Articles | Volume 3, issue 1
https://doi.org/10.5194/essd-3-19-2011
© Author(s) 2011. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/essd-3-19-2011
© Author(s) 2011. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Simulation of the time-variable gravity field by means of coupled geophysical models
Th. Gruber
Institute of Astronomical and Physical Geodesy, Technical University Munich, Munich, Germany
J. L. Bamber
Bristol Glaciology Centre, University of Bristol, Bristol, UK
M. F. P. Bierkens
Department of Physical Geography, Utrecht University, Utrecht, The Netherlands
H. Dobslaw
Deutsches GeoForschungsZentrum Potsdam, Potsdam, Germany
M. Murböck
Institute of Astronomical and Physical Geodesy, Technical University Munich, Munich, Germany
M. Thomas
Deutsches GeoForschungsZentrum Potsdam, Potsdam, Germany
L. P. H. van Beek
Department of Physical Geography, Utrecht University, Utrecht, The Netherlands
T. van Dam
University of Luxembourg, Luxembourg
L. L. A. Vermeersen
Delft Institute of Earth Observation and Space Systems, Delft University of Technology, Delft,The Netherlands
P. N. A. M. Visser
Delft Institute of Earth Observation and Space Systems, Delft University of Technology, Delft,The Netherlands
Viewed
Total article views: 6,114 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 01 Feb 2013, article published on 07 Jul 2011)
HTML | XML | Total | BibTeX | EndNote | |
---|---|---|---|---|---|
2,452 | 3,369 | 293 | 6,114 | 247 | 180 |
- HTML: 2,452
- PDF: 3,369
- XML: 293
- Total: 6,114
- BibTeX: 247
- EndNote: 180
Total article views: 4,979 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 01 Feb 2013, article published on 31 Oct 2011)
HTML | XML | Total | BibTeX | EndNote | |
---|---|---|---|---|---|
2,004 | 2,758 | 217 | 4,979 | 194 | 162 |
- HTML: 2,004
- PDF: 2,758
- XML: 217
- Total: 4,979
- BibTeX: 194
- EndNote: 162
Total article views: 1,135 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 01 Feb 2013, article published on 07 Jul 2011)
HTML | XML | Total | BibTeX | EndNote | |
---|---|---|---|---|---|
448 | 611 | 76 | 1,135 | 53 | 18 |
- HTML: 448
- PDF: 611
- XML: 76
- Total: 1,135
- BibTeX: 53
- EndNote: 18
Cited
19 citations as recorded by crossref.
- What Can be Expected from the GRACE-FO Laser Ranging Interferometer for Earth Science Applications? F. Flechtner et al. 10.1007/s10712-015-9338-y
- Impact of Groundtrack Pattern of a Single Pair Mission on the Gravity Recovery Quality S. Iran-Pour et al. 10.3390/geosciences8090315
- High Performance Clocks and Gravity Field Determination J. Müller et al. 10.1007/s11214-017-0431-z
- Finding the suitable drag-free acceleration noise level for future low-low satellite-to-satellite tracking geodesy missions S. Hong & J. Conklin 10.1016/j.asr.2018.07.022
- Ocean calibration approach for data from the GRACE Follow‐On mission P. Bender & C. Betts 10.1002/2015JB012433
- Estimating $$C_{30}$$ coefficients for GRACE/GRACE-FO time-variable gravity field models using the GRACE-OBP approach Y. Sun et al. 10.1007/s00190-023-01707-3
- MOCASS: A Satellite Mission Concept Using Cold Atom Interferometry for Measuring the Earth Gravity Field F. Migliaccio et al. 10.1007/s10712-019-09566-4
- Optimal orbits for temporal gravity recovery regarding temporal aliasing M. Murböck et al. 10.1007/s00190-013-0671-y
- Gravity field recovery in the framework of a Geodesy and Time Reference in Space (GETRIS) M. Hauk et al. 10.1016/j.asr.2017.01.028
- Accuracy assessment of high and ultra high-resolution combined GGMs, and recent satellite-only GGMs – Case studies of Poland and Ethiopia W. Godah et al. 10.2478/rgg-2024-0005
- In-Orbit Performance of the GRACE Follow-on Laser Ranging Interferometer K. Abich et al. 10.1103/PhysRevLett.123.031101
- Quality assessment of sub-Nyquist recovery from future gravity satellite missions S. Iran Pour et al. 10.1016/j.asr.2013.05.026
- Gravity field recovery of inter-satellite links between Beidou navigation satellite system (BDS) and LEO based on geodesy and time reference in space (GETRIS) Y. Xiao et al. 10.1016/j.asr.2024.03.025
- Comparing seven candidate mission configurations for temporal gravity field retrieval through full-scale numerical simulation B. Elsaka et al. 10.1007/s00190-013-0665-9
- Modeling of present-day atmosphere and ocean non-tidal de-aliasing errors for future gravity mission simulations H. Dobslaw et al. 10.1007/s00190-015-0884-3
- The updated ESA Earth System Model for future gravity mission simulation studies H. Dobslaw et al. 10.1007/s00190-014-0787-8
- Optimizing estimates of annual variations and trends in geocenter motion and J2 from a combination of GRACE data and geophysical models Y. Sun et al. 10.1002/2016JB013073
- Earth's core variability from magnetic and gravity field observations A. Saraswati et al. 10.5194/se-14-1267-2023
- Effect of Earth-Moon’s gravity on TianQin’s range acceleration noise X. Zhang et al. 10.1103/PhysRevD.103.062001
19 citations as recorded by crossref.
- What Can be Expected from the GRACE-FO Laser Ranging Interferometer for Earth Science Applications? F. Flechtner et al. 10.1007/s10712-015-9338-y
- Impact of Groundtrack Pattern of a Single Pair Mission on the Gravity Recovery Quality S. Iran-Pour et al. 10.3390/geosciences8090315
- High Performance Clocks and Gravity Field Determination J. Müller et al. 10.1007/s11214-017-0431-z
- Finding the suitable drag-free acceleration noise level for future low-low satellite-to-satellite tracking geodesy missions S. Hong & J. Conklin 10.1016/j.asr.2018.07.022
- Ocean calibration approach for data from the GRACE Follow‐On mission P. Bender & C. Betts 10.1002/2015JB012433
- Estimating $$C_{30}$$ coefficients for GRACE/GRACE-FO time-variable gravity field models using the GRACE-OBP approach Y. Sun et al. 10.1007/s00190-023-01707-3
- MOCASS: A Satellite Mission Concept Using Cold Atom Interferometry for Measuring the Earth Gravity Field F. Migliaccio et al. 10.1007/s10712-019-09566-4
- Optimal orbits for temporal gravity recovery regarding temporal aliasing M. Murböck et al. 10.1007/s00190-013-0671-y
- Gravity field recovery in the framework of a Geodesy and Time Reference in Space (GETRIS) M. Hauk et al. 10.1016/j.asr.2017.01.028
- Accuracy assessment of high and ultra high-resolution combined GGMs, and recent satellite-only GGMs – Case studies of Poland and Ethiopia W. Godah et al. 10.2478/rgg-2024-0005
- In-Orbit Performance of the GRACE Follow-on Laser Ranging Interferometer K. Abich et al. 10.1103/PhysRevLett.123.031101
- Quality assessment of sub-Nyquist recovery from future gravity satellite missions S. Iran Pour et al. 10.1016/j.asr.2013.05.026
- Gravity field recovery of inter-satellite links between Beidou navigation satellite system (BDS) and LEO based on geodesy and time reference in space (GETRIS) Y. Xiao et al. 10.1016/j.asr.2024.03.025
- Comparing seven candidate mission configurations for temporal gravity field retrieval through full-scale numerical simulation B. Elsaka et al. 10.1007/s00190-013-0665-9
- Modeling of present-day atmosphere and ocean non-tidal de-aliasing errors for future gravity mission simulations H. Dobslaw et al. 10.1007/s00190-015-0884-3
- The updated ESA Earth System Model for future gravity mission simulation studies H. Dobslaw et al. 10.1007/s00190-014-0787-8
- Optimizing estimates of annual variations and trends in geocenter motion and J2 from a combination of GRACE data and geophysical models Y. Sun et al. 10.1002/2016JB013073
- Earth's core variability from magnetic and gravity field observations A. Saraswati et al. 10.5194/se-14-1267-2023
- Effect of Earth-Moon’s gravity on TianQin’s range acceleration noise X. Zhang et al. 10.1103/PhysRevD.103.062001
Saved (preprint)
Latest update: 21 Nov 2024
Altmetrics
Final-revised paper
Preprint