Articles | Volume 8, issue 2
23 Sep 2016
 | 23 Sep 2016

Biogeochemical data from terrestrial and aquatic ecosystems in a periglacial catchment, West Greenland

Tobias Lindborg, Johan Rydberg, Mats Tröjbom, Sten Berglund, Emma Johansson, Anders Löfgren, Peter Saetre, Sara Nordén, Gustav Sohlenius, Eva Andersson, Johannes Petrone, Micke Borgiel, Ulrik Kautsky, and Hjalmar Laudon

Abstract. Global warming is expected to be most pronounced in the Arctic where permafrost thaw and release of old carbon may provide an important feedback mechanism to the climate system. To better understand and predict climate effects and feedbacks on the cycling of elements within and between ecosystems in northern latitude landscapes, a thorough understanding of the processes related to transport and cycling of elements is required. A fundamental requirement to reach a better process understanding is to have access to high-quality empirical data on chemical concentrations and biotic properties for a wide range of ecosystem domains and functional units (abiotic and biotic pools). The aim of this study is therefore to make one of the most extensive field data sets from a periglacial catchment readily available that can be used both to describe present-day periglacial processes and to improve predictions of the future. Here we present the sampling and analytical methods, field and laboratory equipment and the resulting biogeochemical data from a state-of-the-art whole-ecosystem investigation of the terrestrial and aquatic parts of a lake catchment in the Kangerlussuaq region, West Greenland. This data set allows for the calculation of whole-ecosystem mass balance budgets for a long list of elements, including carbon, nutrients and major and trace metals. The data set is freely available and can be downloaded from PANGAEA: doi:10.1594/PANGAEA.860961.

Short summary
This paper presents a biogeochemical and ecological data set from the Kangerlussuaq region, western Greenland. The data set is used to conceptualize and model terrestrial and limnic ecosystems as well as the land–lake linkage. Both biotic and abiotic data is presented and will be used for biogeochemical mass-balance and transport calculations. The data set constitutes an important source in order to understand and describe accumulation and flow of matter within periglacial landscapes.