Articles | Volume 13, issue 4
https://doi.org/10.5194/essd-13-1653-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/essd-13-1653-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Open access to regional geoid models: the International Service for the Geoid
Mirko Reguzzoni
International Service for the Geoid, Department of Civil and
Environmental Engineering, Politecnico di Milano, Milan, 20133, Italy
Daniela Carrion
International Service for the Geoid, Department of Civil and
Environmental Engineering, Politecnico di Milano, Milan, 20133, Italy
International Service for the Geoid, Department of Civil and
Environmental Engineering, Politecnico di Milano, Milan, 20133, Italy
Alberta Albertella
International Service for the Geoid, Department of Civil and
Environmental Engineering, Politecnico di Milano, Milan, 20133, Italy
Lorenzo Rossi
International Service for the Geoid, Department of Civil and
Environmental Engineering, Politecnico di Milano, Milan, 20133, Italy
Giovanna Sona
International Service for the Geoid, Department of Civil and
Environmental Engineering, Politecnico di Milano, Milan, 20133, Italy
Khulan Batsukh
International Service for the Geoid, Department of Civil and
Environmental Engineering, Politecnico di Milano, Milan, 20133, Italy
Juan Fernando Toro Herrera
International Service for the Geoid, Department of Civil and
Environmental Engineering, Politecnico di Milano, Milan, 20133, Italy
Kirsten Elger
GFZ German Research Centre for Geosciences, Telegrafenberg, 14473 Potsdam, Germany
Riccardo Barzaghi
International Service for the Geoid, Department of Civil and
Environmental Engineering, Politecnico di Milano, Milan, 20133, Italy
Fernando Sansó
International Service for the Geoid, Department of Civil and
Environmental Engineering, Politecnico di Milano, Milan, 20133, Italy
Related authors
J. F. Toro, D. Carrion, L. Rossi, and M. Reguzzoni
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLIII-B5-2022, 29–35, https://doi.org/10.5194/isprs-archives-XLIII-B5-2022-29-2022, https://doi.org/10.5194/isprs-archives-XLIII-B5-2022-29-2022, 2022
L. Rossi, F. Ioli, E. Capizzi, L. Pinto, and M. Reguzzoni
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLIII-B2-2021, 61–68, https://doi.org/10.5194/isprs-archives-XLIII-B2-2021-61-2021, https://doi.org/10.5194/isprs-archives-XLIII-B2-2021-61-2021, 2021
Stefano Conversi, Daniela Carrion, and Monica Riva
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-G-2025, 315–321, https://doi.org/10.5194/isprs-archives-XLVIII-G-2025-315-2025, https://doi.org/10.5194/isprs-archives-XLVIII-G-2025-315-2025, 2025
Florian Neumann, Ben Norden, Elif Balkan-Pazvantoğlu, Samah Elbarbary, Alexey G. Petrunin, Kirsten Elger, Samuel Jennings, Simone Frenzel, and Sven Fuchs
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-341, https://doi.org/10.5194/essd-2025-341, 2025
Preprint under review for ESSD
Short summary
Short summary
The Global Heat Flow Database grew from 58,302 data points in 2012 to 91,182 in 2024, with enhanced quality assessments. Despite this, gaps in data and methodological details persist, especially in underrepresented regions. The database is crucial for geophysical, geothermal, and environmental research, offering valuable insights into Earth's thermal processes.
Stefano Conversi, Daniela Carrion, Francesco Gioia, Alessandra Norcini, and Monica Riva
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-4-W12-2024, 19–27, https://doi.org/10.5194/isprs-archives-XLVIII-4-W12-2024-19-2024, https://doi.org/10.5194/isprs-archives-XLVIII-4-W12-2024-19-2024, 2024
F. Gaspari, F. Barbieri, J. P. Duque, R. Fascia, F. Ioli, G. Zani, D. Carrion, and L. Pinto
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-1-W2-2023, 299–306, https://doi.org/10.5194/isprs-archives-XLVIII-1-W2-2023-299-2023, https://doi.org/10.5194/isprs-archives-XLVIII-1-W2-2023-299-2023, 2023
S. Conversi, D. Carrion, A. Norcini, and M. Riva
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-1-W2-2023, 1363–1371, https://doi.org/10.5194/isprs-archives-XLVIII-1-W2-2023-1363-2023, https://doi.org/10.5194/isprs-archives-XLVIII-1-W2-2023-1363-2023, 2023
G. Bratic, D. Carrion, M. Cannata, M. Rogora, D. Strigaro, and M. A. Brovelli
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLIII-B4-2022, 599–606, https://doi.org/10.5194/isprs-archives-XLIII-B4-2022-599-2022, https://doi.org/10.5194/isprs-archives-XLIII-B4-2022-599-2022, 2022
J. F. Toro, D. Carrion, L. Rossi, and M. Reguzzoni
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLIII-B5-2022, 29–35, https://doi.org/10.5194/isprs-archives-XLIII-B5-2022-29-2022, https://doi.org/10.5194/isprs-archives-XLIII-B5-2022-29-2022, 2022
J. F. Toro Herrera, D. Carrion, M. Bresciani, and G. Bratić
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLIII-B3-2022, 1019–1026, https://doi.org/10.5194/isprs-archives-XLIII-B3-2022-1019-2022, https://doi.org/10.5194/isprs-archives-XLIII-B3-2022-1019-2022, 2022
Daniela Carrion, Carlo Andrea Biraghi, Alberto Vavassori, Edoardo Pessina, Giorgio Zamboni, Gorica Bratic, and Maria A. Brovelli
Abstr. Int. Cartogr. Assoc., 3, 47, https://doi.org/10.5194/ica-abs-3-47-2021, https://doi.org/10.5194/ica-abs-3-47-2021, 2021
C. A. Biraghi, M. Lotfian, D. Carrion, and M. A. Brovelli
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLIII-B4-2021, 167–174, https://doi.org/10.5194/isprs-archives-XLIII-B4-2021-167-2021, https://doi.org/10.5194/isprs-archives-XLIII-B4-2021-167-2021, 2021
J. F. Toro Herrera, D. Carrion, and M. A. Brovelli
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLIII-B4-2021, 201–207, https://doi.org/10.5194/isprs-archives-XLIII-B4-2021-201-2021, https://doi.org/10.5194/isprs-archives-XLIII-B4-2021-201-2021, 2021
C. Gerosa, M. Bresciani, G. Luciani, C. A. Biraghi, D. Carrion, M. Rogora, and M. A. Brovelli
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLIII-B3-2021, 551–558, https://doi.org/10.5194/isprs-archives-XLIII-B3-2021-551-2021, https://doi.org/10.5194/isprs-archives-XLIII-B3-2021-551-2021, 2021
L. Rossi, F. Ioli, E. Capizzi, L. Pinto, and M. Reguzzoni
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLIII-B2-2021, 61–68, https://doi.org/10.5194/isprs-archives-XLIII-B2-2021-61-2021, https://doi.org/10.5194/isprs-archives-XLIII-B2-2021-61-2021, 2021
Friederike Koerting, Nicole Koellner, Agnieszka Kuras, Nina Kristin Boesche, Christian Rogass, Christian Mielke, Kirsten Elger, and Uwe Altenberger
Earth Syst. Sci. Data, 13, 923–942, https://doi.org/10.5194/essd-13-923-2021, https://doi.org/10.5194/essd-13-923-2021, 2021
Short summary
Short summary
Mineral resource exploration and mining is an essential part of today's high-tech industry. Modern remote-sensing exploration techniques from multiple platforms (e.g., satellite) to detect the spectral characteristics of the surface require spectral libraries as an essential reference. To enable remote mapping, the spectral libraries for rare-earth-bearing minerals, copper-bearing minerals and surface samples from a copper mine are presented here with their corresponding geochemical validation.
V. Yordanov, M. A. Brovelli, D. Carrion, L. Barazzetti, L. J. A. Francisco, H. R. Comia, and M. I. Caravela
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLIV-3-W1-2020, 151–158, https://doi.org/10.5194/isprs-archives-XLIV-3-W1-2020-151-2020, https://doi.org/10.5194/isprs-archives-XLIV-3-W1-2020-151-2020, 2020
Cited articles
Avalos Naranjo, D., Hernández Navarro, A., Muñoz Abundes, R., and
Sosa Gaytán, M.: The Mexican gravimetric geoid: GGM04, GFZ Data
Services, https://doi.org/10.5880/ISG.2004.001, 2004.
Avalos Naranjo, D., Hernández Navarro, A., Muñoz Abundes, R., and
Sosa Gaytán, M.: The Mexican gravimetric geoid: GGM05, GFZ Data
Services, https://doi.org/10.5880/ISG.2005.001, 2005.
Avalos Naranjo, D., Hernández Navarro, A., Muñoz Abundes, R., and
Sosa Gaytán, M.: The Mexican gravimetric geoid: GGM06, GFZ Data
Services, https://doi.org/10.5880/ISG.2006.001, 2006.
Avalos Naranjo, D., Sosa Gaytán, M., and Muñoz Abundes, R.: The
Mexican gravimetric geoid: GGM10, GFZ Data Services,
https://doi.org/10.5880/ISG.2010.001, 2010.
Ayres-Sampaio, D., Deurloo, R., Bos, M., Magalhães, A., and Bastos, L.:
The gravimetric geoid of Madeira: GEOMAD, GFZ Data Services,
https://doi.org/10.5880/ISG.2015.002, 2015.
Barzaghi, R., Migliaccio, F., Reguzzoni, M., and Albertella, A.: The Earth
gravity field in the time of satellites, Rendiconti Lincei, 26, 13–23,
https://doi.org/10.1007/s12210-015-0382-9, 2015a.
Barzaghi, R., Carrion, D., Reguzzoni, M., and Venuti, G.: A feasibility
study on the unification of the Italian height systems using GNSS-leveling
data and global satellite gravity models, in: IAG 150 Years, edited by: Rizos, C. and Willis, P., International Association of Geodesy Symposia, 143, 281–288,
Springer, Cham, https://doi.org/10.1007/1345_2015_35, 2015b.
Barzaghi, R., Carrion, D., and Koç, Ö.: The PoliMI quasi-geoid based
on windowed Least-Squares Collocation for the Colorado Experiment:
ColWLSC2020, GFZ Data Services,
https://doi.org/10.5880/isg.2020.001, 2020a.
Barzaghi, R., Carrion, D., and Koç, Ö.: The PoliMI geoid based on
windowed Least-Squares Collocation for the Colorado Experiment: ColWLSC2020, GFZ Data Services, https://doi.org/10.5880/isg.2020.002, 2020b.
Bingham, R. J., Haines K., and Hughes C. W.: Calculating the ocean's mean
dynamic topography from a mean sea surface and a geoid, J.
Atmos. Ocean. Tech., 25, 1808–1822,
https://doi.org/10.1175/2008JTECHO568.1, 2008.
Blitzkow, D., de Matos, A. C. O. C., Machado, W. C., Nunes, M. A.,
Lengruber, N. V., Xavier, E. M. L., and Fortes, L. P. S.: The Brazilian
gravimetric geoid: MAPGEO2015, GFZ Data Services,
https://doi.org/10.5880/ISG.2015.001, 2015.
Cerri, D. and Fuggetta, A.: Open standards, open formats, and open source,
J. Syst. Softw., 80, 11, 1930–1937,
https://doi.org/10.1016/j.jss.2007.01.048, 2007.
Chan, L. M. and Zeng, M. L.: Metadata interoperability and standardization
– A study of methodology Part 1, D-Lib Magazine, 12, 6, https://doi.org/10.1045/june2006-zeng, 2006.
Data Citation Synthesis Group: Joint declaration of data citation
principles, FORCE11, https://doi.org/10.25490/a97f-egyk, 2014.
de Matos, A. C. O. C., Blitzkow, D., Guimarães, G. do N., Lobianco, M.
C. B., and Costa, S. M. A.: The Brazilian gravimetric geoid: MAPGEO2010, GFZ
Data Services, https://doi.org/10.5880/ISG.2010.002, 2010.
Fenner, M., Crosas, M., Grethe, J. S., Kennedy, D., Hermjakob, H.,
Rocca-Serra, P., Durand, G., Berjon, R., Karcher, S., Martone, M., and
Clark, T.: A data citation roadmap for scholarly data repositories,
Sci. Data, 6, 28, https://doi.org/10.1038/s41597-019-0031-8, 2019.
Förste, C., Bruinsma, Sean. L., Abrikosov, O., Lemoine, J.-M., Marty, J.
C., Flechtner, F., Balmino, G., Barthelmes, F., and Biancale, R.: EIGEN-6C4
The latest combined global gravity field model including GOCE data up to
degree and order 2190 of GFZ Potsdam and GRGS Toulouse, GFZ Data Services, https://doi.org/10.5880/ICGEM.2015.1, 2014.
Forsberg, R. and Tscherning, C. C.: Overview manual for the GRAVSOFT
Geodetic Gravity Field Modelling Programs, 2nd Edn. Technical report,
DTU-Space, 2008.
Fukuda, Y., Kuroda, J., Takabatake, Y., Itoh, J., and Murakami, M.:
Improvement of JGEOID93 by the geoidal heights derived from GPS/leveling
survey, in: Gravity, Geoid and Marine Geodesy, edited by: Segawa, J., Fujimoto, H., and Okubo, S., International Association of Geodesy Symposia, 117, 589–596,
Springer Verlag, https://doi.org/10.1007/978-3-662-03482-8_78, 1997.
Grigoriadis, V. N. and Vergos, G. S.: The AUTh quasi-geoid based on 1D FFT
with Wong-Gore modification of the Stokes kernel for the Colorado
Experiment: ColFFTWG2020, GFZ Data Services,
https://doi.org/10.5880/ISG.2020.003, 2020a.
Grigoriadis, V. N. and Vergos, G. S.: The AUTh geoid based on 1D FFT with
Wong-Gore modification of the Stokes kernel for the Colorado Experiment:
ColFFTWG2020, GFZ Data Services, https://doi.org/10.5880/ISG.2020.004, 2020b.
Heiskanen, W. A. and Moritz, H.: Physical Geodesy, W.H. Freeman and Co.,
USA, 364 pp., 1967.
Hodson, S., Jones, S., Collins, S., Genova, F., Harrower, N., Laaksonen, L.,
Mietchen, D., Petrauskaité, R., and Wittenburg, P.: Turning FAIR into
reality: Final Report and Action Plan from the European Commission Expert
Group on FAIR Data, https://doi.org/10.2777/1524, 2018.
Hwang, C., Hsu, H., Featherstone, W. E., Cheng, C., Yang, M., Huang, W.,
Wang, C., Huang, J., Chen, K., Huang, C., Chen, H., and Su, W.: The
gravimetric geoid of Taiwan: TWGEOID18g, GFZ Data Services,
https://doi.org/10.5880/ISG.2018.001, 2018a.
Hwang, C., Hsu, H., Featherstone, W. E., Cheng, C., Yang, M., Huang, W.,
Wang, C., Huang, J., Chen, K., Huang, C., Chen, H., and Su, W.: The hybrid
geoid of Taiwan: TWGEOID18h, GFZ Data Services,
https://doi.org/10.5880/ISG.2018.002, 2018b.
Ince, E. S., Barthelmes, F., Reißland, S., Elger, K., Förste, C., Flechtner, F., and Schuh, H.: ICGEM – 15 years of successful collection and distribution of global gravitational models, associated services, and future plans, Earth Syst. Sci. Data, 11, 647–674, https://doi.org/10.5194/essd-11-647-2019, 2019.
Knudsen, P., Bingham, R. J., Andersen, O., and Rio M. H.: A global mean
dynamic topography and ocean circulation estimation using a preliminary GOCE
gravity model, J. Geodesy, 85, 861–879,
https://doi.org/10.1007/s00190-011-0485-8, 2011.
Kuroishi, Y.: A new geoid model for Japan, JGEOID2000, in:
Gravity, Geoid and Geodynamics, edited by: Sideris M. G., International Association of Geodesy
Symposia, 123, 329–333, Springer Verlag,
https://doi.org/10.1007/978-3-662-04827-6_55, 2000.
Lobianco, M. C. B., Blitzkow, D., and de Matos, A. C. O. C.: The Brazilian
gravimetric geoid: MAPGEO2004, GFZ Data Services,
https://doi.org/10.5880/ISG.2004.002, 2004.
Longhorn, R.: Geospatial standards, interoperability, metadata semantics and
spatial data infrastructure, background paper for NIEeS Workshop on
Activating Metadata, Cambridge, UK, 6–7 July 2005.
Merson, R. and King-Hele, D.: Use of artificial satellites to explore the
Earth's gravitational field: Results from Sputnik 2, Nature, 182, 640–641,
https://doi.org/10.1038/182640a0, 1958.
Miyahara, B., Kodama, T., and Kuroishi, Y.: Development of new hybrid geoid
model for Japan, “GSIGEO2011”, Bulletin of the Geographical Information
Authority of Japan, 62, 11–20, 2014.
Pail, R., Goiginger, H., Schuh, W.-D., Höck, E., Brockmann, J. M.,
Fecher, T., Gruber, T., Mayer-Gürr, T., Kusche, J., Jäggi, A., and
Rieser, D.: Combined satellite gravity field model GOCO01S derived from GOCE
and GRACE, Geophys. Res. Lett., 37, L20314,
https://doi.org/10.1029/2010GL044906, 2010.
Pail, R., Bruinsma, S., Migliaccio, F., Förste, C., Goiginger, H.,
Schuh, W.-D., Höck, E., Reguzzoni, M., Brockmann, J. M., Abrikosov, O.,
Veicherts, M., Fecher, T., Mayrhofer, R., Krasbutter, I., Sansò, F., and
Tscherning, C. C.: First GOCE gravity field models derived by three
different approaches, J. Geodesy, 85, 819–843,
https://doi.org/10.1007/s00190-011-0467-x, 2011.
Pail, R., Fecher, T., Barnes, D., Factor, J., Holmes, S., Gruber, T., and
Zingerle, P.: The experimental gravity field model XGM2016, GFZ Data
Services, https://doi.org/10.5880/icgem.2017.003, 2017.
Pavlis, N. K., Holmes, S. A., Kenyon, S. C., and Factor, J. K.: The
development and evaluation of the Earth Gravitational Model 2008 (EGM2008),
J. Geophys. Res., 117, B04406,
https://doi.org/10.1029/2011JB008916, 2012.
Rummel, R. and Teunissen, P.: Height datum definition, height datum
connection and the role of the geodetic boundary value problem, B.
Geod., 62, 477–498, https://doi.org/10.1007/BF02520239, 1988.
Sansò, F. and Usai, S.: Height datum and local geodetic datum in the
theory of geodetic boundary value problems, Allgemeine
Vermessungsnachrichten, Wichmann, 8–9, 343– 385, 1995.
Sansò, F. and Sideris, M. G.: Geoid Determination: Theory and Methods,
Springer Nature, Switzerland, https://doi.org/10.1007/978-3-540-74700-0,
2013.
Sansò, F., Reguzzoni, M., and Barzaghi, R.: Geodetic Heights, Springer
Nature, Switzerland, https://doi.org/10.1007/978-3-030-10454-2, 2019.
Wilkinson, M. D., Dumontier, M., Aalbersberg, Ij. J., Appleton, G., Axton, M., Baak, A., Blomberg, N., Boiten, J. W., da Silva Santos, L. B., Bourne, P. E., Bouwman, J., Brookes, A. J., Clark, T., Crosas, M., Dillo, I., Dumon, O., Edmunds, S., Evelo, C. T., Finkers, R., Gonzalez-Beltran, A., Gray, A. J. G., Growth, P., Goble, C., Grethe, J. S., Heringa, J., Hoen, P. A. C., Hooft, R., Kuhn, T., Kok, R., Kok, J., Lusher, S. J., Martone, M. E., Mons, A., Packer, A. L., Persson, B., Rocca-Serra, P., Roos, M., van Schaik, R., Sansone, S. A., Schultes, E., Sengstag, T., Slater, T., Strawn, G., Swertz, M. A., Thompson, M., van der Lei, J., van Mulligen, E., Velterop, J., Waagmeester, A., Wittenburg, P., Wolstencroft, K., Zhao, J., and Mons, B.: The FAIR Guiding Principles for
scientific data management and stewardship, Sci. Data, 3, 160018 1, https://doi.org/10.1038/sdata.2016.18, 2016.
Short summary
The International Service for the Geoid provides free access to a repository of geoid models. The most important ones are freely available to perform analyses on the evolution of the geoid computation research field. Furthermore, the ISG performs research taking advantage of its archive and organizes specific training courses on geoid determination. This paper aims at describing the service and showing the added value of the archive of geoid models for the scientific community and technicians.
The International Service for the Geoid provides free access to a repository of geoid models....
Altmetrics
Final-revised paper
Preprint