Articles | Volume 13, issue 4
https://doi.org/10.5194/essd-13-1613-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/essd-13-1613-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
A multiproxy database of western North American Holocene paleoclimate records
School of Earth and Sustainability, Northern Arizona University, P.O. Box
4099 Flagstaff, AZ 86011, USA
Darrell S. Kaufman
School of Earth and Sustainability, Northern Arizona University, P.O. Box
4099 Flagstaff, AZ 86011, USA
Nicholas P. McKay
School of Earth and Sustainability, Northern Arizona University, P.O. Box
4099 Flagstaff, AZ 86011, USA
Michael P. Erb
School of Earth and Sustainability, Northern Arizona University, P.O. Box
4099 Flagstaff, AZ 86011, USA
Stéphanie H. Arcusa
School of Earth and Sustainability, Northern Arizona University, P.O. Box
4099 Flagstaff, AZ 86011, USA
Kendrick J. Brown
Canadian Forest Service, Natural Resources Canada, Victoria, BC V8Z
1M5, Canada
Department of Earth,
Environmental and Geographic Sciences, University of British Columbia, Okanagan, BC V1V 1V7, Canada
Matthew E. Kirby
Department of Geological Sciences, California State University, Fullerton, 800 N. State
College Blvd., Fullerton, CA 98324, USA
Jeremiah P. Marsicek
Department of Geoscience, University of Wisconsin-Madison, 1215 W.
Dayton St. Madison, WI 53706, USA
R. Scott Anderson
School of Earth and Sustainability, Northern Arizona University, P.O. Box
4099 Flagstaff, AZ 86011, USA
Gonzalo Jiménez-Moreno
Departamento de Estratigrafía y
Paleontología, Universidad de Granada, Avda. Fuentenueva S/N, Granada 18002, Spain
Jessica R. Rodysill
Florence Bascom Geoscience Center, United States Geological Survey,
12201 Sunrise Valley Dr. MS926A, Reston, VA 20192, USA
Matthew S. Lachniet
Department of Geoscience, University of Nevada, Las Vegas, 4505 S.
Maryland Parkway, Las Vegas, NV 89154, USA
Sherilyn C. Fritz
Department of Earth and Atmospheric
Sciences, University of Nebraska-Lincoln, Lincoln, NE 68540, USA
Joseph R. Bennett
Department of Biology, Carleton University, 1125 Col By Drive,
Ottawa, ON K1S 5B6, Canada
Michelle F. Goman
Department of Geography, Environment, and
Planning, Sonoma State University, 1801 E. Cotati Ave, Rohnert Park, CA 94928, USA
Sarah E. Metcalfe
School of Geography, University of Nottingham, University Park,
Nottingham, Nottinghamshire, NG7 2RD, UK
Jennifer M. Galloway
Geological Survey of Canada (Commission géologique du Canada), 3303 33rd St. NW, Calgary, AB T2L 2A7, Canada
Gerrit Schoups
Water Resources Management, Delft University of Technology, P.O. Box
5048, Delft, 2600 GA, the Netherlands
David B. Wahl
Geology, Minerals, Energy, and Geophysics Science Center, United States Geological Survey, 345
Middlefield Rd., Menlo Park, CA 94025, USA
Jesse L. Morris
Department of Geography, University of Utah, 260 Central Campus Dr
#4625, Salt Lake City, UT 84112, USA
Francisca Staines-Urías
Department of Marine Geology, Geological Survey of Denmark and Greenland (GEUS), Oester Voldgade 10, Copenhagen K, 1350, Denmark
Andria Dawson
Department of General Education, Mount Royal University, 4825 Mt
Royal Gate SW, Calgary, AB T3E6K6, Canada
Bryan N. Shuman
Department of Geology and Geophysics, University of Wyoming, 1000 E. University
Ave., Laramie, WY 82071, USA
Daniel G. Gavin
Department of Geography, University of Oregon, 1251 University of
Oregon, Eugene, OR 97403, USA
Jeffrey S. Munroe
Geology Department, Middlebury College, 276 Bicentennial Way,
Middlebury, VT 05753, USA
Brian F. Cumming
Department of Biology, Queen's University, 116 Barrie St., Kingston,
ON K7L3J9, Canada
Related authors
Chris M. Brierley, Anni Zhao, Sandy P. Harrison, Pascale Braconnot, Charles J. R. Williams, David J. R. Thornalley, Xiaoxu Shi, Jean-Yves Peterschmitt, Rumi Ohgaito, Darrell S. Kaufman, Masa Kageyama, Julia C. Hargreaves, Michael P. Erb, Julien Emile-Geay, Roberta D'Agostino, Deepak Chandan, Matthieu Carré, Partrick J. Bartlein, Weipeng Zheng, Zhongshi Zhang, Qiong Zhang, Hu Yang, Evgeny M. Volodin, Robert A. Tomas, Cody Routson, W. Richard Peltier, Bette Otto-Bliesner, Polina A. Morozova, Nicholas P. McKay, Gerrit Lohmann, Allegra N. Legrande, Chuncheng Guo, Jian Cao, Esther Brady, James D. Annan, and Ayako Abe-Ouchi
Clim. Past, 16, 1847–1872, https://doi.org/10.5194/cp-16-1847-2020, https://doi.org/10.5194/cp-16-1847-2020, 2020
Short summary
Short summary
This paper provides an initial exploration and comparison to climate reconstructions of the new climate model simulations of the mid-Holocene (6000 years ago). These use state-of-the-art models developed for CMIP6 and apply the same experimental set-up. The models capture several key aspects of the climate, but some persistent issues remain.
Magali Ponds, Sarah Hanus, Harry Zekollari, Marie-Claire ten Veldhuis, Gerrit Schoups, Roland Kaitna, and Markus Hrachowitz
Hydrol. Earth Syst. Sci., 29, 3545–3568, https://doi.org/10.5194/hess-29-3545-2025, https://doi.org/10.5194/hess-29-3545-2025, 2025
Short summary
Short summary
This research examines how future climate changes impact root zone storage, a key hydrological model parameter. Root zone storage – the soil water accessible to plants – adapts to climate but is often kept constant in models. We estimated climate-adapted storage in six Austrian Alps catchments. While storage increased, streamflow projections showed minimal change, which suggests that dynamic root zone representation is less critical in humid regions but warrants further study in arid areas.
Roya Mourad, Gerrit Schoups, Vinnarasi Rajendran, and Wim Bastiaanssen
EGUsphere, https://doi.org/10.5194/egusphere-2025-3047, https://doi.org/10.5194/egusphere-2025-3047, 2025
This preprint is open for discussion and under review for Hydrology and Earth System Sciences (HESS).
Short summary
Short summary
Water balance data are affected by various errors (bias and noise). To reduce these errors, this study presents a water balance data fusion approach that combines multi-scale data (from satellites and in-situ sensors) for each water balance variable and jointly calibrates them, resulting in consistent, bias-corrected and noise-filtered, water balance estimates, along with uncertainty bands. These estimates are useful for constraining process-based models and informing water management decisions.
Oriol Ambrogio Gali, Sarah Metcalfe, Elizabeth A. C. Rushton, Betsabe de la Barreda-Bautista, Georgina H. Endfield, Sofia Márdero, Franziska Schrodt, and Alec McLellan
EGUsphere, https://doi.org/10.5194/egusphere-2025-2708, https://doi.org/10.5194/egusphere-2025-2708, 2025
This preprint is open for discussion and under review for Climate of the Past (CP).
Short summary
Short summary
To address the lack of long-term climate records in Belize, this study reconstructs two centuries of drought history (1771–1981) using historical documents and early instrumental records. Results show that droughts were longer and more severe in the north, while the south was less affected. These findings provide vital context for understanding current and future drought risks in Belize, emphasising the importance of combining documentary and instrumental evidence in climate research.
Alice R. Paine, Joost Frieling, Timothy M. Shanahan, Tamsin A. Mather, Nicholas McKay, Stuart A. Robinson, David M. Pyle, Isabel M. Fendley, Ruth Kiely, and William D. Gosling
Clim. Past, 21, 817–839, https://doi.org/10.5194/cp-21-817-2025, https://doi.org/10.5194/cp-21-817-2025, 2025
Short summary
Short summary
Few tropical mercury (Hg) records extend beyond ~ 12 ka, meaning our current understanding of Hg behaviour may not fully account for the impact of long-term hydroclimate changes on the Hg cycle in these environments. Here, we present an ~ 96 kyr Hg record from Lake Bosumtwi, Ghana. A coupled response is observed between Hg flux and shifts in sediment composition reflective of changes in lake level, suggesting that hydroclimate may be a key driver of tropical Hg cycling over millennial timescales.
Amy Cromartie, Cindy De Jonge, Guillemette Ménot, Mary Robles, Lucas Dugerdil, Odile Peyron, Marta Rodrigo-Gámiz, Jon Camuera, Maria Jose Ramos-Roman, Gonzalo Jiménez-Moreno, Claude Colombié, Lilit Sahakyan, and Sébastien Joannin
EGUsphere, https://doi.org/10.5194/egusphere-2025-526, https://doi.org/10.5194/egusphere-2025-526, 2025
Short summary
Short summary
BrGDGT are a molecular biomarker utilized for paleotemperature reconstructions. One issue, however, with utilizing brGDGTs is that the distribution differs in relation to sediment environments (i.e., peat, lake, soil) which change overtime. We utilize the probability estimate outputs from five machine learning algorithms, and a new modern brGDGTs database to track change and apply these models’ to two downcore records utilizing pollen and non-pollen polymorphs to confirm the model’s accuracy.
Ann E. Morey, Mark D. Shapley, Daniel G. Gavin, Alan R. Nelson, and Chris Goldfinger
Nat. Hazards Earth Syst. Sci., 24, 4523–4561, https://doi.org/10.5194/nhess-24-4523-2024, https://doi.org/10.5194/nhess-24-4523-2024, 2024
Short summary
Short summary
Disturbance events from historical sediments from a small lake in Oregon were evaluated to determine if Cascadia megathrust earthquakes are uniquely identifiable. Geochemical provenance data identify two likely Cascadia earthquakes, one from 1700 CE and the other from 1873 CE. A crustal earthquake deposit and flood deposits were also uniquely identified, suggesting that small Cascadia lakes are good recorders of megathrust earthquakes and other disturbances.
Christopher L. Hancock, Michael P. Erb, Nicholas P. McKay, Sylvia G. Dee, and Ruza F. Ivanovic
Clim. Past, 20, 2663–2684, https://doi.org/10.5194/cp-20-2663-2024, https://doi.org/10.5194/cp-20-2663-2024, 2024
Short summary
Short summary
We reconstruct global hydroclimate anomalies for the past 21 000 years using a data assimilation methodology blending observations recorded in lake sediments with the climate dynamics simulated by climate models. The reconstruction resolves data–model disagreement in east Africa and North America, and we find that changing global temperatures and associated circulation patterns, as well as orbital forcing, are the dominant controls on global precipitation over this interval.
Darrell Kaufman and Valérie Masson-Delmotte
Clim. Past, 20, 2587–2594, https://doi.org/10.5194/cp-20-2587-2024, https://doi.org/10.5194/cp-20-2587-2024, 2024
Short summary
Short summary
Rather than reverting to a dedicated paleoclimate chapter, knowledge about pre-industrial climate should be further integrated with other lines of evidence throughout the next assessment reports by the Intergovernmental Panel on Climate Change.
Siyuan Wang, Markus Hrachowitz, and Gerrit Schoups
Hydrol. Earth Syst. Sci., 28, 4011–4033, https://doi.org/10.5194/hess-28-4011-2024, https://doi.org/10.5194/hess-28-4011-2024, 2024
Short summary
Short summary
Root zone storage capacity (Sumax) changes significantly over multiple decades, reflecting vegetation adaptation to climatic variability. However, this temporal evolution of Sumax cannot explain long-term fluctuations in the partitioning of water fluxes as expressed by deviations ΔIE from the parametric Budyko curve over time with different climatic conditions, and it does not have any significant effects on shorter-term hydrological response characteristics of the upper Neckar catchment.
Laura J. Larocca, James M. Lea, Michael P. Erb, Nicholas P. McKay, Megan Phillips, Kara A. Lamantia, and Darrell S. Kaufman
The Cryosphere, 18, 3591–3611, https://doi.org/10.5194/tc-18-3591-2024, https://doi.org/10.5194/tc-18-3591-2024, 2024
Short summary
Short summary
Here we present summer snowline altitude (SLA) time series for 269 Arctic glaciers. Between 1984 and 2022, SLAs rose ∼ 150 m, equating to a ∼ 127 m shift per 1 °C of summer warming. SLA is most strongly correlated with annual temperature variables, highlighting their dual effect on ablation and accumulation processes. We show that SLAs are rising fastest on low-elevation glaciers and that > 50 % of the studied glaciers could have SLAs that exceed the maximum ice elevation by 2100.
Bryan N. Shuman
Clim. Past, 20, 1703–1720, https://doi.org/10.5194/cp-20-1703-2024, https://doi.org/10.5194/cp-20-1703-2024, 2024
Short summary
Short summary
A gap in understanding climate variation exists at centennial to millennial scales, particularly for warm climates. Such variations challenge detection. They exceed direct observation but are geologically short. Centennial to millennial variations that may have influenced North America were examined over the past 7 kyr. Significant patterns were detected from fossil pollen and sedimentary lake level changes, indicating ecological, hydrological, and likely human significance.
Jeffrey S. Munroe, Abigail A. Santis, Elsa J. Soderstrom, Michael J. Tappa, and Ann M. Bauer
SOIL, 10, 167–187, https://doi.org/10.5194/soil-10-167-2024, https://doi.org/10.5194/soil-10-167-2024, 2024
Short summary
Short summary
This study investigated how the deposition of mineral dust delivered by the wind influences soil development in mountain environments. At six mountain locations in the southwestern United States, modern dust was collected along with samples of soil and local bedrock. Analysis indicates that at all sites the properties of dust and soil are very similar and are very different from underlying rock. This result indicates that soils are predominantly composed of dust delivered by the wind over time.
Andria Dawson, John W. Williams, Marie-José Gaillard, Simon J. Goring, Behnaz Pirzamanbein, Johan Lindstrom, R. Scott Anderson, Andrea Brunelle, David Foster, Konrad Gajewski, Dan G. Gavin, Terri Lacourse, Thomas A. Minckley, Wyatt Oswald, Bryan Shuman, and Cathy Whitlock
Clim. Past Discuss., https://doi.org/10.5194/cp-2024-6, https://doi.org/10.5194/cp-2024-6, 2024
Revised manuscript accepted for CP
Short summary
Short summary
Holocene vegetation-atmosphere interactions provide insight into intensifying land use impacts and the Holocene Conundrum- a mismatch between data- and model- inferred temperature. Using pollen records and statistical modeling, we reconstruct Holocene land cover for North America. We determine patterns and magnitudes of land cover changes across scales. We attribute land cover changes to ecological, climatic, and human drivers. These reconstructions provide benchmarks for Earth System Models.
Jonathan Obrist-Farner, Andreas Eckert, Peter M. J. Douglas, Liseth Perez, Alex Correa-Metrio, Bronwen L. Konecky, Thorsten Bauersachs, Susan Zimmerman, Stephanie Scheidt, Mark Brenner, Steffen Kutterolf, Jeremy Maurer, Omar Flores, Caroline M. Burberry, Anders Noren, Amy Myrbo, Matthew Lachniet, Nigel Wattrus, Derek Gibson, and the LIBRE scientific team
Sci. Dril., 32, 85–100, https://doi.org/10.5194/sd-32-85-2023, https://doi.org/10.5194/sd-32-85-2023, 2023
Short summary
Short summary
In August 2022, 65 scientists from 13 countries gathered in Antigua, Guatemala, for a workshop, co-funded by the US National Science Foundation and the International Continental Scientific Drilling Program. This workshop considered the potential of establishing a continental scientific drilling program in the Lake Izabal Basin, eastern Guatemala, with the goals of establishing a borehole observatory and investigating one of the longest continental records from the northern Neotropics.
Jessica A. Eisma, Gerrit Schoups, Jeffrey C. Davids, and Nick van de Giesen
Hydrol. Earth Syst. Sci., 27, 3565–3579, https://doi.org/10.5194/hess-27-3565-2023, https://doi.org/10.5194/hess-27-3565-2023, 2023
Short summary
Short summary
Citizen scientists often submit high-quality data, but a robust method for assessing data quality is needed. This study develops a semi-automated program that characterizes the mistakes made by citizen scientists by grouping them into communities of citizen scientists with similar mistake tendencies and flags potentially erroneous data for further review. This work may help citizen science programs assess the quality of their data and can inform training practices.
Siyuan Wang, Markus Hrachowitz, Gerrit Schoups, and Christine Stumpp
Hydrol. Earth Syst. Sci., 27, 3083–3114, https://doi.org/10.5194/hess-27-3083-2023, https://doi.org/10.5194/hess-27-3083-2023, 2023
Short summary
Short summary
This study shows that previously reported underestimations of water ages are most likely not due to the use of seasonally variable tracers. Rather, these underestimations can be largely attributed to the choices of model approaches which rely on assumptions not frequently met in catchment hydrology. We therefore strongly advocate avoiding the use of this model type in combination with seasonally variable tracers and instead adopting StorAge Selection (SAS)-based or comparable model formulations.
Gabriel West, Darrell S. Kaufman, Martin Jakobsson, and Matt O'Regan
Geochronology, 5, 285–299, https://doi.org/10.5194/gchron-5-285-2023, https://doi.org/10.5194/gchron-5-285-2023, 2023
Short summary
Short summary
We report aspartic and glutamic acid racemization analyses on Neogloboquadrina pachyderma and Cibicidoides wuellerstorfi from the Arctic Ocean (AO). The rates of racemization in the species are compared. Calibrating the rate of racemization in C. wuellerstorfi for the past 400 ka allows the estimation of sample ages from the central AO. Estimated ages are older than existing age assignments (as previously observed for N. pachyderma), confirming that differences are not due to taxonomic effects.
Rachel M. Walter, Hussein R. Sayani, Thomas Felis, Kim M. Cobb, Nerilie J. Abram, Ariella K. Arzey, Alyssa R. Atwood, Logan D. Brenner, Émilie P. Dassié, Kristine L. DeLong, Bethany Ellis, Julien Emile-Geay, Matthew J. Fischer, Nathalie F. Goodkin, Jessica A. Hargreaves, K. Halimeda Kilbourne, Hedwig Krawczyk, Nicholas P. McKay, Andrea L. Moore, Sujata A. Murty, Maria Rosabelle Ong, Riovie D. Ramos, Emma V. Reed, Dhrubajyoti Samanta, Sara C. Sanchez, Jens Zinke, and the PAGES CoralHydro2k Project Members
Earth Syst. Sci. Data, 15, 2081–2116, https://doi.org/10.5194/essd-15-2081-2023, https://doi.org/10.5194/essd-15-2081-2023, 2023
Short summary
Short summary
Accurately quantifying how the global hydrological cycle will change in the future remains challenging due to the limited availability of historical climate data from the tropics. Here we present the CoralHydro2k database – a new compilation of peer-reviewed coral-based climate records from the last 2000 years. This paper details the records included in the database and where the database can be accessed and demonstrates how the database can investigate past tropical climate variability.
Jan Petřík, Katarína Adameková, Sándor Kele, Rastislav Milovský, Libor Petr, Peter Tóth, and Nicholas McKay
EGUsphere, https://doi.org/10.5194/egusphere-2023-118, https://doi.org/10.5194/egusphere-2023-118, 2023
Preprint archived
Short summary
Short summary
Our analysis of the Santovka sedimentary record in Slovakia uncovered two major climate shifts at 8.2 and 7.4 ka BP. These shifts likely impacted temperature and humidity, and/or air mass circulation, and were caused by the drying of the lake at 7.4 ka BP. The sedimentary infill provides important information on the region's past climate, and future research must focus on its impact on the last hunter gatherers and first farmers in the context of spreading agriculture in Europe.
Jeffrey S. Munroe and Alexander L. Handwerger
Hydrol. Earth Syst. Sci., 27, 543–557, https://doi.org/10.5194/hess-27-543-2023, https://doi.org/10.5194/hess-27-543-2023, 2023
Short summary
Short summary
Rock glaciers are mixtures of ice and rock debris that are common landforms in high-mountain environments. We evaluated the role of rock glaciers as a component of mountain hydrology by collecting water samples during the summer and fall of 2021. Our results indicate that the water draining from rock glaciers late in the melt season is likely derived from old buried ice; they further demonstrate that this water collectively makes up about a quarter of streamflow during the month of September.
Michael P. Erb, Nicholas P. McKay, Nathan Steiger, Sylvia Dee, Chris Hancock, Ruza F. Ivanovic, Lauren J. Gregoire, and Paul Valdes
Clim. Past, 18, 2599–2629, https://doi.org/10.5194/cp-18-2599-2022, https://doi.org/10.5194/cp-18-2599-2022, 2022
Short summary
Short summary
To look at climate over the past 12 000 years, we reconstruct spatial temperature using natural climate archives and information from model simulations. Our results show mild global mean warmth around 6000 years ago, which differs somewhat from past reconstructions. Undiagnosed seasonal biases in the data could explain some of the observed temperature change, but this still would not explain the large difference between many reconstructions and climate models over this period.
Stephanie H. Arcusa, Nicholas P. McKay, Charlotte Wiman, Sela Patterson, Samuel E. Munoz, and Marco A. Aquino-López
Geochronology, 4, 409–433, https://doi.org/10.5194/gchron-4-409-2022, https://doi.org/10.5194/gchron-4-409-2022, 2022
Short summary
Short summary
Annually banded lake sediment can track environmental change with high resolution in locations where alternatives are not available. Yet, information about chronology is often affected by poor appearance. Traditional methods struggle with these records. To overcome this obstacle we demonstrate a Bayesian approach that combines information from radiocarbon dating and laminations on cores from Columbine Lake, Colorado, expanding possibilities for producing high-resolution records globally.
Yicheng Shen, Luke Sweeney, Mengmeng Liu, Jose Antonio Lopez Saez, Sebastián Pérez-Díaz, Reyes Luelmo-Lautenschlaeger, Graciela Gil-Romera, Dana Hoefer, Gonzalo Jiménez-Moreno, Heike Schneider, I. Colin Prentice, and Sandy P. Harrison
Clim. Past, 18, 1189–1201, https://doi.org/10.5194/cp-18-1189-2022, https://doi.org/10.5194/cp-18-1189-2022, 2022
Short summary
Short summary
We present a method to reconstruct burnt area using a relationship between pollen and charcoal abundances and the calibration of charcoal abundance using modern observations of burnt area. We use this method to reconstruct changes in burnt area over the past 12 000 years from sites in Iberia. We show that regional changes in burnt area reflect known changes in climate, with a high burnt area during warming intervals and low burnt area when the climate was cooler and/or wetter than today.
David T. Liefert and Bryan N. Shuman
Clim. Past, 18, 1109–1124, https://doi.org/10.5194/cp-18-1109-2022, https://doi.org/10.5194/cp-18-1109-2022, 2022
Short summary
Short summary
A large drought potentially occurred roughly 4200 years ago, but its impacts and significance are unclear. We find new evidence in carbonate oxygen isotopes from a mountain lake in southeastern Wyoming, southern Rocky Mountains, of an abrupt reduction in effective moisture (precipitation–evaporation) or snowpack from approximately 4200–4000 years ago. The drought's prominence among a growing number of sites in the North American interior suggests it was a regionally substantial climate event.
Darrell S. Kaufman and Nicholas P. McKay
Clim. Past, 18, 911–917, https://doi.org/10.5194/cp-18-911-2022, https://doi.org/10.5194/cp-18-911-2022, 2022
Short summary
Short summary
Global mean surface temperatures are rising to levels unprecedented in over 100 000 years. This conclusion takes into account both recent global warming and likely future warming, which thereby enables a direct comparison with paleotemperature reconstructions on multi-century timescales.
Lauren J. Davies, Britta J. L. Jensen, and Darrell S. Kaufman
Geochronology, 4, 121–141, https://doi.org/10.5194/gchron-4-121-2022, https://doi.org/10.5194/gchron-4-121-2022, 2022
Short summary
Short summary
Subarctic and Arctic lake sediments provide key data to understand natural climate variability and future climate change. However, they can be difficult to date accurately and of limited use without a robust chronology. We use volcanic ash deposits from the last ~4000 BP to identify anomalously old radiocarbon ages at Cascade Lake, Alaska. A provisional ~15 000-year Bayesian age model is produced for the lake, and a new location for ash from five Late Holocene eruptions is reported.
Sandy P. Harrison, Roberto Villegas-Diaz, Esmeralda Cruz-Silva, Daniel Gallagher, David Kesner, Paul Lincoln, Yicheng Shen, Luke Sweeney, Daniele Colombaroli, Adam Ali, Chéïma Barhoumi, Yves Bergeron, Tatiana Blyakharchuk, Přemysl Bobek, Richard Bradshaw, Jennifer L. Clear, Sambor Czerwiński, Anne-Laure Daniau, John Dodson, Kevin J. Edwards, Mary E. Edwards, Angelica Feurdean, David Foster, Konrad Gajewski, Mariusz Gałka, Michelle Garneau, Thomas Giesecke, Graciela Gil Romera, Martin P. Girardin, Dana Hoefer, Kangyou Huang, Jun Inoue, Eva Jamrichová, Nauris Jasiunas, Wenying Jiang, Gonzalo Jiménez-Moreno, Monika Karpińska-Kołaczek, Piotr Kołaczek, Niina Kuosmanen, Mariusz Lamentowicz, Martin Lavoie, Fang Li, Jianyong Li, Olga Lisitsyna, José Antonio López-Sáez, Reyes Luelmo-Lautenschlaeger, Gabriel Magnan, Eniko Katalin Magyari, Alekss Maksims, Katarzyna Marcisz, Elena Marinova, Jenn Marlon, Scott Mensing, Joanna Miroslaw-Grabowska, Wyatt Oswald, Sebastián Pérez-Díaz, Ramón Pérez-Obiol, Sanna Piilo, Anneli Poska, Xiaoguang Qin, Cécile C. Remy, Pierre J. H. Richard, Sakari Salonen, Naoko Sasaki, Hieke Schneider, William Shotyk, Migle Stancikaite, Dace Šteinberga, Normunds Stivrins, Hikaru Takahara, Zhihai Tan, Liva Trasune, Charles E. Umbanhowar, Minna Väliranta, Jüri Vassiljev, Xiayun Xiao, Qinghai Xu, Xin Xu, Edyta Zawisza, Yan Zhao, Zheng Zhou, and Jordan Paillard
Earth Syst. Sci. Data, 14, 1109–1124, https://doi.org/10.5194/essd-14-1109-2022, https://doi.org/10.5194/essd-14-1109-2022, 2022
Short summary
Short summary
We provide a new global data set of charcoal preserved in sediments that can be used to examine how fire regimes have changed during past millennia and to investigate what caused these changes. The individual records have been standardised, and new age models have been constructed to allow better comparison across sites. The data set contains 1681 records from 1477 sites worldwide.
Punpim Puttaraksa Mapiam, Monton Methaprayun, Thom Bogaard, Gerrit Schoups, and Marie-Claire Ten Veldhuis
Hydrol. Earth Syst. Sci., 26, 775–794, https://doi.org/10.5194/hess-26-775-2022, https://doi.org/10.5194/hess-26-775-2022, 2022
Short summary
Short summary
The density of rain gauge networks plays an important role in radar rainfall bias correction. In this work, we aimed to assess the extent to which daily rainfall observations from a dense network of citizen scientists improve the accuracy of hourly radar rainfall estimates in the Tubma Basin, Thailand. Results show that citizen rain gauges significantly enhance the performance of radar rainfall bias adjustment up to a range of about 40 km from the center of the citizen rain gauge network.
Maxime P. Boreux, Scott F. Lamoureux, and Brian F. Cumming
Hydrol. Earth Syst. Sci., 25, 6309–6332, https://doi.org/10.5194/hess-25-6309-2021, https://doi.org/10.5194/hess-25-6309-2021, 2021
Short summary
Short summary
The investigation of groundwater–lake-water interactions in highly permeable boreal terrain using several indicators showed that lowland lakes are embedded into the groundwater system and are thus relatively resilient to short-term hydroclimatic change, while upland lakes rely more on precipitation as their main water input, making them more sensitive to evaporative drawdown. This suggests that landscape position controls the vulnerability of lake-water levels to hydroclimatic change.
George Brencher, Alexander L. Handwerger, and Jeffrey S. Munroe
The Cryosphere, 15, 4823–4844, https://doi.org/10.5194/tc-15-4823-2021, https://doi.org/10.5194/tc-15-4823-2021, 2021
Short summary
Short summary
We use satellite InSAR to inventory and monitor rock glaciers, frozen bodies of ice and rock debris that are an important water resource in the Uinta Mountains, Utah, USA. Our inventory contains 205 rock glaciers, which occur within a narrow elevation band and deform at 1.94 cm yr-1 on average. Uinta rock glacier movement changes seasonally and appears to be driven by spring snowmelt. The role of rock glaciers as a perennial water resource is threatened by ice loss due to climate change.
Sarah Hanus, Markus Hrachowitz, Harry Zekollari, Gerrit Schoups, Miren Vizcaino, and Roland Kaitna
Hydrol. Earth Syst. Sci., 25, 3429–3453, https://doi.org/10.5194/hess-25-3429-2021, https://doi.org/10.5194/hess-25-3429-2021, 2021
Short summary
Short summary
This study investigates the effects of climate change on runoff patterns in six Alpine catchments in Austria at the end of the 21st century. Our results indicate a substantial shift to earlier occurrences in annual maximum and minimum flows in high-elevation catchments. Magnitudes of annual extremes are projected to increase under a moderate emission scenario in all catchments. Changes are generally more pronounced for high-elevation catchments.
Douglas P. Steen, Joseph S. Stoner, Jason P. Briner, and Darrell S. Kaufman
Geochronology Discuss., https://doi.org/10.5194/gchron-2021-19, https://doi.org/10.5194/gchron-2021-19, 2021
Publication in GChron not foreseen
Short summary
Short summary
Paleomagnetic data from Cascade Lake (Brooks Range, Alaska) extend the radiometric-based age model of the sedimentary sequence extending back 21 kyr. Correlated ages based on prominent features in paleomagnetic secular variations (PSV) diverge from the radiometric ages in the upper 1.6 m, by up to about 2000 years at around 4 ka. Four late Holocene cryptotephra in this section support the PSV chronology and suggest the influence of hard water or aged organic material.
Petra Zahajská, Carolina Olid, Johanna Stadmark, Sherilyn C. Fritz, Sophie Opfergelt, and Daniel J. Conley
Biogeosciences, 18, 2325–2345, https://doi.org/10.5194/bg-18-2325-2021, https://doi.org/10.5194/bg-18-2325-2021, 2021
Short summary
Short summary
The drivers of high accumulation of single-cell siliceous algae (diatoms) in a high-latitude lake have not been fully characterized before. We studied silicon cycling of the lake through water, radon, silicon, and stable silicon isotope balances. Results showed that groundwater brings 3 times more water and dissolved silica than the stream inlet. We demonstrate that groundwater discharge and low sediment deposition have driven the high diatom accumulation in the studied lake in the past century.
Nicholas P. McKay, Julien Emile-Geay, and Deborah Khider
Geochronology, 3, 149–169, https://doi.org/10.5194/gchron-3-149-2021, https://doi.org/10.5194/gchron-3-149-2021, 2021
Short summary
Short summary
This paper describes geoChronR, an R package that streamlines the process of quantifying age uncertainties, propagating uncertainties through several common analyses, and visualizing the results. In addition to describing the structure and underlying theory of the package, we present five real-world use cases that illustrate common workflows in geoChronR. geoChronR is built on the Linked PaleoData framework, is open and extensible, and we welcome feedback and contributions from the community.
Jeffrey S. Munroe
The Cryosphere, 15, 863–881, https://doi.org/10.5194/tc-15-863-2021, https://doi.org/10.5194/tc-15-863-2021, 2021
Short summary
Short summary
This study investigated a cave in Utah (USA) that contains a deposit of perennial ice. Such ice caves are important sources of information about past climate and are currently threatened by rising temperatures. The origin (precipitation), thickness (3 m), and age (several centuries) of the ice were constrained by a variety of methods. Liquid water recently entered the cave for the first time in many years, suggesting a destabilization of the cave environment.
Chris S. M. Turney, Richard T. Jones, Nicholas P. McKay, Erik van Sebille, Zoë A. Thomas, Claus-Dieter Hillenbrand, and Christopher J. Fogwill
Earth Syst. Sci. Data, 12, 3341–3356, https://doi.org/10.5194/essd-12-3341-2020, https://doi.org/10.5194/essd-12-3341-2020, 2020
Short summary
Short summary
The Last Interglacial (129–116 ka) experienced global temperatures and sea levels higher than today. The direct contribution of warmer conditions to global sea level (thermosteric) are uncertain. We report a global network of sea surface temperatures. We find mean global annual temperature anomalies of 0.2 ± 0.1˚C and an early maximum peak of 0.9 ± 0.1˚C. Our reconstruction suggests warmer waters contributed on average 0.08 ± 0.1 m and a peak contribution of 0.39 ± 0.1 m to global sea level.
Basil A. S. Davis, Manuel Chevalier, Philipp Sommer, Vachel A. Carter, Walter Finsinger, Achille Mauri, Leanne N. Phelps, Marco Zanon, Roman Abegglen, Christine M. Åkesson, Francisca Alba-Sánchez, R. Scott Anderson, Tatiana G. Antipina, Juliana R. Atanassova, Ruth Beer, Nina I. Belyanina, Tatiana A. Blyakharchuk, Olga K. Borisova, Elissaveta Bozilova, Galina Bukreeva, M. Jane Bunting, Eleonora Clò, Daniele Colombaroli, Nathalie Combourieu-Nebout, Stéphanie Desprat, Federico Di Rita, Morteza Djamali, Kevin J. Edwards, Patricia L. Fall, Angelica Feurdean, William Fletcher, Assunta Florenzano, Giulia Furlanetto, Emna Gaceur, Arsenii T. Galimov, Mariusz Gałka, Iria García-Moreiras, Thomas Giesecke, Roxana Grindean, Maria A. Guido, Irina G. Gvozdeva, Ulrike Herzschuh, Kari L. Hjelle, Sergey Ivanov, Susanne Jahns, Vlasta Jankovska, Gonzalo Jiménez-Moreno, Monika Karpińska-Kołaczek, Ikuko Kitaba, Piotr Kołaczek, Elena G. Lapteva, Małgorzata Latałowa, Vincent Lebreton, Suzanne Leroy, Michelle Leydet, Darya A. Lopatina, José Antonio López-Sáez, André F. Lotter, Donatella Magri, Elena Marinova, Isabelle Matthias, Anastasia Mavridou, Anna Maria Mercuri, Jose Manuel Mesa-Fernández, Yuri A. Mikishin, Krystyna Milecka, Carlo Montanari, César Morales-Molino, Almut Mrotzek, Castor Muñoz Sobrino, Olga D. Naidina, Takeshi Nakagawa, Anne Birgitte Nielsen, Elena Y. Novenko, Sampson Panajiotidis, Nata K. Panova, Maria Papadopoulou, Heather S. Pardoe, Anna Pędziszewska, Tatiana I. Petrenko, María J. Ramos-Román, Cesare Ravazzi, Manfred Rösch, Natalia Ryabogina, Silvia Sabariego Ruiz, J. Sakari Salonen, Tatyana V. Sapelko, James E. Schofield, Heikki Seppä, Lyudmila Shumilovskikh, Normunds Stivrins, Philipp Stojakowits, Helena Svobodova Svitavska, Joanna Święta-Musznicka, Ioan Tantau, Willy Tinner, Kazimierz Tobolski, Spassimir Tonkov, Margarita Tsakiridou, Verushka Valsecchi, Oksana G. Zanina, and Marcelina Zimny
Earth Syst. Sci. Data, 12, 2423–2445, https://doi.org/10.5194/essd-12-2423-2020, https://doi.org/10.5194/essd-12-2423-2020, 2020
Short summary
Short summary
The Eurasian Modern Pollen Database (EMPD) contains pollen counts and associated metadata for 8134 modern pollen samples from across the Eurasian region. The EMPD is part of, and complementary to, the European Pollen Database (EPD) which contains data on fossil pollen found in Late Quaternary sedimentary archives. The purpose of the EMPD is to provide calibration datasets and other data to support palaeoecological research on past climates and vegetation cover over the Quaternary period.
Chris M. Brierley, Anni Zhao, Sandy P. Harrison, Pascale Braconnot, Charles J. R. Williams, David J. R. Thornalley, Xiaoxu Shi, Jean-Yves Peterschmitt, Rumi Ohgaito, Darrell S. Kaufman, Masa Kageyama, Julia C. Hargreaves, Michael P. Erb, Julien Emile-Geay, Roberta D'Agostino, Deepak Chandan, Matthieu Carré, Partrick J. Bartlein, Weipeng Zheng, Zhongshi Zhang, Qiong Zhang, Hu Yang, Evgeny M. Volodin, Robert A. Tomas, Cody Routson, W. Richard Peltier, Bette Otto-Bliesner, Polina A. Morozova, Nicholas P. McKay, Gerrit Lohmann, Allegra N. Legrande, Chuncheng Guo, Jian Cao, Esther Brady, James D. Annan, and Ayako Abe-Ouchi
Clim. Past, 16, 1847–1872, https://doi.org/10.5194/cp-16-1847-2020, https://doi.org/10.5194/cp-16-1847-2020, 2020
Short summary
Short summary
This paper provides an initial exploration and comparison to climate reconstructions of the new climate model simulations of the mid-Holocene (6000 years ago). These use state-of-the-art models developed for CMIP6 and apply the same experimental set-up. The models capture several key aspects of the climate, but some persistent issues remain.
Bronwen L. Konecky, Nicholas P. McKay, Olga V. Churakova (Sidorova), Laia Comas-Bru, Emilie P. Dassié, Kristine L. DeLong, Georgina M. Falster, Matt J. Fischer, Matthew D. Jones, Lukas Jonkers, Darrell S. Kaufman, Guillaume Leduc, Shreyas R. Managave, Belen Martrat, Thomas Opel, Anais J. Orsi, Judson W. Partin, Hussein R. Sayani, Elizabeth K. Thomas, Diane M. Thompson, Jonathan J. Tyler, Nerilie J. Abram, Alyssa R. Atwood, Olivier Cartapanis, Jessica L. Conroy, Mark A. Curran, Sylvia G. Dee, Michael Deininger, Dmitry V. Divine, Zoltán Kern, Trevor J. Porter, Samantha L. Stevenson, Lucien von Gunten, and Iso2k Project Members
Earth Syst. Sci. Data, 12, 2261–2288, https://doi.org/10.5194/essd-12-2261-2020, https://doi.org/10.5194/essd-12-2261-2020, 2020
Cited articles
Adams, D. K. and Comrie, A. C.: The North American Monsoon, B. Am.
Meteorol. Soc., 78, 2197–2213, https://doi.org/10.1175/1520-0477(1997)078<2197:TNAM>2.0.CO;2, 1997.
Addison, J. A., Barron, J., Finney, B., Kusler, J., Bukry, D., Heusser, L.
E., and Alexander, C. R.: A Holocene record of ocean productivity and
upwelling from the northern California continental slope, Quatern.
Int., 469, 96–108, https://doi.org/10.1016/j.quaint.2017.02.021, 2018.
Akers, P. D., Brook, G. A., Railsback, L. B., Liang, F., Iannone, G.,
Webster, J. W., Reeder, P. P., Cheng, H., and Edwards, R. L.: An extended and
higher-resolution record of climate and land use from stalagmite MC01 from
Macal Chasm, Belize, revealing connections between major dry events, overall
climate variability, and Maya sociopolitical changes, Palaeogeogr.
Palaeocl., 459, 268–288,
https://doi.org/10.1016/j.palaeo.2016.07.007, 2016.
Albani, S., Mahowald, N. M., Winckler, G., Anderson, R. F., Bradtmiller, L. I., Delmonte, B., François, R., Goman, M., Heavens, N. G., Hesse, P. P., Hovan, S. A., Kang, S. G., Kohfeld, K. E., Lu, H., Maggi, V., Mason, J. A., Mayewski, P. A., McGee, D., Miao, X., Otto-Bliesner, B. L., Perry, A. T., Pourmand, A., Roberts, H. M., Rosenbloom, N., Stevens, T., and Sun, J.: Twelve thousand years of dust: the Holocene global dust cycle constrained by natural archives, Clim. Past, 11, 869–903, https://doi.org/10.5194/cp-11-869-2015, 2015.
Albert, L. E. and Wyckoff, D. G.: Ferndale Bog and Natural Lake: Five
thousand years of environmental change in southeastern Oklahoma, Oklahoma
Archaeological Survey, Norman, USA, 1981.
Anderson, L.: Holocene record of precipitation seasonality from lake calcite
δ18O in the central Rocky Mountains, United States, Geology, 39,
211–214, https://doi.org/10.1130/G31575.1, 2011.
Anderson, L.: Rocky Mountain hydroclimate: Holocene variability and the role
of insolation, ENSO, and the North American Monsoon, Global Planet.
Change, 92/93, 198–208, https://doi.org/10.1016/j.gloplacha.2012.05.012, 2012.
Anderson, L., Abbott, M. B., and Finney, B. P.: Holocene climate inferred
from oxygen isotope ratios in lake sediments, Central Brooks Range, Alaska,
Quaternary Res., 55, 313–321, https://doi.org/10.1006/qres.2001.2219, 2001.
Anderson, L., Abbott, M. B., Finney, B. P., and Burns, S. J.: Regional
atmospheric circulation change in the North Pacific during the Holocene
inferred from lacustrine carbonate oxygen isotopes, Yukon Territory, Canada,
Quaternary Res., 64, 21–35, https://doi.org/10.1016/j.yqres.2005.03.005, 2005.
Anderson, L., Abbott, M. B., Finney, B. P., and Burns, S. J.: Late Holocene
moisture balance variability in the southwest Yukon Territory, Canada,
Quaternary Sci. Rev., 26, 130–141,
https://doi.org/10.1016/j.quascirev.2006.04.011, 2007.
Anderson, R. S., Hasbargen, J., Koehler, P. A., and Feiler, E. J.: Late
Wisconsin and Holocene subalpine forests of the Markagunt Plateau of Utah,
southwestern Colorado Plateau, USA, Arct. Antarct. Alp.
Res., 31, 366–378, https://doi.org/10.1080/15230430.1999.12003321, 1999.
Anderson, R. S., Jass, R. B., Toney, J. L., Allen, C. D., Cisneros-Dozal, L.
M., Hess, M., Heikoop, J., and Fessenden, J.: Development of the mixed
conifer forest in northern New Mexico and its relationship to Holocene
environmental change, Quaternary Res., 69, 263–275,
https://doi.org/10.1016/j.yqres.2007.12.002, 2008a.
Anderson, R. S., Allen, C. D., Toney, J. L., Jass, R. B., and Bair, A. N.:
Holocene vegetation and fire regimes in subalpine and mixed conifer forests,
southern Rocky Mountains, USA, Int. J. Wildland Fire,
17, 96–114, https://doi.org/10.1071/WF07028, 2008b.
Anderson, R. S., Soltow, H. R., and Jiménez-Moreno, G.: Postglacial
environmental change of a high-elevation forest, Sangre de Cristo Mountains
of south-central Colorado, in: From Saline to Freshwater: The Diversity of
Western Lakes in Space and Time, edited by: Starratt, S. W. and Rosen, M. R.,
Geological Society of America Special
Papers, https://doi.org/10.1130/2018.2536(13), 2019.
Anil: digitize2.m, MATLAB Central File Exchange, available at: https://www.mathworks.com/matlabcentral/fileexchange/928-digitize2-m (last access: 29 March 2021),
2020.
Antonarakou, A., Kontakiotis, G., Mortyn, P. G., Drinia, H., Sprovieri, M.,
Besiou, E., and Tripsanas, E.: Biotic and geochemical (δ18O,
δ13C, Mg/Ca, Ba/Ca) responses of Globigerinoides ruber morphotypes to upper water
column variations during the last deglaciation, Gulf of Mexico, Geochim.
Cosmochim. Ac., 170, 69–93, https://doi.org/10.1016/j.gca.2015.08.003, 2015.
Arcusa, S. H., McKay, N. P., Routson, C. C., and Munoz, S. E.: Dust-drought
interactions over the last 15,000 years: A network of lake sediment records
from the San Juan Mountains, Colorado, Holocene, 30, 559–574,
https://doi.org/10.1177/0959683619875192, 2020.
Arellano-Torres, E., Álvarez-Covelli, C., Kasper-Zubillaga, J. J., and
Lozano-García, M. S.: A 14-ka record of dust input and
phytoplankton regime changes in the subtropical NE Pacific: Oceanic and
terrestrial processes linked by teleconnections at suborbital scales,
Paleoceanography and Paleoclimatology, 34, 35–53,
https://doi.org/10.1029/2018PA003479, 2019.
Asmerom, Y., Polyak, V., Burns, S., and Rassmussen, J.: Solar forcing of
Holocene climate: New insights from a speleothem record, southwestern United
States, Geology, 35, 1–4, https://doi.org/10.1130/G22865A.1, 2007.
Barnosky, C. W.: Late Quaternary vegetation in the southwestern Columbia
Basin, Washington, Quaternary Res., 23, 109–122,
https://doi.org/10.1016/0033-5894(85)90075-4, 1985a.
Barnosky, C. W.: Late Quaternary vegetation near Battle Ground Lake,
southern Puget Trough, Washington, Geol. Soc. Am. Bull.,
96, 263–271, https://doi.org/10.1130/0016-7606(1985)96<263:LQVNBG>2.0.CO;2, 1985b.
Barron, J. A., Heusser, L. E., and Alexander, C.: High resolution climate of
the past 3,500 years of coastal northernmost California, in: Proceedings of
the Twentieth Annual Pacific Climate Workshop, 13–22, 2003a.
Barron, J. A., Heusser, L., Herbert, T., and Lyle, M.: High-resolution
climatic evolution of coastal northern California during the past 16,000
years, Paleoceanography, 18, 1020, https://doi.org/10.1029/2002PA000768, 2003b.
Barron, J. A., Bukry, D., and Bischoff, J. L.: High resolution
paleoceanography of the Guaymas Basin, Gulf of California, during the past
15 000 years, Mar. Micropaleontol., 50, 185–207,
https://doi.org/10.1016/S0377-8398(03)00071-9, 2004.
Barron, J. A., Metcalfe, S. E., and Addison, J. A.: Response of the North
American monsoon to regional changes in ocean surface temperature,
Paleoceanography, 27, PA3206, https://doi.org/10.1029/2011PA002235, 2012.
Barron, J. A., Bukry, D., Heusser, L. E., Addison, J. A., and Alexander, C.
R.: High-resolution climate of the past ∼7300 years of coastal
northernmost California: Results from diatoms, silicoflagellates, and
pollen, Quatern. Int., 469, 109–119,
https://doi.org/10.1016/j.quaint.2016.10.039, 2018.
Benson, L., Kashgarian, M., Rye, R., Lund, S., Paillet, F., Smoot, J.,
Kester, C., Mensing, S., Meko, D., and Lindström, S.: Holocene
multidecadal and multicentennial droughts affecting Northern California and
Nevada, Quaternary Sci. Rev., 21, 659–682,
https://doi.org/10.1016/S0277-3791(01)00048-8, 2002.
Berger, A. and Loutre, M. F.: Insolation values for the climate of the last
10 million years, Quaternary Sci. Rev., 10, 297–317,
https://doi.org/10.1016/0277-3791(91)90033-Q, 1991.
Bernal, J. P., Lachniet, M., McCulloch, M., Mortimer, G., Morales, P., and
Cienfuegos, E.: A speleothem record of Holocene climate variability from
southwestern Mexico, Quaternary Res., 75, 104–113,
https://doi.org/10.1016/j.yqres.2010.09.002, 2011.
Bhattacharya, T., Byrne, R., Böhnel, H., Wogau, K., Kienel, U., Ingram,
B. L., and Zimmerman, S.: Cultural implications of late Holocene climate
change in the Cuenca Oriental, Mexico, P. Natl. Acad.
Sci. USA, 112, 1693–1698, https://doi.org/10.1073/pnas.1405653112, 2015.
Bhattacharya, T., Tierney, J. E., Addison, J. A., and Murray, J. W.:
Ice-sheet modulation of deglacial North American monsoon intensification,
Nat. Geosci., 11, 848–852, https://doi.org/10.1038/s41561-018-0220-7, 2018.
Blaauw, M., Christen, J. A., Bennett, K. D., and Reimer, P. J.: Double the
dates and go for Bayes – Impacts of model choice, dating density and
quality on chronologies, Quaternary Sci. Rev., 188, 58–66,
https://doi.org/10.1016/j.quascirev.2018.03.032, 2018.
Boldt, B. R., Kaufman, D. S., McKay, N. P., and Briner, J. P.: Holocene
summer temperature reconstruction from sedimentary chlorophyll content, with
treatment of age uncertainties, Kurupa Lake, Arctic Alaska, Holocene,
25, 641–650, https://doi.org/10.1177/0959683614565929, 2015.
Boos, D. D.: Introduction to the bootstrap world, Statist. Sci., 18, 168–174, https://doi.org/10.1214/ss/1063994971, 2003.
Bradley, R. S.: Paleoclimatology: reconstructing climates of the Quaternary,
Elsevier, San Diego, CA, USA, 2015.
Bringué, M. and Rochon, A.: Late Holocene paleoceanography and climate
variability over the Mackenzie Slope (Beaufort Sea, Canadian Arctic), Mar.
Geol., 291–294, 83–96, https://doi.org/10.1016/j.margeo.2011.11.004, 2012.
Brown, K. J. and Hebda, R. J.: Origin, development, and dynamics of coastal
temperate conifer rainforests of southern Vancouver Island, Canada, Can.
J. Forest Res., 32, 353–372, https://doi.org/10.1139/x01-197, 2002.
Brown, K. J. and Schoups, G.: Multi-millennial streamflow dynamics in two
forested watersheds on Vancouver Island, Canada, Quaternary Res., 83,
415–426, https://doi.org/10.1016/j.yqres.2015.03.003, 2015.
Brown, K. J., Fitton, R. J., Schoups, G., Allen, G. B., Wahl, K. A., and
Hebda, R. J.: Holocene precipitation in the coastal temperate rainforest
complex of southern British Columbia, Canada, Quaternary Sci. Rev.,
25, 2762–2779, https://doi.org/10.1016/j.quascirev.2006.02.020, 2006.
Brown, K. J., Hebda, N., Schoups, G., Conder, N., Smith, K., and Trofymow,
J.: Long-term climate, vegetation and fire regime change in a managed
municipal water supply area, British Columbia, Canada, Holocene, 29,
1411–1424, https://doi.org/10.1177/0959683619854523, 2019.
Brubaker, L. B., Garfinkel, H. L., and Edwards, M. E.: A Late Wisconsin and
Holocene vegetation history from the Central Brooks Range: Implications for
Alaskan palaeoecology, Quaternary Res., 20, 194–214,
https://doi.org/10.1016/0033-5894(83)90077-7, 1983.
Bunbury, J. and Gajewski, K.: Postglacial climates inferred from a lake at
treeline, southwest Yukon Territory, Canada, Quaternary Sci. Rev.,
28, 354–369, https://doi.org/10.1016/j.quascirev.2008.10.007, 2009.
Chakraborty, K., Finkelstein, S. A., Desloges, J. R., and Chow, N. A.:
Holocene paleoenvironmental changes inferred from diatom assemblages in
sediments of Kusawa Lake, Yukon Territory, Canada, Quaternary Res.,
74, 15–22, https://doi.org/10.1016/j.yqres.2010.04.011, 2010.
Chase, M., Bleskie, C., Walker, I. R., Gavin, D. G., and Hu, F. S.:
Midge-inferred Holocene summer temperatures in Southeastern British
Columbia, Canada, Palaeogeogr. Palaeocl.,
257, 244–259, https://doi.org/10.1016/j.palaeo.2007.10.020, 2008.
Clegg, B. F. and Hu, F. S.: An oxygen-isotope record of Holocene climate
change in the south-central Brooks Range, Alaska, Quaternary Sci.
Rev., 29, 928–939, https://doi.org/10.1016/j.quascirev.2009.12.009, 2010.
Clegg, B. F., Clarke, G. H., Chipman, M. L., Chou, M., Walker, I. R.,
Tinner, W., and Hu, F. S.: Six millennia of summer temperature variation
based on midge analysis of lake sediments from Alaska, Quaternary Sci.
Rev., 29, 3308–3316, https://doi.org/10.1016/j.quascirev.2010.08.001, 2010.
Clegg, B. F., Kelly, R., Clarke, G. H., Walker, I. R., and Hu, F. S.:
Nonlinear response of summer temperature to Holocene insolation forcing in
Alaska, P. Natl. Acad. Sci. USA, 108,
19299–19304, https://doi.org/10.1073/pnas.1110913108, 2011.
Cole, K. L. and Liu, G.-W.: Holocene paleoecology of an estuary on Santa
Rosa Island, California, Quaternary Res., 41, 326–335,
https://doi.org/10.1006/qres.1994.1037, 1994.
Cumming, B. F., Laird, K. R., Bennett, J. R., Smol, J. P., and Salomon, A.
K.: Persistent millennial-scale shifts in moisture regimes in western Canada
during the past six millennia, P. Natl. Acad.
Sci. USA, 99, 16117–16121, https://doi.org/10.1073/pnas.252603099, 2002.
Cwynar, L. C.: A Late-Quaternary vegetation history from Hanging Lake,
Northern Yukon, Ecol. Monogr., 52, 1–24, https://doi.org/10.2307/2937342,
1982.
Cwynar, L. C.: A late Quaternary vegetation history from Lily Lake, Chilkat
Peninsula, southeast Alaska, Can. J. Botany, 68, 1106–1112,
https://doi.org/10.1139/b90-139, 1990.
Cwynar, L. C. and Spear, R. W.: Reversion of forest to tundra in the Central
Yukon, Ecology, 72, 202–212, https://doi.org/10.2307/1938915, 1991.
Cwynar, L. C. and Spear, R. W.: Paleovegetation and paleoclimatic changes in
the Yukon at 6ka BP, Géogr. Phys. Quatern., 49, 29–35,
https://doi.org/10.7202/033027ar, 2007.
de Vernal, A., Hillaire-Marcel, C., and Darby, D. A.: Variability of sea ice
cover in the Chukchi Sea (western Arctic Ocean) during the Holocene,
Paleoceanography, 20, PA4018, https://doi.org/10.1029/2005PA001157, 2005.
de Vernal, A., Hillaire-Marcel, C., Rochon, A., Fréchette, B., Henry,
M., Solignac, S., and Bonnet, S.: Dinocyst-based reconstructions of sea ice
cover concentration during the Holocene in the Arctic Ocean, the northern
North Atlantic Ocean and its adjacent seas, Quaternary Sci. Rev., 79,
111–121, https://doi.org/10.1016/j.quascirev.2013.07.006, 2013.
Du, X., Hendy, I., and Schimmelmann, A.: A 9000-year flood history for
Southern California: A revised stratigraphy of varved sediments in Santa
Barbara Basin, Mar. Geol., 397, 29–42,
https://doi.org/10.1016/j.margeo.2017.11.014, 2018.
Ersek, V., Clark, P. U., Mix, A. C., Cheng, H., and Lawrence Edwards, R.:
Holocene winter climate variability in mid-latitude western North America,
Nat. Commun., 3, 1219, https://doi.org/10.1038/ncomms2222, 2012.
Fall, P. L.: Holocene dynamics of the subalpine forest in central Colorado,
American Association of Stratigraphic Palynologists Contribution Series, 16,
31–46, 1985.
Fall, P. L.: Vegetation dynamics in the southern Rocky Mountains: Late
Pleistocene and Holocene timberline fluctuations, PhD thesis,
University of Arizona, Tucson, USA, p. 303, 1988.
Fall, P. L.: Timberline fluctuations and late Quaternary paleoclimates in
the Southern Rocky Mountains, Colorado, Geol. Soc. Am.
Bull., 109, 1306–1320, https://doi.org/10.1130/0016-7606(1997)109<1306:TFALQP>2.3.CO;2, 1997.
Farmer, J. R., Cronin, T. M., de Vernal, A., Dwyer, G. S., Keigwin, L. D.,
and Thunell, R. C.: Western Arctic Ocean temperature variability during the
last 8000 years, Geophys. Res. Lett., 38, L24602,
https://doi.org/10.1029/2011GL049714, 2011.
Finkenbinder, M. S., Abbott, M. B., Edwards, M. E., Langdon, C. T.,
Steinman, B. A., and Finney, B. P.: A 31,000 year record of
paleoenvironmental and lake-level change from Harding Lake, Alaska, USA,
Quaternary Sci. Rev., 87, 98–113,
https://doi.org/10.1016/j.quascirev.2014.01.005, 2014.
Finney, B. P., Bigelow, N. H., Barber, V. A., and Edwards, M. E.: Holocene
climate change and carbon cycling in a groundwater-fed, boreal forest lake:
Dune Lake, Alaska, J. Paleolimnol., 48, 43–54,
https://doi.org/10.1007/s10933-012-9617-2, 2012.
Fisher, D., Osterberg, E., Dyke, A., Dahl-Jensen, D., Demuth, M., Zdanowicz,
C., Bourgeois, J., Koerner, R. M., Mayewski, P., Wake, C., Kreutz, K.,
Steig, E., Zheng, J., Yalcin, K., Goto-Azuma, K., Luckman, B., and Rupper,
S.: The Mt Logan Holocene – late Wisconsinan isotope record: tropical
Pacific-Yukon connections, Holocene, 18, 667–677,
https://doi.org/10.1177/0959683608092236, 2008.
Flower, B. P., Hastings, D. W., Hill, H. W., and Quinn, T. M.: Phasing of
deglacial warming and Laurentide Ice Sheet meltwater in the Gulf of Mexico,
Geology, 32, 597, https://doi.org/10.1130/G20604.1, 2004.
Gajewski, K., Mott, R. J., Ritchie, J. C., and Hadden, K.: Holocene
vegetation history of Banks Island, Northwest Territories, Canada, Can.
J. Botany, 78, 430–436, https://doi.org/10.1139/b00-018, 2000.
Galloway, J. M., Lenny, A. M., and Cumming, B. F.: Hydrological change in the
central interior of British Columbia, Canada: diatom and pollen evidence of
millennial-to-centennial scale change over the Holocene, J.
Paleolimnol., 45, 183–197, https://doi.org/10.1007/s10933-010-9490-9, 2011.
Garfin, A.: Assessment of climate change in the southwest United States: a
report prepared for the National Climate Assessment, Island Press, Washington DC, 2013.
Gavin, D. G., Henderson, A. C. G., Westover, K. S., Fritz, S. C., Walker, I.
R., Leng, M. J., and Hu, F. S.: Abrupt Holocene climate change and potential
response to solar forcing in western Canada, Quaternary Sci. Rev.,
30, 1243–1255, https://doi.org/10.1016/j.quascirev.2011.03.003, 2011.
Goman, M., Joyce, A., Lund, S., Pearson, C., Guerra, W., Dale, D., Hammond,
D. E., and Celestian, A. J.: Preliminary results from Laguna Minucúa: a
potentially annually resolved record of climate and environmental change for
the past ∼5000 years in the Mixteca Alta of Oaxaca, Mexico, Quatern.
Int., 469, 85–95, https://doi.org/10.1016/j.quaint.2017.01.027, 2018.
Guiot, J. and de Vernal, A.: Chapter Thirteen. Transfer functions: Methods
for quantitative paleoceanography based on microfossils, in: Developments in
Marine Geology, edited by: Hillaire-Marcel, C. and De Vernal, A., Elsevier, Amsterdam, Netherlands,
523–563, 2007.
Harbert, R. S. and Nixon, K. C.: Quantitative Late Quaternary climate
reconstruction from plant macrofossil communities in western North America,
Open Quaternary, 4, 8, https://doi.org/10.5334/oq.46, 2018.
Heiser, C., McKay, N. P., Simpson, G. A., and Routson, C. C.: nickmckay/LiPD-utilities: v0.2.5.5, Zenodo, https://doi.org/10.5281/zenodo.1256889, 2018.
Hill, T. M., Kennett, J. P., Pak, D. K., Behl, R. J., Robert, C., and
Beaufort, L.: Pre-Bølling warming in Santa Barbara Basin, California:
surface and intermediate water records of early deglacial warmth, Quaternary
Sci. Rev., 25, 2835–2845,
https://doi.org/10.1016/j.quascirev.2006.03.012, 2006.
Hodell, D. A., Curtis, J. H., and Brenner, M.: Possible role of climate in
the collapse of Classic Maya civilization, Nature, 375, 391–394,
https://doi.org/10.1038/375391a0, 1995.
Hu, F. S., Ito, E., Brubaker, L. B., and Anderson, P. M.: Ostracode
geochemical record of Holocene climatic change and implications for
vegetational response in the Northwestern Alaska Range, Quaternary Res.,
49, 86–95, https://doi.org/10.1006/qres.1997.1936, 1998.
Hughes, M. K. and Graumlich, L. J.: Multi-millennial dendroclimatic
studies from the western United States, in: Climatic variations and forcing
mechanisms of the last 2000 years, Springer, Berlin, Heidelberg, 109–124, 1996.
Irvine, F., Cwynar, L. C., Vermaire, J. C., and Rees, A. B. H.:
Midge-inferred temperature reconstructions and vegetation change over the
last 15,000 years from Trout Lake, northern Yukon
Territory, eastern Beringia, J. Paleolimnol., 48, 133–146,
https://doi.org/10.1007/s10933-012-9612-7, 2012.
Jiménez-Moreno, G. and Anderson, R. S.: Pollen and macrofossil evidence
of Late Pleistocene and Holocene treeline fluctuations from an alpine lake
in Colorado, USA, Holocene, 23, 68–77, https://doi.org/10.1177/0959683612450199,
2013.
Jiménez-Moreno, G., Fawcett, P. J., and Scott Anderson, R.: Millennial-
and centennial-scale vegetation and climate changes during the late
Pleistocene and Holocene from northern New Mexico (USA), Quaternary Sci.
Rev., 27, 1442–1452, https://doi.org/10.1016/j.quascirev.2008.04.004, 2008.
Jimenez-Moreno, G., Anderson, R. S., Atudorei, V., and Toney, J. L.: A
high-resolution record of climate, vegetation, and fire in the mixed conifer
forest of northern Colorado, USA, Geol. Soc. Am. Bull.,
123, 240–254, https://doi.org/10.1130/B30240.1, 2011.
Jiménez-Moreno, G., Anderson, R. S., Shuman, B. N., and Yackulic, E.:
Forest and lake dynamics in response to temperature, North American monsoon
and ENSO variability during the Holocene in Colorado (USA), Quaternary
Sci. Rev., 211, 59–72, https://doi.org/10.1016/j.quascirev.2019.03.013, 2019.
Johnson, B. G., Jiménez-Moreno, G., Eppes, M. C., Diemer, J. A., and
Stone, J. R.: A multiproxy record of postglacial climate variability from a
shallowing, 12-m deep sub-alpine bog in the southeastern San Juan Mountains
of Colorado, USA, Holocene, 23, 1028–1038,
https://doi.org/10.1177/0959683613479682, 2013.
Jones, M. D., Metcalfe, S. E., Davies, S. J., and Noren, A.: Late Holocene
climate reorganisation and the North American Monsoon, Quaternary Sci.
Rev., 124, 290–295, https://doi.org/10.1016/j.quascirev.2015.07.004, 2015.
Juggins, S. and Birks, H. J. B.: Quantitative environmental reconstructions
from biological data, in: Tracking Environmental Change Using Lake Sediments:
Data Handling and Numerical Techniques, edited by: Birks, H. J. B., Lotter, A. F., Juggins, S., and Smol, J. P., Springer, Dordrecht, The Netherlands, 431–494, 2012.
Kaufman, D., Axford, Y., Anderson, R. S., Lamoureux, S. F., Schindler, D.
E., Walker, I. R., and Werner, A.: A multi-proxy record of the Last Glacial
Maximum and last 14,500 years of paleoenvironmental change at Lone Spruce
Pond, southwestern Alaska, J. Paleolimnol., 48, 9–26,
https://doi.org/10.1007/s10933-012-9607-4, 2012.
Kaufman, D., McKay, N., Routson, C., Erb, M., Dätwyler, C., Sommer, P.
S., Heiri, O., and Davis, B.: Holocene global mean surface temperature, a
multi-method reconstruction approach, Sci. Data, 7, 201,
https://doi.org/10.1038/s41597-020-0530-7, 2020b.
Kennett, D. J., Kennett, J. P., Erlandson, J. M., and Cannariato, K. G.:
Human responses to Middle Holocene climate change on California's Channel
Islands, Quaternary Sci. Rev., 26, 351–367,
https://doi.org/10.1016/j.quascirev.2006.07.019, 2007.
Kirby, M. E., Zimmerman, S. R. H., Patterson, W. P., and Rivera, J. J.: A
9170-year record of decadal-to-multi-centennial scale pluvial episodes from
the coastal southwest United States: a role for atmospheric rivers?,
Quaternary Sci. Rev., 46, 57–65, https://doi.org/10.1016/j.quascirev.2012.05.008,
2012.
Kirby, M. E., Knell, E. J., Anderson, W. T., Lachniet, M. S., Palermo, J.,
Eeg, H., Lucero, R., Murrieta, R., Arevalo, A., Silveira, E., and Hiner, C.
A.: Evidence for insolation and Pacific forcing of late glacial through
Holocene climate in the Central Mojave Desert (Silver Lake, CA), Quaternary
Res., 84, 174–186, https://doi.org/10.1016/j.yqres.2015.07.003, 2015.
Kirby, M. E. C., Patterson, W. P., Lachniet, M., Noblet, J. A., Anderson, M.
A., Nichols, K., and Avila, J.: Pacific southwest United States Holocene
droughts and pluvials inferred from sediment δ18O(calcite) and grain
size data (Lake Elsinore, California), Front. Earth Sci., 7, 74,
https://doi.org/10.3389/feart.2019.00074, 2019.
Konecky, B. L., McKay, N. P., Churakova (Sidorova), O. V., Comas-Bru, L., Dassié, E. P., DeLong, K. L., Falster, G. M., Fischer, M. J., Jones, M. D., Jonkers, L., Kaufman, D. S., Leduc, G., Managave, S. R., Martrat, B., Opel, T., Orsi, A. J., Partin, J. W., Sayani, H. R., Thomas, E. K., Thompson, D. M., Tyler, J. J., Abram, N. J., Atwood, A. R., Cartapanis, O., Conroy, J. L., Curran, M. A., Dee, S. G., Deininger, M., Divine, D. V., Kern, Z., Porter, T. J., Stevenson, S. L., von Gunten, L., and Iso2k Project Members: The Iso2k database: a global compilation of paleo-δ18O and δ2H records to aid understanding of Common Era climate, Earth Syst. Sci. Data, 12, 2261–2288, https://doi.org/10.5194/essd-12-2261-2020, 2020.
Lachniet, M. S., Denniston, R. F., Asmerom, Y., and Polyak, V. J.: Orbital
control of western North America atmospheric circulation and climate over
two glacial cycles, Nat. Commun., 5, 3805,
https://doi.org/10.1038/ncomms4805, 2014.
Larsen, D. J., Finkenbinder, M. S., Abbott, M. B., and Ofstun, A. R.:
Deglaciation and postglacial environmental changes in the Teton Mountain
Range recorded at Jenny Lake, Grand Teton National Park, WY, Quaternary
Sci. Rev., 138, 62–75, https://doi.org/10.1016/j.quascirev.2016.02.024, 2016.
Lemmen, J. and Lacourse, T.: Fossil chironomid assemblages and inferred
summer temperatures for the past 14,000 years from a low-elevation lake in
Pacific Canada, J. Paleolimnol., 59, 427–442,
https://doi.org/10.1007/s10933-017-9998-3, 2018.
Levy, L. B., Kaufman, D. S., and Werner, A.: Holocene glacier fluctuations,
Waskey Lake, northeastern Ahklun Mountains, southwestern Alaska,
Holocene, 14, 185–193, https://doi.org/10.1191/0959683604hl675rp, 2004.
Lopes, C. and Mix, A. C.: North Pacific paleotemperature and
paleoproductivity reconstructions based on diatom species, Paleoceanography
and Paleoclimatology, 33, 703–715, https://doi.org/10.1029/2018PA003352, 2018.
Lundeen, Z., Brunelle, A., Burns, S. J., Polyak, V., and Asmerom, Y.: A
speleothem record of Holocene paleoclimate from the northern Wasatch
Mountains, southeast Idaho, USA, Quatern. Int., 310, 83–95,
https://doi.org/10.1016/j.quaint.2013.03.018, 2013.
Lynch, E. A.: Origin of a park-forest vegetation mosaic in the Wind River
Range, Wyoming, Ecology, 79, 1320–1338,
https://doi.org/10.1890/0012-9658(1998)079[1320:OOAPFV]2.0.CO;2, 1998.
MacDonald, G. M.: Postglacial vegetation history of the Mackenzie River
Basin, Quaternary Res., 28, 245–262,
https://doi.org/10.1016/0033-5894(87)90063-9, 1987.
MacDonald, G. M. and Cwynar, L. C.: A fossil pollen based reconstruction of
the late Quaternary history of lodgepole pine (Pinus contorta ssp. latifolia) in the western
interior of Canada, Can. J. Forest Res., 15, 1039–1044,
https://doi.org/10.1139/x85-168, 1985.
MacDonald, G. M., Moser, K. A., Bloom, A. M., Potito, A. P., Porinchu, D.
F., Holmquist, J. R., Hughes, J., and Kremenetski, K. V.: Prolonged
California aridity linked to climate warming and Pacific sea surface
temperature, Sci. Rep., 6, 33325, https://doi.org/10.1038/srep33325, 2016.
Maher, L. J.: Pollen analyses of surface materials from the southern San
Juan Mountains, Colorado, Geol. Soc. Am. Bull., 74,
1485, https://doi.org/10.1130/0016-7606(1963)74[1485:PAOSMF]2.0.CO;2, 1963.
Maher, L. J.: Absolute pollen diagram of Redrock Lake, Boulder County,
Colorado, Quaternary Res., 2, 531–553,
https://doi.org/10.1016/0033-5894(72)90090-7, 1972.
Mann, D. H., Heiser, P. A., and Finney, B. P.: Holocene history of the Great
Kobuk Sand Dunes, Northwestern Alaska, Quaternary Sci. Rev., 21,
709–731, https://doi.org/10.1016/S0277-3791(01)00120-2, 2002.
Mantua, N. J., Hare, S. R., Zhang, Y., Wallace, J. M., and Francis, R. C.: A
Pacific interdecadal climate oscillation with impacts on salmon production,
B. Am. Meteorol. Soc., 78, 1069–1079,
https://doi.org/10.1175/1520-0477(1997)078<1069:APICOW>2.0.CO;2,
1997.
Marchitto, T. M., Muscheler, R., Ortiz, J. D., Carriquiry, J. D., and van
Geen, A.: Dynamical response of the Tropical Pacific Ocean to solar forcing
during the early Holocene, Science, 330, 1378–1381,
https://doi.org/10.1126/science.1194887, 2010.
Marcott, S. A., Shakun, J. D., Clark, P. U., and Mix, A. C.: A reconstruction
of regional and global temperature for the past 11,300 years, Science,
339, 1198–1201, https://doi.org/10.1126/science.1228026, 2013.
Marlon, J. R., Bartlein, P. J., Long, C., Gavin, D. G., Anderson, R. S., and
Briles, C.: Natural versus human causes of fire in
the western US, Proc. Natl. Acad. Sci. USA, 109, 535–543, 2012.
Marsicek, J., Shuman, B., Brewer, S., Foster, D. R., and Oswald, W. W.:
Moisture and temperature changes associated with the mid-Holocene Tsuga
decline in the northeastern United States, Quaternary Sci. Rev., 80,
129–142, https://doi.org/10.1016/j.quascirev.2013.09.001, 2013.
Marsicek, J., Shuman, B. N., Bartlein, P. J., Shafer, S. L., and Brewer, S.:
Reconciling divergent trends and millennial variations in Holocene
temperatures, Nature, 554, 92–96, https://doi.org/10.1038/nature25464, 2018.
Mathewes, R. W.: A palynological study of postglacial vegetation changes in
the University Research Forest, southwestern British Columbia, Can.
J. Botany, 51, 2085–2103, https://doi.org/10.1139/b73-271, 1973.
McAfee, S. A. and Russell, J. L.: Northern Annular Mode impact on spring
climate in the western United States, Geophys. Res. Lett., 35, L17701. https://doi.org/10.1029/2008GL034828, 2008.
McClymont, E. L., Ganeshram, R. S., Pichevin, L. E., Talbot, H. M., van
Dongen, B. E., Thunell, R. C., Haywood, A. M., Singarayer, J. S., and Valdes,
P. J.: Sea-surface temperature records of Termination 1 in the Gulf of
California: Challenges for seasonal and interannual analogues of tropical
Pacific climate change, Paleoceanography, 27, PA2202,
https://doi.org/10.1029/2011PA002226, 2012.
McGann, M.: High-resolution foraminiferal, isotopic, and trace element
records from Holocene estuarine deposits of San Francisco Bay, California,
J. Coastal Res., 245, 1092–1109, https://doi.org/10.2112/08A-0003.1, 2008.
McKay, N. P. and Emile-Geay, J.: Technical note: The Linked Paleo Data framework – a common tongue for paleoclimatology, Clim. Past, 12, 1093–1100, https://doi.org/10.5194/cp-12-1093-2016, 2016.
McKay, N. P. and Kaufman, D. S.: Holocene climate and glacier variability at
Hallet and Greyling Lakes, Chugach Mountains, south-central Alaska, J.
Paleolimnol., 41, 143–159, https://doi.org/10.1007/s10933-008-9260-0, 2009.
Metcalfe, S. E., Barron, J. A., and Davies, S. J.: The Holocene history of
the North American Monsoon: “known knowns” and “known unknowns” in
understanding its spatial and temporal complexity, Quaternary. Sci. Rev., 120,
1–27, https://doi.org/10.1016/j.quascirev.2015.04.004, 2015.
Michels, A., Laird, K. R., Wilson, S. E., Thomson, D., Leavitt, P. R.,
Oglesby, R. J., and Cumming, B. F.: Multidecadal to millennial-scale shifts
in drought conditions on the Canadian prairies over the past six millennia:
implications for future drought assessment, Glob. Change Biol., 13,
1295–1307, https://doi.org/10.1111/j.1365-2486.2007.01367.x, 2007.
Minckley, T. A., Shriver, R. K., and Shuman, B.: Resilience and regime change
in a southern Rocky Mountain ecosystem during the past 17 000 years,
Ecol. Monogr., 82, 49–68, https://doi.org/10.1890/11-0283.1, 2012.
Morris, J. L., Brunelle, A., DeRose, R. J., Seppä, H., Power, M. J.,
Carter, V., and Bares, R.: Using fire regimes to delineate zones in a
high-resolution lake sediment record from the western United States,
Quaternary Res., 79, 24–36, https://doi.org/10.1016/j.yqres.2012.10.002, 2013.
Muhs, D. R., Budahn, J. R., McGeehin, J. P., Bettis, E. A., Skipp, G.,
Paces, J. B., and Wheeler, E. A.: Loess origin, transport, and deposition
over the past 10,000 years, Wrangell-St. Elias National Park, Alaska,
Aeolian Res., 11, 85–99, https://doi.org/10.1016/j.aeolia.2013.06.001, 2013.
Munroe, J. S., McElroy, R., O'Keefe, S., Peters, A., and Wasson, L.:
Holocene records of eolian dust deposition from high-elevation lakes in the
Uinta Mountains, Utah, USA, J. Quaternary Sci., 36, 66–75,
https://doi.org/10.1002/jqs.3250, 2020.
Nelson, D. B., Abbott, M. B., Steinman, B., Polissar, P. J., Stansell, N.
D., Ortiz, J. D., Rosenmeier, M. F., Finney, B. P., and Riedel, J.: Drought
variability in the Pacific Northwest from a 6,000-yr lake sediment record,
P. Natl. Acad. Sci. USA, 108, 3870–3875,
https://doi.org/10.1073/pnas.1009194108, 2011.
Nichols, J. E., Peteet, D. M., Moy, C. M., Castañeda, I. S., McGeachy,
A., and Perez, M.: Impacts of climate and vegetation change on carbon
accumulation in a south-central Alaskan peatland assessed with novel organic
geochemical techniques, Holocene, 24, 1146–1155,
https://doi.org/10.1177/0959683614540729, 2014.
Ohlwein, C. and Wahl, E. R.: Review of probabilistic pollen-climate transfer
methods, Quaternary Sci. Rev., 31, 17–29,
https://doi.org/10.1016/j.quascirev.2011.11.002, 2012.
PAGES 2k Consortium: A global multiproxy database for temperature
reconstructions of the Common Era, Sci. Data, 4, 170088,
https://doi.org/10.1038/sdata.2017.88, 2017.
Palmer, S., Walker, I., Heinrichs, M., Hebda, R., and Scudder, G.:
Postglacial midge community change and Holocene palaeotemperature
reconstructions near treeline, southern British Columbia (Canada), J.
Paleolimnol., 28, 469–490, https://doi.org/10.1023/A:1021644122727, 2002.
Pellatt, M. G. and Mathewes, R. W.: Paleoecology of postglacial tree line
fluctuations on the Queen Charlotte Islands, Canada, Écoscience, 1,
71–81, https://doi.org/10.1080/11956860.1994.11682230, 1994.
Pellatt, M. G., Smith, M. J., Mathewes, R. W., Walker, I. R., and Palmer, S.
L.: Holocene treeline and climate change in the subalpine zone near Stoyoma
Mountain, Cascade Mountains, southwestern British Columbia, Canada, Arct.
Antarct. Alp. Res., 32, 73–83,
https://doi.org/10.1080/15230430.2000.12003341, 2000.
Petersen, K. L.: Palynology in Montezuma County, southwestern Colorado: The
local history of pinyon pine (Pinus edulis), ASSP Contribution Series, 16, 47–62, 1985.
Pompeani, D. P., Steinman, B. A., and Abbott, M. B.: A sedimentary and
geochemical record of water-level changes from Rantin Lake, Yukon, Canada,
J. Paleolimnol., 48, 147–158, https://doi.org/10.1007/s10933-012-9602-9,
2012.
Poore, R. Z., Dowsett, H. J., Verardo, S., and Quinn, T. M.: Millennial- to
century-scale variability in Gulf of Mexico Holocene climate records,
Paleoceanography, 18, 1048, https://doi.org/10.1029/2002PA000868, 2003.
Poore, R. Z., Pavich, M. J., and Grissino-Mayer, H. D.: Record of the North
American southwest monsoon from Gulf of Mexico sediment cores, Geology,
33, 209, https://doi.org/10.1130/G21040.1, 2005.
Porter, T. J., Schoenemann, S. W., Davies, L. J., Steig, E. J., Bandara, S.,
and Froese, D. G.: Recent summer warming in northwestern Canada exceeds the
Holocene thermal maximum, Nat. Commun., 10, 1631,
https://doi.org/10.1038/s41467-019-09622-y, 2019.
Potito, A. P., Porinchu, D. F., MacDonald, G. M., and Moser, K. A.: A late
Quaternary chironomid-inferred temperature record from the Sierra Nevada,
California, with connections to northeast Pacific sea surface temperatures,
Quaternary Res., 66, 356–363, https://doi.org/10.1016/j.yqres.2006.05.005, 2006.
Power, M. J., Marlon, J., Ortiz, N., Bartlein, P. J., Harrison, S. P.,
Mayle, F. E., Ballouche, A., Bradshaw, R. H. W., Carcaillet, C., Cordova,
C., Mooney, S., Moreno, P. I., Prentice, I. C., Thonicke, K., Tinner, W.,
Whitlock, C., Zhang, Y., Zhao, Y., Ali, A. A., Anderson, R. S., Beer, R.,
Behling, H., Briles, C., Brown, K. J., Brunelle, A., Bush, M., Camill, P.,
Chu, G. Q., Clark, J., Colombaroli, D., Connor, S., Daniau, A.-L., Daniels,
M., Dodson, J., Doughty, E., Edwards, M. E., Finsinger, W., Foster, D.,
Frechette, J., Gaillard, M.-J., Gavin, D. G., Gobet, E., Haberle, S.,
Hallett, D. J., Higuera, P., Hope, G., Horn, S., Inoue, J., Kaltenrieder,
P., Kennedy, L., Kong, Z. C., Larsen, C., Long, C. J., Lynch, J., Lynch, E.
A., McGlone, M., Meeks, S., Mensing, S., Meyer, G., Minckley, T., Mohr, J.,
Nelson, D. M., New, J., Newnham, R., Noti, R., Oswald, W., Pierce, J.,
Richard, P. J. H., Rowe, C., Sanchez Goñi, M. F., Shuman, B. N.,
Takahara, H., Toney, J., Turney, C., Urrego-Sanchez, D. H., Umbanhowar, C.,
Vandergoes, M., Vanniere, B., Vescovi, E., Walsh, M., Wang, X., Williams,
N., Wilmshurst, J., and Zhang, J. H.: Changes in fire regimes since the Last
Glacial Maximum: an assessment based on a global synthesis and analysis of
charcoal data, Clim. Dynam., 30, 887–907, https://doi.org/10.1007/s00382-007-0334-x,
2008.
Praetorius, S. K., Mix, A. C., Walczak, M. H., Wolhowe, M. D., Addison, J.
A., and Prahl, F. G.: North Pacific deglacial hypoxic events linked to abrupt
ocean warming, Nature, 527, 362–366, https://doi.org/10.1038/nature15753, 2015.
Praetorius, S. K., Condron, A., Mix, A. C., Walczak, M. H., McKay, J. L., and
Du, J.: The role of Northeast Pacific meltwater events in deglacial climate
change, Sci. Adv., 6, eaay2915, https://doi.org/10.1126/sciadv.aay2915, 2020.
Pribyl, P. and Shuman, B. N.: A computational approach to Quaternary
lake-level reconstruction applied in the central Rocky Mountains, Wyoming,
USA, Quaternary Res., 82, 249–259, https://doi.org/10.1016/j.yqres.2014.01.012,
2014.
Rainville, R. A. and Gajewski, K.: Holocene environmental history of the
Aishihik Region, Yukon, Canada, Can. J.
Earth Sci., 50, 397–405, https://doi.org/10.1139/cjes-2012-0103, 2013.
Redmond, K. T. and Koch, R. W.: Surface climate and streamflow variability
in the Western United States and their relationship to large-scale
circulation indices, Water Resour. Res., 27, 2381–2399,
https://doi.org/10.1029/91WR00690, 1991.
Reinemann, S. A., Porinchu, D. F., Bloom, A. M., Mark, B. G., and Box, J. E.:
A multi-proxy paleolimnological reconstruction of Holocene climate
conditions in the Great Basin, United States, Quaternary Res., 72,
347–358, https://doi.org/10.1016/j.yqres.2009.06.003, 2009.
Ritchie, J. C.: The Modern and Late Quaternary vegetation of the
Campbell-Dolomite Uplands, near Inuvik, N.W.T., Canada, Ecol.
Monogr., 47, 401–423, https://doi.org/10.2307/1942175, 1977.
Rodysill, J. R., Anderson, L., Cronin, T. M., Jones, M. C., Thompson, R. S.,
Wahl, D. B., Willard, D. A., Addison, J. A., Alder, J. R., Anderson, K. H.,
Anderson, L., Barron, J. A., Bernhardt, C. E., Hostetler, S. W., Kehrwald,
N. M., Khan, N. S., Richey, J. N., Starratt, S. W., Strickland, L. E.,
Toomey, M. R., Treat, C. C., and Wingard, G. L.: A North American
Hydroclimate Synthesis (NAHS) of the Common Era, Glob. Planet. Change, 162,
175–198, https://doi.org/10.1016/j.gloplacha.2017.12.025, 2018.
Rosenberg, S. M., Walker, I. R., Mathewes, R. W., and Hallett, D. J.:
Midge-inferred Holocene climate history of two subalpine lakes in southern
British Columbia, Canada, Holocene, 14, 258–271,
https://doi.org/10.1191/0959683604hl703rp, 2004.
Routson, C. C. and McKay, N. P.: A multiproxy database of western North
American Holocene paleoclimate records, figshare dataset,
https://doi.org/10.6084/m9.figshare.12863843.v1, 2020.
Routson, C. C., McKay, N. P., Kaufman, D. S., Erb, M. P., Goosse, H.,
Shuman, B. N., Rodysill, J. R., and Ault, T.: Mid-latitude net precipitation
decreased with Arctic warming during the Holocene, Nature, 568,
83–87, https://doi.org/10.1038/s41586-019-1060-3, 2019a.
Routson, C. C., Arcusa, S. H., McKay, N. P., and Overpeck, J. T.: A
4,500-year-long record of southern Rocky Mountain dust deposition,
Geophys. Res. Lett., 46, 8281–8288, https://doi.org/10.1029/2019GL083255,
2019b.
Salzer, M. W., Bunn, A. G., Graham, N. E., and Hughes, M. K.: Five millennia
of paleotemperature from tree-rings in the Great Basin, USA, Climate
Dynamics, 42, 1517–1526, https://doi.org/10.1007/s00382-013-1911-9, 2014.
Schiff, C. J., Kaufman, D. S., Wolfe, A. P., Dodd, J., and Sharp, Z.: Late
Holocene storm-trajectory changes inferred from the oxygen isotope
composition of lake diatoms, south Alaska, J. Paleolimnol., 41,
189–208, https://doi.org/10.1007/s10933-008-9261-z, 2009.
Schmieder, J., Fritz, S. C., Swinehart, J. B., Shinneman, A. L. C., Wolfe,
A. P., Miller, G., Daniels, N., Jacobs, K. C., and Grimm, E. C.: A
regional-scale climate reconstruction of the last 4000 years from lakes in
the Nebraska Sand Hills, USA, Quaternary Sci. Rev., 30,
1797–1812, https://doi.org/10.1016/j.quascirev.2011.04.011, 2011.
Shafer, D. S.: The timing of Late Quaternary monsoon precipitation maxima in
the southwest United States, PhD thesis, University of Arizona,
Tucson, USA, 234 pp., 1989.
Shapley, M. D., Ito, E., and Donovan, J. J.: Lateglacial and Holocene
hydroclimate inferred from a groundwater flow-through lake, Northern Rocky
Mountains, USA, Holocene, 19, 523–535, https://doi.org/10.1177/0959683609104029,
2009.
Shuman, B. N. and Marsicek, J.: The structure of Holocene climate change in
mid-latitude North America, Quaternary Sci. Rev., 141, 38–51,
https://doi.org/10.1016/j.quascirev.2016.03.009, 2016.
Shuman, B. N., Henderson, A. K., Colman, S. M., Stone, J. R., Fritz, S. C.,
Stevens, L. R., Power, M. J., and Whitlock, C.: Holocene lake-level trends in
the Rocky Mountains, USA, Quaternary Sci. Rev., 28,
1861–1879, https://doi.org/10.1016/j.quascirev.2009.03.003, 2009.
Shuman, B. N., Carter, G. E., Hougardy, D. D., Powers, K., and Shinker, J.
J.: A north-south moisture dipole at multi-century scales in the Central and
Southern Rocky Mountains, USA, during the late Holocene, Rocky Mountain
Geology, 49, 33–49, https://doi.org/10.2113/gsrocky.49.1.33, 2014.
Shuman, B. N., Pribyl, P., and Buettner, J.: Hydrologic changes in Colorado
during the mid-Holocene and Younger Dryas, Quaternary Res., 84,
187–199, https://doi.org/10.1016/j.yqres.2015.07.004, 2015.
Shuman, B. N., Routson, C., McKay, N., Fritz, S., Kaufman, D., Kirby, M. E., Nolan, C., Pederson, G. T., and St-Jacques, J.-M.: Placing the Common Era in a Holocene context: millennial to centennial patterns and trends in the hydroclimate of North America over the past 2000 years, Clim. Past, 14, 665–686, https://doi.org/10.5194/cp-14-665-2018, 2018.
Staines-Urías, F., González-Yajimovich, O., and Beaufort, L.:
Reconstruction of past climate variability and ENSO-like fluctuations in the
southern Gulf of California (Alfonso Basin) since the last glacial maximum,
Quaternary Res., 83, 488–501, https://doi.org/10.1016/j.yqres.2015.03.007, 2015.
Steinman, B. A., Pompeani, D. P., Abbott, M. B., Ortiz, J. D., Stansell, N.
D., Finkenbinder, M. S., Mihindukulasooriya, L. N., and Hillman, A. L.:
Oxygen isotope records of Holocene climate variability in the Pacific
Northwest, Quaternary Sci. Rev., 142, 40–60,
https://doi.org/10.1016/j.quascirev.2016.04.012, 2016.
Steponaitis, E., Andrews, A., McGee, D., Quade, J., Hsieh, Y.-T., Broecker,
W. S., Shuman, B. N., Burns, S. J., and Cheng, H.: Mid-Holocene drying of the
U.S. Great Basin recorded in Nevada speleothems, Quaternary Sci. Rev.,
127, 174–185, https://doi.org/10.1016/j.quascirev.2015.04.011, 2015.
Stone, J. R. and Fritz, S. C.: Multidecadal drought and Holocene climate
instability in the Rocky Mountains, Geology, 34, 409,
https://doi.org/10.1130/G22225.1, 2006.
Sundqvist, H. S., Kaufman, D. S., McKay, N. P., Balascio, N. L., Briner, J. P., Cwynar, L. C., Sejrup, H. P., Seppä, H., Subetto, D. A., Andrews, J. T., Axford, Y., Bakke, J., Birks, H. J. B., Brooks, S. J., de Vernal, A., Jennings, A. E., Ljungqvist, F. C., Rühland, K. M., Saenger, C., Smol, J. P., and Viau, A. E.: Arctic Holocene proxy climate database – new approaches to assessing geochronological accuracy and encoding climate variables, Clim. Past, 10, 1605–1631, https://doi.org/10.5194/cp-10-1605-2014, 2014.
Sweeney, J., Salter-Townshend, M., Edwards, T., Buck, C. E., and Parnell, A.
C.: Statistical challenges in estimating past climate changes, WIRES Comput. Stat., 10, e1437, https://doi.org/10.1002/wics.1437, 2018.
Szeicz, J. M., MacDonald, G. M., and Duk-Rodkin, A.: Late Quaternary
vegetation history of the central Mackenzie Mountains, Northwest
Territories, Canada, Palaeogeogr. Palaeocl.,
113, 351–371, https://doi.org/10.1016/0031-0182(95)00070-3, 1995.
Tingley, M. P., Craigmile, P. F., Haran, M., Li, B., Mannshardt, E., and
Rajaratnam, B.: Piecing together the past: statistical insights into
paleoclimatic reconstructions, Quaternary Sci. Rev., 35, 1–22,
https://doi.org/10.1016/j.quascirev.2012.01.012, 2012.
Toney, J. L. and Anderson, R. S.: A postglacial palaeoecological record from
the San Juan Mountains of Colorado USA: fire, climate and vegetation
history, Holocene, 16, 505–517, https://doi.org/10.1191/0959683606hl946rp, 2006.
Upiter, L. M., Vermaire, J. C., Patterson, R. T., Crann, C. A., Galloway, J.
M., Macumber, A. L., Neville, L. A., Swindles, G. T., Falck, H., Roe, H. M.,
and Pisaric, M. F. J.: Middle to late Holocene chironomid-inferred July
temperatures for the central Northwest Territories, Canada, J.
Paleolimnol., 52, 11–26, https://doi.org/10.1007/s10933-014-9775-5, 2014.
Von Storch, H., Zorita, E., Jones, J. M., Dimitriev, Y., González-Rouco,
F., and Tett, S. F. B.: Reconstructing past climate from noisy data, Science,
306, 679–682, https://doi.org/10.1126/science.1096109, 2004.
Wahl, D., Byrne, R., and Anderson, L.: An 8700 year paleoclimate
reconstruction from the southern Maya lowlands, Quaternary Sci. Rev.,
103, 19–25, https://doi.org/10.1016/j.quascirev.2014.08.004, 2014.
White, J. M. and Mathewes, R. W.: Postglacial vegetation and climatic change
in the upper Peace River district, Alberta, Can. J. Botany,
64, 2305–2318, https://doi.org/10.1139/b86-302, 1986.
Whitlock, C., Dean, W. E., Fritz, S. C., Stevens, L. R., Stone, J. R.,
Power, M. J., Rosenbaum, J. R., Pierce, K. L., and Bracht-Flyr, B. B.:
Holocene seasonal variability inferred from multiple proxy records from
Crevice Lake, Yellowstone National Park, USA, Palaeogeogr.
Palaeocl., 331/332, 90–103,
https://doi.org/10.1016/j.palaeo.2012.03.001, 2012.
Williams, J. W., Grimm, E. C., Blois, J. L., Charles, D. F., Davis, E. B.,
Goring, S. J., Graham, R. W., Smith, A. J., Anderson, M., Arroyo-Cabrales,
J., Ashworth, A. C., Betancourt, J. L., Bills, B. W., Booth, R. K.,
Buckland, P. I., Curry, B. B., Giesecke, T., Jackson, S. T., Latorre, C.,
Nichols, J., Purdum, T., Roth, R. E., Stryker, M., and Takahara, H.: The
Neotoma Paleoecology Database, a multiproxy, international,
community-curated data resource, Quaternary Res., 89, 156–177,
https://doi.org/10.1017/qua.2017.105, 2018.
Winter, A., Zanchettin, D., Lachniet, M., Vieten, R., Pausata, F. S. R.,
Ljungqvist, F. C., Cheng, H., Edwards, R. L., Miller, T., Rubinetti, S.,
Rubino, A., and Taricco, C.: Initiation of a stable convective hydroclimatic
regime in Central America circa 9000 years BP, Nat. Commun., 11,
716, https://doi.org/10.1038/s41467-020-14490-y, 2020.
Wong, C. I., Banner, J. L., and Musgrove, M.: Holocene climate variability in
Texas, USA: An integration of existing paleoclimate data and modeling with a
new, high-resolution speleothem record, Quaternary Sci. Rev., 127,
155–173, https://doi.org/10.1016/j.quascirev.2015.06.023, 2015.
Wooller, M. J., Kurek, J., Gaglioti, B. V., Cwynar, L. C., Bigelow, N.,
Reuther, J. D., Gelvin-Reymiller, C., and Smol, J. P.: An
11,200 year paleolimnological perspective for emerging archaeological
findings at Quartz Lake, Alaska, J. Paleolimnol., 48, 83–99,
https://doi.org/10.1007/s10933-012-9610-9, 2012.
Worona, M. A. and Whitlock, C.: Late Quaternary vegetation and climate
history near Little Lake, central Coast Range, Oregon, Geol. Soc.
Am. Bull., 107, 867–876, https://doi.org/10.1130/0016-7606(1995)107<0867:LQVACH>2.3.CO;2, 1995.
Yu, Z., Campbell, I. D., Campbell, C., Vitt, D. H., Bond, G. C., and Apps, M.
J.: Carbon sequestration in western Canadian peat highly sensitive to
Holocene wet-dry climate cycles at millennial timescales, Holocene,
13, 801–808, https://doi.org/10.1191/0959683603hl667ft, 2003.
Short summary
We present a curated database of western North American Holocene paleoclimate records, which have been screened on length, resolution, and geochronology. The database gathers paleoclimate time series that reflect temperature, hydroclimate, or circulation features from terrestrial and marine sites, spanning a region from Mexico to Alaska. This publicly accessible collection will facilitate a broad range of paleoclimate inquiry.
We present a curated database of western North American Holocene paleoclimate records, which...
Altmetrics
Final-revised paper
Preprint