Articles | Volume 13, issue 3
https://doi.org/10.5194/essd-13-1089-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/essd-13-1089-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
A European map of groundwater pH and calcium
Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, 61137 Brno, Czech Republic
Borja Jiménez-Alfaro
CORRESPONDING AUTHOR
Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, 61137 Brno, Czech Republic
Research Unit of Biodiversity (CSIC/UO/PA), University of Oviedo, Research Building, 33600 Mieres, Spain
Ondřej Hájek
Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, 61137 Brno, Czech Republic
Lisa Brancaleoni
Department of Life Sciences and Biotechnology, University of Ferrara, Corso Ercole I d'Este 32, 44121 Ferrara, Italy
Marco Cantonati
Limnology & Phycology Section, MUSE – Museo delle Scienze, Corso del Lavoro e della Scienza 3, 38123 Trento, Italy
Michele Carbognani
Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/A, 43124 Parma, Italy
Anita Dedić
Faculty of Science and Education, University of Mostar, Rodoč bb, 88 000 Mostar, Bosnia and Herzegovina
Daniel Dítě
Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, 61137 Brno, Czech Republic
Plant Science and Biodiversity Center, Slovak Academy of Sciences, Dúbravská cesta 9, 84523 Bratislava, Slovakia
Renato Gerdol
Department of Life Sciences and Biotechnology, University of Ferrara, Corso Ercole I d'Este 32, 44121 Ferrara, Italy
Petra Hájková
Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, 61137 Brno, Czech Republic
Veronika Horsáková
Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, 61137 Brno, Czech Republic
Florian Jansen
Faculty of Agricultural and Environmental Sciences, University of Rostock, Justus-von-Liebig-Weg 6, 18059 Rostock, Germany
Jasmina Kamberović
Faculty of Natural Sciences and Mathematics, University of Tuzla, 75 000 Tuzla, Bosnia and Herzegovina
Jutta Kapfer
Department of Landscape Monitoring, Norwegian Institute of Bioeconomy Research, Holtvegen 66, 9016 Tromsø, Norway
Tiina Hilkka Maria Kolari
Department of Environmental and Biological Sciences, University of Eastern Finland, Joensuu Campus, Yliopistokatu 7, 80101 Joensuu, Finland
Mariusz Lamentowicz
Climate Change Ecology Research Unit, Faculty of Geographical and Geological Sciences, Adam Mickiewicz University in Poznań, Bogumiła Krygowskiego 10, 61-680 Poznań, Poland
Predrag Lazarević
Institute of Botany and Botanical Garden “Jevremovac”, Faculty of Biology, University of Belgrade, Takovska 43, 11000 Belgrade, Serbia
Ermin Mašić
Department of Biology, Faculty of Natural Sciences and Mathematics, University of Sarajevo, Zmaja od Bosne 33–35, 71000 Sarajevo, Bosnia and Herzegovina
Jesper Erenskjold Moeslund
Section of Biodiversity, Department of Bioscience, Aarhus University, Grenåvej 14, 8410 Rønde, Denmark
Aaron Pérez-Haase
Department of Biosciences, Faculty of Science and Technology, University of Vic – Central University of Catalonia, Vic, Spain
Department of Evolutionary Biology, Ecology and Environmental Sciences, Faculty of Biology, University of Barcelona, Barcelona, Spain
Tomáš Peterka
Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, 61137 Brno, Czech Republic
Alessandro Petraglia
Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/A, 43124 Parma, Italy
Eulàlia Pladevall-Izard
Department of Evolutionary Biology, Ecology and Environmental Sciences, Faculty of Biology, University of Barcelona, Barcelona, Spain
Zuzana Plesková
Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, 61137 Brno, Czech Republic
Stefano Segadelli
Geological, Seismic and Soil Service, Emilia-Romagna Region, 40127 Bologna, Italy
Yuliya Semeniuk
Stanisław Leszczycki Institute of Geography and Spatial Organization, Polish Academy of Sciences, 00-818 Warsaw, Poland
Patrícia Singh
Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, 61137 Brno, Czech Republic
Anna Šímová
Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, 61137 Brno, Czech Republic
Eva Šmerdová
Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, 61137 Brno, Czech Republic
Teemu Tahvanainen
Department of Environmental and Biological Sciences, University of Eastern Finland, Joensuu Campus, Yliopistokatu 7, 80101 Joensuu, Finland
Marcello Tomaselli
Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/A, 43124 Parma, Italy
Yuliya Vystavna
Institute of Hydrobiology, Biology Centre CAS, Na Sádkách 7, 37005 České Budějovice, Czech Republic
Claudia Biţă-Nicolae
Institute of Biology – Bucharest, Romanian Academy, Bucharest, Romania
Michal Horsák
Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, 61137 Brno, Czech Republic
Related authors
No articles found.
Jade Skye, Joe R. Melton, Colin Goldblatt, Louis Saumier, Angela Gallego-Sala, Michelle Garneau, R. Scott Winton, Erick B. Bahati, Juan C. Benavides, Lee Fedorchuk, Gérard Imani, Carol Kagaba, Frank Kansiime, Mariusz Lamentowicz, Michel Mbasi, Daria Wochal, Sambor Czerwiński, Jacek Landowski, Joanna Landowska, Vincent Maire, Minna M. Väliranta, Matthew Warren, Lydia E. S. Cole, Marissa A. Davies, Erik A. Lilleskov, Jingjing Sun, and Yuwan Wang
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-432, https://doi.org/10.5194/essd-2025-432, 2025
Preprint under review for ESSD
Short summary
Short summary
Peatlands are large stores of carbon but are vulnerable to human activities and climate change. Comprehensive peatland data are vital to understand these ecosystems, but existing datasets are fragmented and contain errors. To address this, we created Peat-DBase — a standardized global database of peat depth measurements with > 200,000 measurements worldwide, showing average depths of 144 cm. Peat-DBase avoids overlapping data compilation efforts while identifying critical observational gaps.
Mariusz Bąk, Mariusz Lamentowicz, Piotr Kołaczek, Daria Wochal, Michał Jakubowicz, Luke Andrews, and Katarzyna Marcisz
Biogeosciences, 22, 3843–3866, https://doi.org/10.5194/bg-22-3843-2025, https://doi.org/10.5194/bg-22-3843-2025, 2025
Short summary
Short summary
We integrated palaeoecological and geochemical data to discern the impact of catastrophic events on the development of peatlands within pine monocultures. An approach that integrates these methods is not commonly employed but offers a more comprehensive understanding of past ecosystem transformations. We used multi-proxy research of the peat core and neodymium isotope record. We support the results of our analyses with the recognition of statistically significant critical transitions.
Eliise Poolma, Katarzyna Marcisz, Leeli Amon, Patryk Fiutek, Piotr Kołaczek, Karolina Leszczyńska, Dmitri Mauquoy, Michał Słowiński, Siim Veski, Friederike Wagner-Cremer, and Mariusz Lamentowicz
EGUsphere, https://doi.org/10.5194/egusphere-2025-2087, https://doi.org/10.5194/egusphere-2025-2087, 2025
Short summary
Short summary
We studied a peatland in northern Poland to see how climate and natural ecosystem changes shaped it over the past 11,500 years. By analysing preserved plants and microscopic life, we found clear shifts in wetness linked to climate and internal development. This longest complete peat record in the region shows how peatlands help us understand long-term environmental change and their future resilience to climate change.
Luke Oliver Andrews, Katarzyna Marcisz, Piotr Kołaczek, Leeli Amon, Siim Veski, Atko Heinsalu, Normunds Stivrins, Mariusz Bąk, Marco A. Aquino-Lopez, Anna Cwanek, Edyta Łokas, Monika Karpińska-Kołaczek, Sambor Czerwiński, Michał Słowiński, and Mariusz Lamentowicz
EGUsphere, https://doi.org/10.5194/egusphere-2025-1351, https://doi.org/10.5194/egusphere-2025-1351, 2025
Short summary
Short summary
The long-term effects of alkalinisation upon peatland ecosystem functioning remains poorly understood. Using palaeoecological techniques, we show that intensive cement dust pollution altered vegetation cover and reduced carbon storage in an Estonian peatland. Changes also occurred during the 13th century following agricultural intensification. These shifts occurred following two-to-threefold alkalinity increases. Limited recovery was evident ~30 years post-pollution.
Agnieszka Halaś, Mariusz Lamentowicz, Milena Obremska, Dominika Łuców, and Michał Słowiński
EGUsphere, https://doi.org/10.5194/egusphere-2025-1422, https://doi.org/10.5194/egusphere-2025-1422, 2025
Short summary
Short summary
Western Siberian peatlands regulate global climate, but their response to permafrost thaw remains poorly studied. Our study analyzed peat cores from a peat plateau and a lake edge to track changes over two centuries. We found that permafrost thawing, driven by rising temperatures, altered peatland hydrology, vegetation, and microbial life. These shifts may expand with further warming, affecting carbon storage and climate feedbacks. Our findings highlight early warning signs of ecosystem change.
Eeva Järvi-Laturi, Teemu Tahvanainen, Eero Koskinen, Efrén López-Blanco, Juho Lämsä, Hannu Marttila, Mikhail Mastepanov, Riku Paavola, Maria Väisänen, and Torben Røjle Christensen
EGUsphere, https://doi.org/10.5194/egusphere-2025-217, https://doi.org/10.5194/egusphere-2025-217, 2025
Short summary
Short summary
Our research investigates how plant community composition influences methane emissions in a northern boreal rich fen. We measured methane fluxes year-round using manual chambers across 36 plots. Our findings suggest that sedges, particularly Carex rostrata, significantly impact the fluxes throughout the year. This study enhances our understanding of vegetation-driven methane emissions, providing valuable insights for predicting future changes in peatland methane emissions.
Mariusz Bąk, Mariusz Lamentowicz, Piotr Kołaczek, Daria Wochal, Paweł Matulewski, Dominik Kopeć, Martyna Wietecha, Dominika Jaster, and Katarzyna Marcisz
Biogeosciences, 21, 5143–5172, https://doi.org/10.5194/bg-21-5143-2024, https://doi.org/10.5194/bg-21-5143-2024, 2024
Short summary
Short summary
The study combines palaeoecological, dendrochronological, remote sensing and historical data to detect the impact of forest management and climate change on peatlands. Due to these changes, the peatland studied in this paper and the pine monoculture surrounding it have become vulnerable to water deficits and various types of disturbance, such as fires and pest infestations. As a result of forest management, there has also been a complete change in the vegetation composition of the peatland.
Sandy P. Harrison, Roberto Villegas-Diaz, Esmeralda Cruz-Silva, Daniel Gallagher, David Kesner, Paul Lincoln, Yicheng Shen, Luke Sweeney, Daniele Colombaroli, Adam Ali, Chéïma Barhoumi, Yves Bergeron, Tatiana Blyakharchuk, Přemysl Bobek, Richard Bradshaw, Jennifer L. Clear, Sambor Czerwiński, Anne-Laure Daniau, John Dodson, Kevin J. Edwards, Mary E. Edwards, Angelica Feurdean, David Foster, Konrad Gajewski, Mariusz Gałka, Michelle Garneau, Thomas Giesecke, Graciela Gil Romera, Martin P. Girardin, Dana Hoefer, Kangyou Huang, Jun Inoue, Eva Jamrichová, Nauris Jasiunas, Wenying Jiang, Gonzalo Jiménez-Moreno, Monika Karpińska-Kołaczek, Piotr Kołaczek, Niina Kuosmanen, Mariusz Lamentowicz, Martin Lavoie, Fang Li, Jianyong Li, Olga Lisitsyna, José Antonio López-Sáez, Reyes Luelmo-Lautenschlaeger, Gabriel Magnan, Eniko Katalin Magyari, Alekss Maksims, Katarzyna Marcisz, Elena Marinova, Jenn Marlon, Scott Mensing, Joanna Miroslaw-Grabowska, Wyatt Oswald, Sebastián Pérez-Díaz, Ramón Pérez-Obiol, Sanna Piilo, Anneli Poska, Xiaoguang Qin, Cécile C. Remy, Pierre J. H. Richard, Sakari Salonen, Naoko Sasaki, Hieke Schneider, William Shotyk, Migle Stancikaite, Dace Šteinberga, Normunds Stivrins, Hikaru Takahara, Zhihai Tan, Liva Trasune, Charles E. Umbanhowar, Minna Väliranta, Jüri Vassiljev, Xiayun Xiao, Qinghai Xu, Xin Xu, Edyta Zawisza, Yan Zhao, Zheng Zhou, and Jordan Paillard
Earth Syst. Sci. Data, 14, 1109–1124, https://doi.org/10.5194/essd-14-1109-2022, https://doi.org/10.5194/essd-14-1109-2022, 2022
Short summary
Short summary
We provide a new global data set of charcoal preserved in sediments that can be used to examine how fire regimes have changed during past millennia and to investigate what caused these changes. The individual records have been standardised, and new age models have been constructed to allow better comparison across sites. The data set contains 1681 records from 1477 sites worldwide.
Jakob J. Assmann, Jesper E. Moeslund, Urs A. Treier, and Signe Normand
Earth Syst. Sci. Data, 14, 823–844, https://doi.org/10.5194/essd-14-823-2022, https://doi.org/10.5194/essd-14-823-2022, 2022
Short summary
Short summary
In 2014 and 2015, the Danish government scanned the whole of Denmark using laser scanners on planes. The information can help biologists learn more about Denmark's natural environment. To make it easier to access the outputs from the scan, we divided the country into 10 m x 10 m squares and summed up the information most relevant to biologists for each square. The result is a set of 70 maps describing the three-dimensional architecture of the Danish landscape and vegetation.
Zuzana Frkova, Chiara Pistocchi, Yuliya Vystavna, Katerina Capkova, Jiri Dolezal, and Federica Tamburini
SOIL, 8, 1–15, https://doi.org/10.5194/soil-8-1-2022, https://doi.org/10.5194/soil-8-1-2022, 2022
Short summary
Short summary
Phosphorus (P) is essential for life. We studied microbial processes driving the P cycle in soils developed on the same rock but with different ages (0–100 years) in a cold desert. Compared to previous studies under cold climate, we found much slower weathering of P-containing minerals of soil development, likely due to aridity. However, microbes dominate short-term dynamics and progressively redistribute P from the rock into more available forms, making it available for plants at later stages.
Florian Beyer, Florian Jansen, Gerald Jurasinski, Marian Koch, Birgit Schröder, and Franziska Koebsch
Biogeosciences, 18, 917–935, https://doi.org/10.5194/bg-18-917-2021, https://doi.org/10.5194/bg-18-917-2021, 2021
Short summary
Short summary
Increasing drought frequency can jeopardize the restoration of the CO2 sink function in degraded peatlands. We explored the effect of the summer drought in 2018 on vegetation development and CO2 exchange in a rewetted fen. Drought triggered a rapid spread of new vegetation whose CO2 assimilation could partially outweigh the drought-related rise in respiratory CO2 loss. Our study shows important regulatory mechanisms of a rewetted fen to maintain its net CO2 sink function even in a very dry year.
Cited articles
Ballabio, C., Lugato, E., Fernández-Ugalde, O., Orgiazzi, A., Jones, A., Borrelli, P., Montanarella, L., and Panagos, P.:
Mapping LUCAS topsoil chemical properties at European scale using Gaussian process regression,
Geoderma,
355, 113912, https://doi.org/10.1016/j.geoderma.2019.113912, 2019.
Blowes, S. A., Supp, S. R., Antão, L. H., Bates, A., Bruelheide, H., Chase, J. M., Moyes, F., McGill, B., Magurran, A., Myers-Smith, H., Winter, M., Bjorkman, A. D., Bowler, E., Byrnes, J. E. K., Gonzalez, A., Hines, J., Isbell, F., Jones, H. P., Navarro, L. M., Thompson, P. L., Vellend, M., Waldock, C., and Dornelas, M.:
The geography of biodiversity change in marine and terrestrial assemblages,
Science,
366, 339–345, https://doi.org/10.1126/science.aaw1620, 2019.
Boschetti, T. and Toscani, L.:
Springs and streams of the Taro-Ceno Valleys (Northern Apennine, Italy): Reaction path modeling of waters interacting with serpentinised ultramafic rocks,
Chem. Geol.,
257, 76–91, https://doi.org/10.1016/j.chemgeo.2008.08.017, 2008.
Boschetti, T., Etiope, G., Pennisi, M., Romain, M., and Toscani, L.:
Boron, lithium and methane isotope composition of hyperalkaline waters (Northern Apennines, Italy): Terrestrial serpentinisation or mixing with brine?,
Appl. Geochem.,
32, 17–25, https://doi.org/10.1016/j.apgeochem.2012.08.018, 2013.
Brondizio, E. S., Settele, J., Díaz, S., and Ngo, H. T.:
Global assessment report on biodiversity and ecosystem services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services,
IPBES Secretariat, Bonn, Germany,
available at: https://ipbes.net/global-assessment (last access: March 2021), 2019.
Cantonati, M., Van de Vijver, B., and Lange-Bertalot, H.:
Microfissurata gen. nov. (Bacillariophyta), a new diatom genus from dystrophic and intermittently-wet terrestrial habitats,
J. Phycol.,
45, 732–741, https://doi.org/10.1111/j.1529-8817.2009.00683.x, 2009.
Cantonati, M., Lange-Bertalot, H., Decet, F., and Gabrieli, J.:
Diatoms in very-shallow pools of the site of community importance Danta di Cadore Mires (south-eastern Alps), and the potential contribution of these habitats to diatom biodiversity conservation,
Nova Hedwigia,
93, 475–507, https://doi.org/10.1127/0029-5035/2011/0093-0475, 2011.
Cantonati, M., Poikane, S., Pringle, C. M., Stevens, L. E., Turak, E., Heino, J., Richardson, J. S., Bolpagni, R., Borrini, A., Cid, N., Čtvrtlíková, M., Galassi, D. M. P., Hájek, M., Hawes, I., Levkov, Z., Naselli-Flores, L., Saber, A. A., Di Cicco, M., Fiasca, B., Hamilton, P. B., Kubečka, J., Segadelli, S., and Znachor, P.:
Characteristics, main impacts, and stewardship of natural and artificial freshwater environments: Consequences for biodiversity conservation,
Water,
12, 260, https://doi.org/10.3390/w12010260, 2020a.
Cantonati, M., Stevens, L. E., Segadelli, S., Springer, A. E., Goldscheider, N., Celico, F., Filippini, M., Ogata, K., and Gargini, A.:
Ecohydrogeology: The interdisciplinary convergence needed to improve the study and stewardship of springs and other groundwater-dependent habitats, biota, and ecosystems,
Ecol. Indic.,
110, 105803, https://doi.org/10.1016/j.ecolind.2019.105803, 2020b.
Cantonati, M., Segadelli, S., Springer, A. E., Goldscheider, N., Celico, F., Filippini, M., Ogata, K., and Gargini, A.:
Geological and hydrochemical prerequisites of unexpectedly high biodiversity in spring ecosystems at the landscape level,
Sci. Total Environ.,
740, 140157, https://doi.org/10.1016/j.scitotenv.2020.140157, 2020c.
Ceballos, G., Ehrlich, P. R., and Dirzo, R.:
Biological annihilation via the ongoing sixth mass extinction signaled by vertebrate population losses and declines,
P. Natl. Acad. Sci. USA,
114, E6089–E6096, https://doi.org/10.1073/pnas.1704949114, 2017.
Chadwick, O. A. and Chorover, J.:
The chemistry of pedogenic thresholds,
Geoderma,
100, 321–353, https://doi.org/10.1016/S0016-7061(01)00027-1, 2001.
Chapelle, F. H.:
Geochemistry of Groundwater,
in: Treatise on Geochemistry,
edited by: Holland, H. D. and Turekian, K. K.,
Pergamon, 425–449, US Geological Survey, Columbia, SC, USA, https://doi.org/10.1016/B0-08-043751-6/05167-7, 2003.
Chen, Z., Auler, A. S., Bakalowicz, M., Drew, D., Griger, F., Hartmann, J., Jiang, G., Moosdorf, N., Richts, A., Stevanovic, Z., Veni, G., and Goldscheider, N.:
The World Karst Aquifer Mapping project: concept, mapping procedure and map of Europe,
Hydrogeol. J.,
25, 771–785, https://doi.org/10.1007/s10040-016-1519-3, 2017.
Chuman, T., Gürtlerová, P., Hruška, J., and Adamová, M.:
Map of geochemical reactivity of rocks of the Czech Republic,
Czech Geological Survey, Prague, Czech Republic, 2019.
Chytrý, M., Hennekens, S. M., Jiménez-Alfaro, B., Knollová, I., Dengler, J., Jansen, F., Landucci, F., Schaminée, J. H. J., Adid, S., Agrillo, E., Ambarlı, D., Angelini, P., Apostolova, I., Attorre, F., Berg, C., Bergmeier, E., Biurrun, I., Botta-Dukát, Z., Brisse, H., Campos, J. A., Carlón, L., Čarni, A., Casella, L., Csiky, J., Ćušterevska, R., Dajid Stevanovid, Z., Danihelka, J., De Bie, E., de Ruffray, P., De Sanctis, M., Dickoré, W. B., Dimopoulos, P., Dubyna, D., Dziuba, T., Ejrnæs, R., Ermakov, N., Ewald, J., Fanelli, G., Fernández-González, F., FitzPatrick, Ú., Font, X., GarcíaMijangos, I., Gavilán, R. G., Golub, V., Guarino, R., Haveman, R., Indreica, A., Işık Gürsoy, D., Jandt, U., Janssen, J. A. M., Jiroušek, M., Kącki, Z., Kavgacı, A., Kleikamp, M., Kolomiychuk, V., Krstivojevid Duk, M., Krstonošid, D., Kuzemko, A., Lenoir, J., Lysenko, T., Marcenò, C., Martynenko, V., Michalcová, D., Moeslund, J. E., Onyshchenko, V., Pedashenko, H., Pérez-Haase, A., Peterka, T., Prokhorov, V., Rašomavičius, V., Rodríguez-Rojo, M. P., Rodwell, J. S., Rogova, T., Ruprecht, E., Rūsira, S., Seidler, G., Šibík, J., Šilc, U., Škvorc, Ž., Sopotlieva, D., Stančid, Z., Svenning, J.-C., Swacha, G., Tsiripidis, I., Turtureanu, P. D., Uğurlu, E., Uogintas, D., Valachovič, M., Vashenyak, Y., Vassilev, K., Venanzoni, R., Virtanen, R., Weekes, L., Willner, W., Wohlgemuth, T., and Yamalov, S.:
European Vegetation Archive (EVA): an integrated database of European vegetation plots,
Appl. Veg. Sci.,
19, 173–180, https://doi.org/10.1111/avsc.12191, 2016.
Chytrý, M., Hájek, M., Kočí, M., Pešout, P., Roleček, J., Sádlo, J., Šumberová, K., Sychra, J., Boublík, K., Douda, J., Grulich, V., Härtel, H., Hédl, R., Lustyk, P., Navrátilová, J., Novák, P., Vydrová, P., and Chobot, K.:
Red list of habitats of the Czech Republic,
Ecol. Indic.,
106, 105446, https://doi.org/10.1016/j.ecolind.2019.105446, 2019.
Chytrý, M., Tichý, L., Hennekens, S. M., Knollová, I., Janssen, J. A. M., Rodwell, J. S., Peterka, T., Marcenò, C., Landucci, F., Danihelka, J., Hájek, M., Dengler, J., Novák, P., Zukal, D., Jiménez-Alfaro, B., Mucina, L., Abdulhak, S., Aćić, S., Agrillo, E., Attorre, F., Bergmeier, E., Biurrun, I., Boch, S., Bölöni, J., Bonari, G., Braslavskaya, T., Bruelheide, H., Campos, J. A., Čarni, A., Casella, L., Ćuk, M., Ćušterevska, R., De Bie, E., Delbosc, P., Demina, O., Didukh, Y., Dítě, D., Dziuba, T., Ewald, J., Gavilán, R. G., Gégout, J.-C., Giusso del Galdo, G. P., Golub, V., Goncharova, N., Goral, F., Graf U., Indreica, A., Isermann, M., Jandt, U., Jansen, F., Jansen, J., Jašková, A., Jiroušek, M., Kącki, Z., Kalníková, V., Kavgacı, A., Khanina, L., Korolyuk, A.Yu., Kozhevnikova, M., Kuzemko, A., Küzmič, F., Kuznetsov, O. L., Laiviņš, M., Lavrinenko, I., Lavrinenko, O., Lebedeva, M., Lososová, Z., Lysenko, T., Maciejewski, L., Mardari, C., Marinšek, A., Napreenko, M. G., Onyshchenko, V., Pérez-Haase, A., Pielech, R., Prokhorov, V., Rašomavičius, V., Rodríguez Rojo, M. P., Rūsiņa, S., Schrautzer, J., Šibík, J., Šilc, U., Škvorc, Ž., Smagin, V. A., Stančić, Z., Stanisci, A., Tikhonova, E., Tonteri, T., Uogintas, D., Valachovič, M., Vassilev, K., Vynokurov, D., Willner, W., Yamalov S., Evans, D., Palitzsch Lund, M., Spyropoulou, R., Tryfon, E. and Schaminée J. H. J.:
EUNIS Habitat Classification: expert system, characteristic species combinations and distribution maps of European habitats,
Appl. Veg. Sci.,
23, 1–28, https://doi.org/10.1111/avsc.12519, 2020.
Clymo, R. S.:
Ion exchange in Sphagnum and its relation to bog ecology,
Ann. Bot.-London,
27, 309–324, https://doi.org/10.1093/oxfordjournals.aob.a083847, 1963.
Ćirić, S., Spasić, Z., Ilić, Z., and Prodanović, D.:
Bottling spring water from a Serbian mountain,
Pol. J. Environ. Stud.,
27, 597–607, https://doi.org/10.15244/pjoes/75816, 2018.
Crossman, J., Bradley, C., Boomer, I., and Milner, A. M.:
Water flow dynamics of groundwater-fed streams and their ecological significance in a glacierised catchment,
Arct. Antarct. Alp. Res.,
43, 364–379, https://doi.org/10.1657/1938-4246-43.3.364, 2011.
Dengler, J., Jansen, F., Glöckler, F., Peet, R. K., De Cáceres, M., Chytrý, M., Ewald, J., Oldeland, J., Lopez-Gonzalez, G., Finckh, M., Mucina, L., Rodwell, J. S., Schaminée, J. H. J., and Spencer, N.:
The Global Index of VegetationPlot Databases (GIVD): a new resource for vegetation science,
J. Veg. Sci.,
22, 582–597, https://doi.org/10.1111/j.1654-1103.2011.01265.x, 2011.
Dierssen, K.:
Die wichtigsten Pflanzengesellschaften der Moore NW-Europas,
Conservatoire et Jardin botaniques, Genève, 1–382, 1982.
Divíšek, J., Hájek, M., Jamrichová, E., Petr, L., Večeřa, M., Tichý, L., Willner, W., and Horsák, M.:
Holocene matters: Landscape history accounts for current species richness of vascular plants in forests and grasslands of eastern Central Europe,
J. Biogeogr.,
47, 721–735, https://doi.org/10.1111/jbi.13787, 2020.
Duchaufour, R.:
Pedology: pedogenesis and classification,
Springer, Dordrecht, https://doi.org/10.1007/978-94-011-6003-2, 2012.
Duscher, K., Günther, A., Richts, A., Clos, P., Philipp, U., and Struckmeier, W.:
The GIS layers of the “International Hydrogeological Map of Europe 1:1,500,000” in a vector format,
Hydrogeol. J.,
23, 1867–1875, https://doi.org/10.1007/s10040-015-1296-4, 2015.
Eades, P., Tratt, R., and Shaw, S.: Alkaline Fen and Transition Mire Survey of the North York Moors National Park and Bishop Monkton Ings (report),
Natural England, York, 2018.
Evans J. S.:
spatialEco, R package version 1.3-4,
available at: https://github.com/jeffreyevans/spatialEco, last access: September 2020.
Fairchild, I. J., Bradby, L., Sharp, M., and Tison, J.-L.:
Hydrochemistry of carbonate terrains in alpine glacial settings,
Earth Surf. Proc. Land.,
19, 33–54, https://doi.org/10.1002/esp.3290190104, 1994.
Frei, M., Bielert, U., and Heinrichs, H:
Effects of pH, alkalinity and bedrock chemistry on metal concentrations of springs in an acidified catchment (Ecker Dam, Harz Mountains, FRG),
Chem. Geol.,
170, 221–242, https://doi.org/10.1016/S0009-2541(99)00249-1, 2000.
Gerdol, R., Pontin, A., Tomaselli, M., Bombonato, L., Brancaleoni, L., Gualmini, M., Petraglia, A., Siffi, C., and Gargini A.:
Hydrologic controls on water chemistry, vegetation and ecological patterns in two mires in the South-Eastern Alps (Italy),
Catena,
86, 86–97, https://doi.org/10.1016/j.catena.2011.02.008, 2011.
Gorham, E.:
The chemical composition of some natural waters in the Cairn Gorm-Strath Spey District of Scotland,
Limnol. Oceanogr.,
2, 143–154, https://doi.org/10.4319/lo.1957.2.2.0143, 1957.
Greenwell, B. M.:
pdp: An R Package for Constructing Partial Dependence Plots,
R J.,
9, 421–436, https://doi.org/10.32614/RJ-2017-016, 2017.
Hájek, M., Hekera, P., and Hájková, P.:
Spring fen vegetation and water chemistry in the Western Carpathian flysch zone,
Folia Geobot.,
37, 205–224, https://doi.org/10.1007/BF02804232, 2002.
Hájek, M., Horsák, M., Hájková, P., and Dítě, D.:
Habitat diversity of central European fens in relation to environmental gradients and an effort to standardise fen terminology in ecological studies,
Perspect. Plant Ecol.,
8, 97–114, https://doi.org/10.1016/j.ppees.2006.08.002, 2006.
Hájek, M., Hájková, P., and Apostolova, I.:
New plant associations from Bulgarian mires,
Phytologia Balcanica,
14, 377–399, 2008.
Hájek, M., Horsáková, V., Hájková, P., Coufal, R., Dítě, D., Němec, T., and Horsák, M.:
Habitat extremity and conservation management stabilise endangered calcareous fens in a changing world,
Sci. Total Environ.,
719, 134693, https://doi.org/10.1016/j.scitotenv.2019.134693, 2020a.
Hájek, M., Jiménez-Alfaro, B., Hájek, O., Brancaleoni, L., Cantonati, M., Carbognani, M., Dedić A., Dítě, D., Gerdol, R., Hájková, P., Horsáková, V., Jansen, F., Kamberović, J., Kapfer, J., Kolari, T., Lamentowicz, M., Lazarević, P., Mašić, E., Moeslund, J. E., Pérez-Haase, A., Peterka, T., Petraglia, A., Pladevall-Izard, E., Plesková, Z., Segadelli, S., Semeniuk, Y., Singh, P., Šímová, A., Šmerdová, E., Tahvanainen, T., Tomaselli, M., Vystavna Y., Biţă-Nicolae, C., and Horsák, M.:
Data from: European map of groundwater pH and calcium,
Zenodo,
https://doi.org/10.5281/zenodo.4139912, 2020b.
Hájková, P., Hájek, M., and Apostolova, I.:
Diversity of wetland vegetation in the Bulgarian high mountains, main gradients and context-dependence of the pH role,
Plant Ecol.,
184, 111–130, https://doi.org/10.1007/s11258-005-9056-5, 2006.
Hájková, P., Hájek, M., Apostolova, I., Zelený, D., and Dítě, D.:
Shifts in the ecological behaviour of plant species between two distant regions: evidence from the base richness gradient in mires,
J. Biogeogr.,
35, 282–294, https://doi.org/10.1111/j.1365-2699.2007.01793.x, 2008.
Hem, J. D.:
Study and interpretation of the chemical characteristics of natural water, U. S. Geological Survey Water-Supply Paper 2254,
1985.
Hengl, T.:
GSIF: Global Soil Information Facilities, R package version 0.5-5.1,
available at: https://CRAN.R-project.org/package=GSIF, last access: September 2020.
Hengl, T., Heuvelink, G. B. M., and Rossiter, D. G.:
About regression-kriging: From equations to case studies,
Comput. Geosci.,
33, 1301–1315, https://doi.org/10.1016/j.cageo.2007.05.001, 2007.
Hengl, T., Heuvelink, G. B. M., Kempen, B., Leenaars, J. G. B., Walsh, M. G., Shepherd, K. D., Sila, A., MacMillan, R. A., de Jesus, J. M., Tamena, L., and Tondoh, J. E.:
Mapping Soil Properties of Africa at 250 m Resolution: Random Forests Significantly Improve Current Predictions,
PLOS ONE,
10, e0125814, https://doi.org/10.1371/journal.pone.0125814, 2015.
Hengl, T., de Jesus, J. M., Heuvelink, G. B. M., Ruiperez-Gonzalez, M., Kilibarda, M., Blagotić, A., Shangguan, W., Wright, M. N., Geng, X., Bauer-Marschallinger, B., Guevara, M. A., Vargas, R., MacMillan, R. A., Batjes, N. H., Leenaars, J. G. B., Ribeiro, E., Wheeler, I., Mantel, S., and Kempen, B.:
SoilGrids250m: Global gridded soil information based on machine learning,
PLOS ONE,
12, e0169748, https://doi.org/10.1371/journal.pone.0169748, 2017.
Hengl, T., Nussbaum, M., Wright, M. N., Heuvelink, G. B. M., and Gräler, B.:
Random forest as a generic framework for predictive modeling of spatial and spatio-temporal variables,
PeerJ,
6, e5518, https://doi.org/10.7717/peerj.5518, 2018.
Hinterlang, D.:
Vegetationsökologie der Weichwasserquellgesellschaften zentraleuropäischer Mittelgebirge,
Crunoecia,
1, 1–117, 1992.
Hinterlang, D.:
Montio-Cardaminetea: Quell- und Waldsumpf-Gesellschaften, Synopsis der Pflanzengesellschaften Deutschlands, Heft 12,
Floristisch-soziologische Arbeitsgemeinschaft e.V., Göttingen, 2017.
Horsáková, V., Hájek, M., Hájková, P., Dítě, D., and Horsák, M.:
Principal factors controlling the species richness of European fens differ between habitat specialists and matrix-derived species,
Divers. Distrib.,
24, 742–754, https://doi.org/10.1111/ddi.12718, 2018.
Janssen, J. A. M., Rodwell, J. S., García-Criado, M., Gubbay, S., Haynes, T., Nieto, A., Sanders, N., Landucci, F., Loidi, J., Ssymank, A., Tahvanainen, T., Valderrabano, M., Acosta, A., Aronsson, M., Arts, G., Attorre, F., Bergmeier, E., Bijlsma, R.-J., Bioret, F., Biţă-Nicolae, C., Biurrun, I., Calix, M., Capelo, J., Čarni, A., Chytrý, M., Dengler, J., Dimopoulos, P., Essl, F., Gardfjell, H., Gigante, D., Giusso del Galdo, G., Hájek, M., Jansen, F., Jansen, J., Kapfer, J., Mickolajczak, A., Molina, J. A., Molnár, Z., Paternoster, D., Piernik, A., Poulin, B., Renaux, B., Schaminée, J. H. J., Šumberová, K., Toivonen, H., Tonteri, T., Tsiripidis, I., Tzonev, R., and Valachovič, M.:
European red list of habitats, Part 2, Terrestrial and freshwater habitats,
European Commission, European Commission, Luxembourg, https://doi.org/10.2779/091372, 2016.
Jiménez-Alfaro, B., Girardello, M., Chytrý, M., Svenning, J.-C., Willner, W., Gégout, J.-C., Agrillo, E., Campos, J. A., Jandt, U., Kącki, Z., Šilc, U., Slezák, M., Tichý, L., Tsiripidis, I., Turtureanu, P., Ujházyová, M., and Wohlgemuth, T.:
History and environment shape species pools and community diversity in European beech forests,
Nature Ecology & Evolution,
2, 483–490, https://doi.org/10.1038/s41559-017-0462-6, 2018a.
Jiménez-Alfaro, B., Suárez-Seoane, S., Chytrý, M., Hennekens, S., Willner, W., Hájek, M., Agrillo, E., Álvarez-Martínez, J. M., Bergamini, A., Brisse, H., Brunet, J., Casella, L., Dítě, D., Castell, X., Gillet, F., Hájková, P., Jansen, F., Jandt, U., Kącki, Z., and Tsiripidis, I.:
Modelling the distribution and compositional variation of plant communities at the continental scale,
Divers. Distrib.,
24, 978–990, https://doi.org/10.1111/ddi.12736, 2018b.
Joosten, H., Tanneberger, F., and Moen, A. (eds.):
Mires and peatlands of Europe, Status, distribution and conservation,
E. Schweizerbart'sche Verlagsbuchhandlung, Stuttgart, Germany, ISBN 978-3-510-65383-6, 2017.
Kadūnas, K., Gedžiūnas, P., Zanevskij, Z., Guobytė, R., Pūtys, P., and Balčiūnaitė, D.:
Lietuvos šaltinių katalogas, 220 versmiø ir šaltiniø,
Lietuvos Geologijas Tarnyba, Grunto valymo technologijos, Vilnius, 2017.
Kamberović, J., Plenković-Moraj, A., Borojević, K. K., Udovič, M. G., Žutinić, P., Hafner, D., and Cantonati, M.:
Algal assemblages in springs of different lithologies (ophiolites vs. limestone) of the Konjuh Mountain (Bosnia and Herzegovina),
Acta Bot. Croat.,
78, 66–81, https://doi.org/10.2478/botcro-2019-0004, 2019.
Kann, J. and Smith, V. H.:
Estimating the probability of exceeding elevated pH values critical to fish populations in a hypereutrophic lake,
Can. J. Fish. Aquat. Sci.,
56, 2262–2270, 1999.
Kapfer, J., Audorff, V., Beierkuhnlein, C., and Hertel, E.:
Do bryophytes show a stronger response than vascular plants to interannual changes in spring water quality?,
Freshw. Sci.,
31, 625–635, https://doi.org/10.1899/11-037.1, 2012.
Karger, D. N., Conrad, O., Böhner, J., Kawohl, T., Kreft, H., Soria-Auza, R. W., Zimmermann, N. E., Linder, H. P., and Kessler, M.:
Climatologies at high resolution for the earth's land surface areas,
Sci. Data,
4, 170122, https://doi.org/10.1038/sdata.2017.122, 2017.
Kelmendi, M., Kadriu, S., Sadiku, M., Aliu, M., Sadriu, E., and Hyseni, S. M.:
Assessment of drinking water quality of Kopiliq village in Skenderaj, Kosovo,
Journal of Water and Land Development,
39, 61–65, https://doi.org/10.2478/jwld-2018-0059, 2018.
Keskin, H. and Grunwald, S.:
Regression kriging as a workhorse in the digital soil mapper's toolbox,
Geoderma,
326, 22–41, https://doi.org/10.1016/j.geoderma.2018.04.004, 2018.
Kolda, A., Petrić, I., Mucko, M., Gottstein, S., Žutinić, P., Goreta, G., Ternjej, I., Rubinić, J., Radišić, M., and Udovič, M. G.:
How environment selects: Resilience and survival of microbial mat community within intermittent karst spring Krčić (Croatia),
Ecohydrology,
12, e2063, https://doi.org/10.1002/eco.2063, 2019.
Laburdová, J. and Hájek, M.:
Vztah vegetace prameništ' západočeské zřídelní oblasti k chemismu prostředí [Relationships between spring vegetation and environment chemistry in West-Bohemian mineral-spring region],
Zprávy České botanické společnosti,
49, 49–71, 2014.
Lajçi, N., Sadiku, M., Lajçi, X., Baruti, B., and Aliu, M.:
Assessment of physico-chemical quality of fresh water springs in village Pepaj, Rugova Region, Kosova,
Journal of International Environmental Application and Science,
12, 73–81, 2017.
Lamentowicz, M. and Mitchell, E. A.:
The ecology of testate amoebae (Protists) in Sphagnum in north-western Poland in relation to peatland ecology,
Microb. Ecol.,
50, 48–63, https://doi.org/10.1051/limn/09003, 2005.
Lamentowicz, M., Lamentowicz, Ł., van der Knaap, W. O., Gąbka, M., and Mitchell, E. A.:
Contrasting species—environment relationships in communities of testate amoebae, bryophytes and vascular plants along the fen–bog gradient,
Microb. Ecol.,
59, 499–510, https://doi.org/10.1007/s00248-009-9617-6, 2010.
Le, T. D., Kattwinkel, M., Schützenmeister, K., Olson, J. R., Hawkins, C. P., and Schäfer, R. B.:
Predicting current and future background ion concentrations in German surface water under climate change,
Philos. T. Roy. Soc. B,
374, 20180004, https://doi.org/10.1098/rstb.2018.0004, 2019.
Lewandowski, J., Meinikmann, K., Nützmann, G., and Rosenberry, D. O.:
Groundwater—the disregarded component in lake water and nutrient budgets, Part 2: Effects of groundwater on nutrients,
Hydrol. Process.,
29, 2922–2955, https://doi.org/10.1016/j.jhydrol.2020.124834, 2015.
Malmer, N.:
Vegetational gradients in relation to environmental conditions in northwestern European mires,
Can. J. Botany,
64, 375–383, https://doi.org/10.1139/b86-054, 1986.
Maxbauer, D. P., Feinberg, J. M., Fox, D. L., and Nater, E. A.:
Response of pedogenic magnetite to changing vegetation in soils developed under uniform climate, topography, and parent material,
Sci. Rep.-UK,
7, 1–10, https://doi.org/10.1038/s41598-017-17722-2, 2017.
Meng, Q., Liu, Z., and Borders, B. E.:
Assessment of regression kriging for spatial interpolation – comparisons of seven GIS interpolation methods,
Cartogr. Geogr. Inf. Sc.,
40, 28–39, https://doi.org/10.1080/15230406.2013.762138, 2013.
Miles, J.:
The pedogenic effects of different species and vegetation types and the implications of succession,
J. Soil Sci.,
36, 571–584, https://doi.org/10.1111/j.1365-2389.1985.tb00359.x, 1985.
Miller, T. K., Heegaard, E., Hassel, K., and Kapfer, J.: Environmental variables driving species composition in subarctic springs in the face of climate change, J. Veg. Sci., 32, e12955, https://doi.org/10.1111/jvs.12955, 2021.
Mohammed, A. A., Pavlovskii, I., Cey, E. E., and Hayashi, M.: Effects of preferential flow on snowmelt partitioning and groundwater recharge in frozen soils, Hydrol. Earth Syst. Sci., 23, 5017–5031, https://doi.org/10.5194/hess-23-5017-2019, 2019.
Økland, R. H., Økland, T., and Rydgren, K.:
A Scandinavian perspective on ecological gradients in north-west European mires: reply to Wheeler and Proctor,
J. Ecol.,
89, 481–486, https://doi.org/10.1046/j.1365-2745.2001.00573.x, 2001.
Pentecost, A. and Zhaohui, Z.:
Bryophytes from some travertine-depositing sites in France and the UK: relationships with climate and water chemistry,
J. Bryol.,
24, 233–241, https://doi.org/10.1179/037366802125001402, 2002.
Peterka, T., Hájek, M., Jiroušek, M., Jiménez-Alfaro, B., Aunina, L., Bergamini, A., Dítě, D., Felbaba-Klushyna, L., Graf, U., Hájková, P., Hettenbergerová, E., Ivchenko, T. G., Jansen, F., Koroleva, N. E., Lapshina, E. D., Lazarević, P. M., Moen, A., Napreenko, M. G., Pawlikowski, P., Plesková, Z., Sekulová, L., Smagin, V. A., Tahvanainen, T., Thiele, A., Biţa-Nicolae, C., Biurrun, I., Brisse, H., Ćušterevska, R., De Bie, E., Ewald, J., FitzPatrick, Ú., Font, X., Jandt, U., Kącki, Z., Kuzemko, A., Landucci, F., Moeslund, J. E., Pérez-Haase, A., Rašomavičius, V., Rodwell, J. S., Schaminée, J. H., Šilc, U., Stančić, Z., and Chytrý, M.:
Formalized classification of European fen vegetation at the alliance level,
Appl. Veg. Sci.,
20, 124–142, https://doi.org/10.1111/avsc.12271, 2017.
Pham, T. G., Kappas, M., Huynh, C. V., and Nguyen, L. H. K.:
Application of Ordinary Kriging and Regression Kriging method for soil properties mapping in hilly region of central Vietnam,
ISPRS Int. J. Geo-Inf.,
8, 147, https://doi.org/10.3390/ijgi8030147, 2019.
Plesková, Z., Jiroušek, M., Peterka, T., Hájek, T., Dítě, D., Hájková, P., Navrátilová, J., Šímová, A., Syrovátka, V., and Hájek, M.:
Testing inter-regional variation in pH niches of fen mosses,
J. Veg. Sci.,
27, 352–364, https://doi.org/10.1111/jvs.12348, 2016.
R Core Team:
R: A language and environment for statistical computing, R Foundation for Statistical Computing, Vienna, Austria,
available at: https://www.R-project.org/ (last access: September 2020) (packages=GSIF, spatialEco), 2020.
Ridl, A., Vilenica, M., Ivković, M., Popijač, A., Sivec, I., Miliša, M., and Mihaljević, Z.:
Environmental drivers influencing stonefly assemblages along a longitudinal gradient in karst lotic habitats,
J. Limnol.,
77, 412–427, https://doi.org/10.4081/jlimnol.2018.1816, 2018.
Rydin, H., Jeglum, J. K., and Bennett, K. D.:
The biology of peatlands, 2nd Edn.,
Oxford University Press, https://doi.org/10.1093/acprof:osobl/9780199602995.001.0001, 2013.
Salminen, R., De Vos, W., and Tarvainen, T.:
Geochemical atlas of Europe,
Geological Survey of Finland, Espoo, 2006.
Savić, A., Dmitrović, D., and Pešić, V.:
Ephemeroptera, Plecoptera, and Trichoptera assemblages of karst springs in relation to some environmental factors: a case study in central Bosnia and Herzegovina,
Turk. J. Zool.,
41, 119–129, https://doi.org/10.3906/zoo-1512-31, 2017.
Schweiger, A. H., Audorff, V., and Beierkuhnlein, C.:
The acid taste of climate change: 20th century acidification is re-emerging during a climatic extreme event,
Ecosphere,
6, 1–11, https://doi.org/10.1890/ES15-00032.1, 2015.
Segadelli, S., Vescovi, P., Ogata, K., Chelli, A., Zanini, A., Boschetti, T., Petrella, M., Toscani, L., Gargini, A., and Celico, F.:
A conceptual hydrogeological model of ophiolitic aquifers (serpentinised peridotite): The test example of Mt. Prinzera (Northern Italy),
Hydrol. Process.,
32, 969–1201, https://doi.org/10.1002/hyp.11090, 2017.
Sekulová, L., Hájek, M., and Syrovátka, V.:
Vegetation–environment relationships in alpine mires of the West Carpathians and the Alps,
J. Veg. Sci.,
24, 1118–1128, https://doi.org/10.1111/jvs.12035, 2013.
Šímová, A., Pánek, T., Gałka, M., Zernitskaya, V., Hájková, P., Brodská, H., Jamrichová, E., and Hájek, M.:
Landslides increased Holocene habitat diversity on a flysch bedrock in the Western Carpathians,
Quaternary Sci. Rev.,
219, 68–83, https://doi.org/10.1016/j.quascirev.2019.07.009, 2019.
Sjörs, H. and Gunnarsson, U.:
Calcium and pH in north and central Swedish mire waters,
J. Ecol.,
90, 650–657, https://doi.org/10.1046/j.1365-2745.2002.00701.x, 2002.
Song, X. P., Hansen, M. C., Stehman, S. V., Potapov, P. V., Tyukavina, A., Vermote, E. F., and Townshend, J. R.:
Global land change from 1982 to 2016,
Nature,
560, 639–643, https://doi.org/10.1038/s41586-018-0411-9, 2018.
Soudzilovskaia, N., Cornelissen, J., During, H., Van Logtestijn, R., Lang., S., and Aerts, R.:
Similar cation exchange capacities among bryophyte species refute a presumed mechanism of peatland acidification,
Ecology,
91, 2716–2726, https://doi.org/10.1890/09-2095.1, 2010.
Soulsby, C., Birkel, C., Geris, J., Dick, J., Tunaley, C., and Tetzlaff, D.:
Stream water age distributions controlled by storage dynamics and nonlinear hydrologic connectivity: Modeling with high-resolution isotope data,
Water Resour. Res.,
51, 7759–7776, https://doi.org/10.1002/2015WR017888, 2015.
Špoljar, M., Štafa, D., Ostojić, A., Dražina, T., Matoničkin Kepčija, R., Kralj Borojević, K., and Primc, B.:
Tufa deposition in a karst stream as an indicator of water quality (Papuk Nature Park, Croatia), Ribarstvo,
Croatian Journal of Fisheries, UDK:552.545:504.453, 2011.
Stevens, L. E., Schenk, E. R., and Springer, A. E.:
Springs ecosystem classification,
Ecol. Appl.,
31, e2218, https://doi.org/10.1002/eap.2218, 2020.
Szatmári, G. and Pásztor, L.:
Comparison of various uncertainty modelling approaches based on geostatistics and machine learning algorithms,
Geoderma,
337, 1329–1340, https://doi.org/10.1016/j.geoderma.2018.09.008, 2019.
Tahvanainen, T.:
Water chemistry of mires in relation to the poor-rich vegetation gradient and contrasting geochemical zones of the north-eastern Fennoscandian Shield,
Folia Geobot.,
39, 353–369, https://doi.org/10.1007/BF02803208, 2004.
Tanneberger, F., Bellebaum, J., Dylawerski, M., Fartmann, T., Jurzyk, S., Koska, I., Tegetmeyer, C., and Wojciechowska, M.:
Habitats of the globally threatened Aquatic Warbler (Acrocephalus paludicola) in Pomerania – site conditions, flora, and vegetation characteristics,
Plant Diversity and Evolution,
129, 253–273, https://doi.org/10.1127/1869-6155/2011/0129-0047, 2011.
Terzić, J., Marković, T., and Reberski, J. L.:
Hydrogeological properties of a complex Dinaric karst catchment: Miljacka Spring case study,
Environ. Earth Sci.,
72, 1129–1142, https://doi.org/10.1007/s12665-013-3031-6, 2014.
Tickner, D., Opperman, J. J., Abell, R., Acreman, M., Arthington, A. H., Bunn, S. E., Cooke, S. J., Dalton, J., Darwall, W., Edwards, G., Harrison, I., Hughes, K., Jones, T., Leclère, D., Lynch, A. J., Leonard, P., McClain, M. E., Muruven, D., Olden, J. D., Ormerod, S. J., Robinson, J., Tharme, R. E., Thieme, M., Tockner, K., Wright, M., and Young, L.:
Bending the curve of global freshwater biodiversity loss: an emergency recovery plan,
Bioscience,
70, 330–342, https://doi.org/10.1093/biosci/biaa002, 2020.
Udd, D., Mälson, K., Sundberg, S., and Rydin, H.:
Explaining species distributions by traits of bryophytes and vascular plants in a patchy landscape,
Folia Geobot.,
50, 161–174, https://doi.org/10.1007/s12224-015-9219-7, 2015.
Večeřa, M., Divíšek, J., Lenoir, J., Jiménez-Alfaro, B., Biurrun, I., Knollová, I., Agrillo, E., Campos, J. A., Čarni, A., Crespo Jiménez, G., Ćuk, M., Dimopoulos, P., Ewald, J., Fernández-González, F., Gégout, J.-C., Indreica, A., Jandt, U., Jansen, F., Kącki, Z., Rašomavičius, V., Řezníčková, M., Rodwell, J. S., Schaminée, J. H. J., Šilc, U., Svenning, J.-C., Swacha, G., Vassilev, K., Venanzoni, R., Willner, W., Wohlgemuth, T., and Chytrý, M.:
Alpha diversity of vascular plants in European forests,
J. Biogeogr.,
46, 1919–1935, https://doi.org/10.1111/jbi.13624, 2019.
Vicherová, E., Hájek, M., and Hájek, T.:
Calcium intolerance of fen mosses: physiological evidence, effects of nutrient availability and successional drivers,
Perspect. Plant Ecol.,
17, 347–359, https://doi.org/10.1016/j.ppees.2015.06.005, 2015.
Vorren, K. D., Eurola, S., and Tveraabak, U.:
The lowland terrestrial mire vegetation about 69∘ N lat. in northern Norway, Tromura,
Tromsø Museums Rapportserie, Naturvitenskap,
Tromsø Museum, Tromsø, 84, 1999.
Vystavna, Y., Yakovlev, V., Diadin, D., Vergeles, Y., and Stolberg, F.:
Hydrochemical characteristics and water quality assessment of surface and ground waters in the transboundary (Russia/Ukraine) Seversky Donets basin,
Environ. Earth Sci.,
74, 585–596, https://doi.org/10.1007/s12665-015-4060-0, 2015.
Vystavna, Y., Schmidt, S. I., Kopáček, J., Hejzlar, J., Holko, L., Matiatos, I., Wassenaar, L. I., Persoiu, A., Badaluta, C. A., and Huneau, F.:
Small-scale chemical and isotopic variability of hydrological pathways in a mountain lake catchment,
J. Hydrol.,
585, 124834, https://doi.org/10.1016/j.jhydrol.2020.124834, 2020.
Wheeler, B. D. and Proctor, M. C. F.:
Ecological gradients, subdivisions and terminology of north-west European mires,
J. Ecol.,
88, 187–203, https://doi.org/10.1046/j.1365-2745.2000.00455.x, 2000.
White, A. F. and Blum, A. E.:
Effects of climate on chemical-weathering in watersheds,
Geochim. Cosmochim. Ac.,
59, 1729–1747, https://doi.org/10.1016/0016-7037(95)00078-E, 1995.
Wiesmeier, M., Barthold, F., Blank, B., and Kögel-Knabner, I.:
Digital mapping of soil organic matter stocks using Random Forest modeling in a semi-arid steppe ecosystem,
Plant Soil,
340, 7–24, https://doi.org/10.1007/s11104-010-0425-z, 2011.
Short summary
We developed an up-to-date European map of groundwater pH and Ca (the major determinants of diversity of wetlands) based on 7577 measurements. In comparison to the existing maps, we included much a larger data set from the regions rich in endangered wetland habitats, filled the apparent gaps in eastern and southeastern Europe, and applied geospatial modelling. The latitudinal and altitudinal gradients were rediscovered with much refined regional patterns, as is associated with bedrock variation.
We developed an up-to-date European map of groundwater pH and Ca (the major determinants of...
Altmetrics
Final-revised paper
Preprint