. K., Bitar, A. Al, Yeggina,
S., S, T., Morrison, R., Fry, M., Tripathi, S. N., Mujumdar, M., Goswami,
M., Ganeshi, N., Nema, M. K., Jain, S. K., Angadi, S. S., and Yenagi, B. S.:
The Indian COSMOS Network (ICON): Validating L-Band Remote Sensing and
Modelled Soil Moisture Data Products, Remote Sens., 13, 537,
https://doi.org/10.3390/rs13030537, 2021.
Van Den Pol-van Dasselaar, A., Van Beusichem, M. L., and Oenema, O.: Effects
of soil moisture content and temperature on methane uptake by grasslands on
sandy soils, Plant Soil, 204, 213–222, https://doi.org/10.1023/A:1004371309361,
1998.
Wallbank, J. R., Cole, S. J., Moore, R. J., Anderson, S. R., and Mellor, E.
J.: Snow water equivalent estimates using cosmic-ray neutron sensors in the
United Kingdom (2014–2019), NERC Environ. Inf. Data Cent.,
doi:doi.org/10.5285/e1fa6897-0f09-4472-adab-5d0d7bbc2548, 2020.
Wallbank, J. R., Cole, S. J., Moore, R. J., Anderson, S. R., and Mellor, E.
J.: Estimating snow water equivalent using cosmic-ray neutron sensors from
the COSMOS-UK network, Hydrol. Process., online first, https://doi.org/10.1002/hyp.14048,
2021.
Wingate, L., Ogée, J., Cremonese, E., Filippa, G., Mizunuma, T., Migliavacca, M., Moisy, C., Wilkinson, M., Moureaux, C., Wohlfahrt, G., Hammerle, A., Hörtnagl, L., Gimeno, C., Porcar-Castell, A., Galvagno, M., Nakaji, T., Morison, J., Kolle, O., Knohl, A., Kutsch, W., Kolari, P., Nikinmaa, E., Ibrom, A., Gielen, B., Eugster, W., Balzarolo, M., Papale, D., Klumpp, K., Köstner, B., Grünwald, T., Joffre, R., Ourcival, J.-M., Hellstrom, M., Lindroth, A., George, C., Longdoz, B., Genty, B., Levula, J., Heinesch, B., Sprintsin, M., Yakir, D., Manise, T., Guyon, D., Ahrends, H., Plaza-Aguilar, A., Guan, J. H., and Grace, J.: Interpreting canopy development and physiology using a European phenology camera network at flux sites, Biogeosciences, 12, 5995–6015, https://doi.org/10.5194/bg-12-5995-2015, 2015.
Zhu, Y., Li, X., Pearson, S., Wu, D., Sun, R., Johnson, S., Wheeler, J., and
Fang, S.: Evaluation of Fengyun-3C soil moisture products using in-situ data
from the Chinese Automatic Soil Moisture Observation Stations: A case study
in Henan Province, China, Water (Switzerland), 11, 248, https://doi.org/10.3390/w11020248,
2019.
Zreda, M., Desilets, D., Ferré, T. P. A., and Scott, R. L.: Measuring
soil moisture content non-invasively at intermediate spatial scale using
cosmic-ray neutrons, Geophys. Res. Lett., 35, L21402,
https://doi.org/10.1029/2008GL035655, 2008.
Zreda, M., Shuttleworth, W. J., Zeng, X., Zweck, C., Desilets, D., Franz, T., and Rosolem, R.: COSMOS: the COsmic-ray Soil Moisture Observing System, Hydrol. Earth Syst. Sci., 16, 4079–4099, https://doi.org/10.5194/hess-16-4079-2012, 2012.
Short summary
COSMOS-UK is a UK network of environmental monitoring sites, with a focus on measuring field-scale soil moisture. Each site includes soil and hydrometeorological sensors providing data including air temperature, humidity, net radiation, neutron counts, snow water equivalent, and potential evaporation. These data can provide information for science, industry, and agriculture by improving existing understanding and data products in fields such as water resources, space sciences, and biodiversity.
COSMOS-UK is a UK network of environmental monitoring sites, with a focus on measuring...
Altmetrics
Final-revised paper
Preprint