Articles | Volume 17, issue 9
https://doi.org/10.5194/essd-17-4779-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/essd-17-4779-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Multi-element dataset of soil profiles across climatic zones in China's mountains
Yuying Wu
Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu 610213, China
University of Chinese Academy of Sciences, Beijing 10049, China
Yuhan Wang
Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu 610213, China
Key Laboratory of Green Utilization of Critical Non-metallic Mineral Resources, Ministry of Education, Wuhan University of Technology, Wuhan 430070, China
Wenzheng Yang
Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu 610213, China
Jie Zhang
Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu 610213, China
Yanhong Wu
Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu 610213, China
State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
Gan Zhang
State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
Haijian Bing
CORRESPONDING AUTHOR
Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu 610213, China
Related authors
No articles found.
Tao Cao, Cuncun Xu, Hao Chen, Jianzhong Song, Jun Li, Haiyan Song, Bin Jiang, Yin Zhong, and Ping'an Peng
Atmos. Chem. Phys., 25, 11597–11610, https://doi.org/10.5194/acp-25-11597-2025, https://doi.org/10.5194/acp-25-11597-2025, 2025
Short summary
Short summary
This study investigated the evolution of biomass and water-soluble organic matter (WSOM) derived from coal combustion during an aqueous photochemical process. The results indicate that photochemical aging induces distinct changes in the optical and molecular properties of WSOM. More pronounced alterations were observed during OH photooxidation than direct photolysis. Our results also demonstrate that atmospheric photooxidation may represent a significant source of black-carbon-like substances.
Pingyang Li, Boji Lin, Zhihua Zhou, Jing Li, Zhineng Cheng, Jun Li, Sanyuan Zhu, Shizhen Zhao, Guangcai Zhong, and Gan Zhang
EGUsphere, https://doi.org/10.5194/egusphere-2025-3882, https://doi.org/10.5194/egusphere-2025-3882, 2025
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
Urban areas exhibit high carbon footprints yet significant mitigation potential, requiring precise quantification of CO2 sources for effective carbon budgeting. While previous studies focused predominantly on fossil fuel CO2, biogenic CO2 (CO2bio) dynamics remain less understood. Here we show that Δ14CO2 tracers – combined with multi-source data – enable partitioning of CO2bio into three components and identification of their seasonal drivers, advancing our understanding of urban carbon budgets.
Pingyang Li, Boji Lin, Zhineng Cheng, Jing Li, Jun Li, Duohong Chen, Tao Zhang, Run Lin, Sanyuan Zhu, Jun Liu, Yujun Lin, Shizhen Zhao, Guangcai Zhong, Zhenchuan Niu, Ping Ding, and Gan Zhang
EGUsphere, https://doi.org/10.5194/egusphere-2025-1931, https://doi.org/10.5194/egusphere-2025-1931, 2025
Short summary
Short summary
Our study indicates fossil fuel CO2 (CO2ff) reductions in Chinese megacities via atmospheric Δ(14CO2) and δ(13CO2) measurements, driven by coal-to-gas transitions and combustion efficiency improvement. Three-decade data show steeper declined urban RCO/CO2ff ratios than inventory estimates, implying underestimation of efficiency improvements and CO reductions. Integrating top-down observations with inventories is critical to track policy-driven emission shifts and optimize co-benefit strategies.
Motilal Ghimire, Dibas Shrestha, Raju Chauhan, Amrit Thapa, Til Prasad Pangaili Sharma, Krishna Prasad Sharma, Sher Bahadur Gurung, Sundar Devkota, Prabin Bhandari, Sikesh Koirala, Yanhong Wu, Niroj Timalsina, and Jeevan Kutu
EGUsphere, https://doi.org/10.5194/egusphere-2025-1303, https://doi.org/10.5194/egusphere-2025-1303, 2025
Short summary
Short summary
In the Upper Karnali Basin, a critical water source for millions of people, snow and glaciers are shrinking, and snowlines have shifted as temperatures rise over the last two decades. Snow and glacier decline has threatened water supplies for farming, drinking, and hydropower. This study shows how climate change is reshaping the region’s frozen landscapes, risking water security for communities downstream. Protecting these icy reservoirs is vital to safeguarding lives and ecosystems.
Yangzhi Mo, Jun Li, Guangcai Zhong, Sanyuan Zhu, Shizhen Zhao, Jiao Tang, Hongxing Jiang, Zhineng Cheng, Chongguo Tian, Yingjun Chen, and Gan Zhang
Atmos. Chem. Phys., 24, 7755–7772, https://doi.org/10.5194/acp-24-7755-2024, https://doi.org/10.5194/acp-24-7755-2024, 2024
Short summary
Short summary
In this study, we found that biomass burning (31.0 %) and coal combustion (31.1 %) were the dominant sources of water-insoluble organic carbon in China, with coal combustion sources exhibiting the strongest light-absorbing capacity. Additionally, we propose a light-absorbing carbonaceous continuum, revealing that components enriched with fossil sources tend to have stronger light-absorbing capacity, higher aromaticity, higher molecular weights, and greater recalcitrance in the atmosphere.
Wenwen Ma, Rong Sun, Xiaoping Wang, Zheng Zong, Shizhen Zhao, Zeyu Sun, Chongguo Tian, Jianhui Tang, Song Cui, Jun Li, and Gan Zhang
Atmos. Chem. Phys., 24, 1509–1523, https://doi.org/10.5194/acp-24-1509-2024, https://doi.org/10.5194/acp-24-1509-2024, 2024
Short summary
Short summary
This is the first report of long-term atmospheric PAH monitoring around the Bohai Sea. The results showed that the concentrations of PAHs in the atmosphere around the Bohai Sea decreased from June 2014 to May 2019, especially the concentrations of highly toxic PAHs. This indicates that the contributions from PAH sources changed to a certain extent in different areas, and it also led to reductions in the related health risk and medical costs following pollution prevention and control.
Zeyu Sun, Zheng Zong, Yang Tan, Chongguo Tian, Zeyu Liu, Fan Zhang, Rong Sun, Yingjun Chen, Jun Li, and Gan Zhang
Atmos. Chem. Phys., 23, 12851–12865, https://doi.org/10.5194/acp-23-12851-2023, https://doi.org/10.5194/acp-23-12851-2023, 2023
Short summary
Short summary
This is the first report of ship-emitted nitrogen stable isotope composition (δ15N) of nitrogen oxides (NOx). The results showed that δ15N–NOx from ships was −18.5 ± 10.9 ‰ and increased monotonically with tightening emission regulations. The selective catalytic reduction system was the most vital factor. The temporal variation in δ15N–NOx was evaluated and can be used to select suitable δ15N–NOx for a more accurate assessment of the contribution of ship-emitted exhaust to atmospheric NOx.
Xiangyun Zhang, Jun Li, Sanyuan Zhu, Junwen Liu, Ping Ding, Shutao Gao, Chongguo Tian, Yingjun Chen, Ping'an Peng, and Gan Zhang
Atmos. Chem. Phys., 23, 7495–7502, https://doi.org/10.5194/acp-23-7495-2023, https://doi.org/10.5194/acp-23-7495-2023, 2023
Short summary
Short summary
The results show that 14C elemental carbon (EC) was not only related to the isolation method but also to the types and proportions of the biomass sources in the sample. The hydropyrolysis (Hypy) method, which can be used to isolate a highly stable portion of ECHypy and avoid charring, is a more effective and stable approach for the matrix-independent 14C quantification of EC in aerosols, and the 13C–ECHypy and non-fossil ECHypy values of SRM1649b were –24.9 ‰ and 11 %, respectively.
Tingting Li, Jun Li, Zeyu Sun, Hongxing Jiang, Chongguo Tian, and Gan Zhang
Atmos. Chem. Phys., 23, 6395–6407, https://doi.org/10.5194/acp-23-6395-2023, https://doi.org/10.5194/acp-23-6395-2023, 2023
Short summary
Short summary
N-NH4+ and N-NO3- were vital components in nitrogenous aerosols and contributed 69 % to total nitrogen in PM2.5. Coal combustion was still the most important source of urban atmospheric NO3-. However, the non-agriculture sources play an increasingly important role in NH4+ emissions.
Jiao Tang, Jun Li, Shizhen Zhao, Guangcai Zhong, Yangzhi Mo, Hongxing Jiang, Bin Jiang, Yingjun Chen, Jianhui Tang, Chongguo Tian, Zheng Zong, Jabir Hussain Syed, Jianzhong Song, and Gan Zhang
EGUsphere, https://doi.org/10.5194/egusphere-2023-403, https://doi.org/10.5194/egusphere-2023-403, 2023
Preprint archived
Short summary
Short summary
This study provides a comprehensive molecular identification of atmospheric common fluorescent components and deciphers their related formation pathways. The fluorescent components varied in molecular composition, and a dominant oxidation pathway for the formation of humic-like fluorescent components was suggested, notwithstanding their different precursor types. Our findings are expected to be helpful to further studies using the EEM-PARAFAC as a tool to study atmospheric BrC.
Tao Cao, Meiju Li, Cuncun Xu, Jianzhong Song, Xingjun Fan, Jun Li, Wanglu Jia, and Ping'an Peng
Atmos. Chem. Phys., 23, 2613–2625, https://doi.org/10.5194/acp-23-2613-2023, https://doi.org/10.5194/acp-23-2613-2023, 2023
Short summary
Short summary
This work comprehensively investigated the fluorescence data of light-absorbing organic compounds, water-soluble organic matter in different types of aerosol samples, soil dust, and fulvic and humic acids using an excitation–emission matrix (EEM) method and parallel factor modeling. The results revealed which light-absorbing species can be detected by EEM and also provided important information for identifying the chemical composition and possible sources of these species in atmospheric samples.
Buqing Xu, Jiao Tang, Tiangang Tang, Shizhen Zhao, Guangcai Zhong, Sanyuan Zhu, Jun Li, and Gan Zhang
Atmos. Chem. Phys., 23, 1565–1578, https://doi.org/10.5194/acp-23-1565-2023, https://doi.org/10.5194/acp-23-1565-2023, 2023
Short summary
Short summary
We analyzed compound-specific dual-carbon isotope signatures (Δ14C and δ13C) of dominant secondary organic aerosol (SOA) tracer molecules (i.e., oxalic acid) to investigate the fates of SOAs in the atmosphere at five emission hotspots in China. The results indicated that SOA carbon sources and chemical processes producing SOAs vary spatially and seasonally, and these variations need to be included in Chinese climate projection models and air quality management practices.
Chunlin Zou, Tao Cao, Meiju Li, Jianzhong Song, Bin Jiang, Wanglu Jia, Jun Li, Xiang Ding, Zhiqiang Yu, Gan Zhang, and Ping'an Peng
Atmos. Chem. Phys., 23, 963–979, https://doi.org/10.5194/acp-23-963-2023, https://doi.org/10.5194/acp-23-963-2023, 2023
Short summary
Short summary
In this study, PM2.5 samples were obtained during a winter haze event in Guangzhou, China, and light absorption and molecular composition of humic-like substances (HULIS) were investigated by UV–Vis spectrophotometry and ultrahigh-resolution mass spectrometry. The findings obtained present some differences from the results reported in other regions of China and significantly enhanced our understanding of HULIS evolution during haze bloom-decay processes in the subtropic region of southern China.
Hongxing Jiang, Jun Li, Jiao Tang, Min Cui, Shizhen Zhao, Yangzhi Mo, Chongguo Tian, Xiangyun Zhang, Bin Jiang, Yuhong Liao, Yingjun Chen, and Gan Zhang
Atmos. Chem. Phys., 22, 6919–6935, https://doi.org/10.5194/acp-22-6919-2022, https://doi.org/10.5194/acp-22-6919-2022, 2022
Short summary
Short summary
We conducted field observation employing Fourier transform ion cyclotron resonance mass spectrometry to characterize the molecular composition and major formation pathways or sources of organosulfur compounds in Guangzhou, where is heavily influenced by biogenic–anthropogenic interactions and has high relative humidity and temperature. We suggested that heterogeneous reactions such as SO2 uptake and heterogeneous oxidations are important to the molecular variations of organosulfur compounds.
Jiao Tang, Jiaqi Wang, Guangcai Zhong, Hongxing Jiang, Yangzhi Mo, Bolong Zhang, Xiaofei Geng, Yingjun Chen, Jianhui Tang, Congguo Tian, Surat Bualert, Jun Li, and Gan Zhang
Atmos. Chem. Phys., 21, 11337–11352, https://doi.org/10.5194/acp-21-11337-2021, https://doi.org/10.5194/acp-21-11337-2021, 2021
Short summary
Short summary
This article provides a combined EEM–PARAFAC and statistical analysis method to explore how excitation–emission matrix (EEM) chromophores influence BrC light absorption in soluble organic matter. The application enables us to deduce that BrC absorption is mainly dependent on longer-emission-wavelength chromophores largely associated with biomass burning emissions. This method promotes the application of EEM spectroscopy and helps us understand the light absorption of BrC in the atmosphere.
Xuewu Fu, Chen Liu, Hui Zhang, Yue Xu, Hui Zhang, Jun Li, Xiaopu Lyu, Gan Zhang, Hai Guo, Xun Wang, Leiming Zhang, and Xinbin Feng
Atmos. Chem. Phys., 21, 6721–6734, https://doi.org/10.5194/acp-21-6721-2021, https://doi.org/10.5194/acp-21-6721-2021, 2021
Short summary
Short summary
TGM concentrations and isotopic compositions in 10 Chinese cities showed strong seasonality with higher TGM concentrations and Δ199Hg and lower δ202Hg in summer. We found the seasonal variations in TGM concentrations and isotopic compositions were highly related to regional surface Hg(0) emissions, suggesting land surface Hg(0) emissions are an important source of atmospheric TGM that contribute dominantly to the seasonal variations in TGM concentrations and isotopic compositions.
Cited articles
Agnan, Y., Courault, R., Alexis, M. A., Zanardo, T., Cohen, M., Sauvage, M., and Castrec-Rouelle, M.: Distribution of trace and major elements in subarctic ecosystem soils: Sources and influence of vegetation, Sci. Total Environ., 682, 650–662, https://doi.org/10.1016/j.scitotenv.2019.05.178, 2019.
Antonelli, A., Kissling, W., Flantua, S. G., Bermúdez, M. A., Mulch, A., Muellner-Riehl, A. N., Kreft, H., Linder, H. P., Badgley, C., Fjeldså, J., Fritz, S. A., Rahbek, C., Herman, F., Hooghiemstra, H., and Hoorn, C.: Geological and climatic influences on mountain biodiversity, Nat. Geosci., 11, 718–725, https://doi.org/10.1038/s41561-018-0236-z, 2018.
Augusto, L., Achat, D. L., Jonard, M., Vidal, D., and Ringeval, B.: Soil parent material – A major driver of plant nutrient limitations in terrestrial ecosystems, Global Change Biol., 23, 3808–3824, https://doi.org/10.1111/gcb.13691, 2017.
Barrow, N. J. and Hartemink, A. E.: The effects of pH on nutrient availability depend on both soils and plants, Plant Soil, 487, 21–37, https://doi.org/10.1007/s11104-023-05960-5, 2023.
Bauters, M., Janssens, I. A., Wasner, D., Doetterl, S., Vermeir, P., Griepentrog, M., Drake, T. W., Six, J., Barthel, M., Baumgartner, S., Van Oost, K., Makelele, I. A., Ewango, C. E., Verheyen, K., and Boeckx, P.: Increasing calcium scarcity along Afrotropical forest succession, Nat. Ecol. Evol., 6, 1122–1131, https://doi.org/10.1038/s41559-022-01810-2, 2022.
Bing, H. J., Wu, Y. J., Zhou, J., Li, R., Luo, J., and Yu, D.: Vegetation and cold trapping modulating elevation-dependent distribution of trace metals in soils of a high mountain in Eastern Tibetan Plateau, Sci. Rep., 6, 24081, https://doi.org/10.1038/srep24081, 2016.
Bing, H. J., Wu, Y. H., Li, J., Xiang, Z. X., Luo, X. S., Zhou, J., Sun, H. Y., and Zhang, G.: Biomonitoring trace element contamination impacted by atmospheric deposition in China's remote mountains, Atmos. Res., 224, 30–41, https://doi.org/10.1016/j.atmosres.2019.03.018, 2019.
Bing, H. J., Qiu, S. J., Tian, X., Li, J., Zhu, H., Wu, Y. H., and Zhang, G.: Trace metal contamination in soils from mountain regions across China: Spatial distribution, sources, and potential drivers, Soil Ecol. Lett., 3, 189–206, https://doi.org/10.1007/s42832-021-0080-8, 2021.
Bing, H. J., Liu, Y., Huang, J. C., Tian, X., Zhu, H., and Wu, Y. H.: Dam construction attenuates trace metal contamination in water through increased sedimentation in the Three Gorges Reservoir, Water Res., 217, 118419, https://doi.org/10.1016/j.watres.2022.118419, 2022.
Chinese Soil Taxonomy Research Group: Institute of Soil Science Chinese Academy of Sciences, Cooperative Research Group on Chinese Soil Taxonomy: Retrieval system for China soil classification , 3rd edition, University of Science and Technology of China Press, China, 275 pp., ISBN 7312012620, 2001 (in Chinese).
Cronan, C. S.: Soil Biogeochemistry, in: Ecosystem Biogeochemistry, Springer Textbooks in Earth Sciences, Geography and Environment, Springer, Cham, 11–29, https://doi.org/10.1007/978-3-319-66444-6_2, 2018.
Cui, Y. X., Bing, H. J., Moorhead, D. L., Delgado-Baquerizo, M., Ye, L. P., Yu, J. L., Zhang, S. P., Wang, X., Peng, S. S., Guo, X., Zhu, B., Chen, J., Tan, W. F., Wang, Y. Q., Zhang, X. C., and Fang, L. C.: Ecoenzymatic stoichiometry reveals widespread soil phosphorus limitation to microbial metabolism across Chinese forests, Commun. Earth Environ., 3, 184, https://doi.org/10.1038/s43247-022-00523-5, 2022.
Cunha, H. F., Andersen, K. M., Lugli, L. F., Santana, F. D., Aleixo, I. F., Moraes, A. M., Garcia, S., di Ponzio, R., Mendoza, E. O., Brum, B., Rosa, J. S., Cordeiro, A. L., Portela, B. T., Ribeiro, G., Coelho, S. D., de Souza, S. T., Silva, L. S., Antonieto, F., Pires, M. D., Salomão, A. C., Miron, A. C., de Assis, R. L., Domingues, T. F., Aragão, L. E., Meir, P., Camargo, J. L., Manzi, A. O., Nagy, L., Mercado, L. M., Hartley, I. P., and Quesada, C. A.: Direct evidence for phosphorus limitation on Amazon forest productivity, Nature, 608, 558–562, https://doi.org/10.1038/s41586-022-05085-2, 2022.
Dai, Z. M., Guo, X., Lin, J. H., Wang, X., He, D., Zeng, R. J., Meng, J., Luo, J. P., Delgado-Baquerizo, M., Moreno-Jiménez, E., Brookes, P. C., and Xu, J. M.: Metallic micronutrients are associated with the structure and function of the soil microbiome, Nat. Commun., 14, 8456, https://doi.org/10.1038/s41467-023-44182-2, 2023.
Dainese, M., Crepaz, H., Bottarin, R., Fontana, V., Guariento, E., Hilpold, A., Obojes, N., Paniccia, C., Scotti, A., Seeber, J., Steinwandter, M., Tappeiner, U., and Niedrist, G.: Global change experiments in mountain ecosystems: A systematic review, Ecol. Monogr., 94, e1632, https://doi.org/10.1002/ecm.1632, 2024.
Elser, J. J., Fagan, W. F., Kerkhoff, A. J., Swenson, N. G., and Enquist, B. J.: Biological stoichiometry of plant production: metabolism, scaling and ecological response to global change, New Phytol., 186, 593–608, https://doi.org/10.1111/j.1469-8137.2010.03214.x, 2010.
Fang, X. M., Zhang, X. L., Chen, F. S., Zong, Y. J., Bu, W. S., Wan, S. Z., Luo, Y. Q., and Wang, H. M.: Phosphorus addition alters the response of soil organic carbon decomposition to nitrogen deposition in a subtropical forest, Soil Biol. Biochem., 133, 119–128, https://doi.org/10.1016/j.soilbio.2019.03.005, 2019.
Feng, J. G. and Zhu, B.: Global patterns and associated drivers of priming effect in response to nutrient addition, Soil Biol. Biochem., 153, 108118, https://doi.org/10.1016/j.soilbio.2020.108118, 2021.
Feng, W., Mariotte, P., Gu, J., Song, X., Yang, J., Yang, F., Zhao, Y., and Zhang, G.: Impacts of geography, climate, soil properties and vegetation characteristics on soil C:N:P stoichiometry across the Qinghai-Tibetan Plateau, Pedosphere, https://doi.org/10.1016/j.pedsph.2024.06.012, 2024.
Fernández-Martínez, M.: From atoms to ecosystems: Elementome diversity meets ecosystem functioning, New Phytol., 234, 35–42, https://doi.org/10.1111/nph.17864, 2021.
Giovannelli, D.: Trace metal availability and the evolution of biogeochemistry, Nat. Rev. Earth Environ., 4, 597–598, https://doi.org/10.1038/s43017-023-00477-y, 2023.
Haghverdi, K. and Kooch, Y.: Effects of diversity of tree species on nutrient cycling and soil-related processes, Catena, 178, 335–344, https://doi.org/10.1016/j.catena.2019.03.041, 2019.
Han, W. X., Fang J. Y., Reich, P. B., Woodward, F. I., and Wang, Z. H.: Biogeography and variability of eleven mineral elements in plant leaves across gradients of climate, soil and plant functional type in China, Ecol. Lett., 14, 788–796, https://doi.org/10.1111/j.1461-0248.2011.01641.x, 2011.
Hay Mele, B., Monticelli, M., Leone, S., Bastoni, D., Barosa, B., Cascone, M., Migliaccio, F., Montemagno, F., Ricciardelli, A., Tonietti, L., Rotundi, A., Cordone, A., and Giovannelli, D.: Oxidoreductases and metal cofactors in the functioning of the earth, Essays Biochem., 67, 653–670, https://doi.org/10.1042/EBC20230012, 2023.
Hou, D. Y., Jia, X. Y., Wang, L. W., McGrath, S. P., Zhu, Y. G., Hu, Q., Zhao, F. J., Bank, M. S., O'Connor, D., and Nriagu, J.: Global soil pollution by toxic metals threatens agriculture and human health, Science, 388, 316–321, https://doi.org/10.1126/science.adr5214, 2025.
Jin, J. Y., Zhao, D. Y., Wang, J. P., Wang, Y. H., Zhu, H., Wu, Y. H., Fang, L. C., and Bing, H. J.: Fungal community determines soil multifunctionality during vegetation restoration in metallic tailing reservoir, J. Hazard Mater., 478, 135438, https://doi.org/10.1016/j.jhazmat.2024.135438, 2024.
Jobbágy, E. G. and Jackson, R. B.: The distribution of soil nutrients with depth: Global patterns and the imprint of plants, Biogeochemistry, 53, 51–77, https://doi.org/10.1023/A:1010760720215, 2001.
Jobbágy, E. G. and Jackson, R. B.: The uplift of soil nutrients by plants: Biogeochemical consequences across scales, Ecology, 85, 2380–2389, https://doi.org/10.1890/03-0245, 2004.
Kaspari, M. and Powers, J. S.: Biogeochemistry and geographical ecology: Embracing all twenty-five elements required to build organisms, Am. Nat., 188, 62–73, https://doi.org/10.1086/687576, 2016.
Kirkby, M. J.: A conceptual model for physical and chemical soil profile evolution, Geoderma, 331, 121–130, https://doi.org/10.1016/j.geoderma.2018.06.009, 2018.
Kou, Y. P., Zhao, W. Q., Liu, Y. J., Wu, Y. H., Xiao, J. T., Wang, X. H., Bing, H. J., and Liu, Q.: Diversity patterns and drivers of methanotrophic gene distributions in forest soils across a large latitudinal gradient, Global Ecol. Biogeogr., 30, 2004–2015, https://doi.org/10.1111/geb.13362, 2021.
Lu, L. M., Mao, L. F., Yang, T., Ye, J. F., Liu, B., Li, H. L., Sun, M., Miller, J. T., Mathews, S., Hu, H. H., Niu, Y. T., Peng, D. X., Chen, Y. H., Smith, S. A., Chen, M., Xiang, K. L., Le, C. T., Dang, V. C., Lu, A. M., Soltis, P. S., Soltis, D. E., Li, J. H., and Chen, Z. D.: Evolutionary history of the angiosperm flora of China, Nature, 554, 234–238, https://doi.org/10.1038/nature25485, 2018.
Luo, W., Sardans, J., Dijkstra, F. A., Peñuelas, J., Lü, X. T., Wu, H., Li, M. H., Bai, E., Wang, Z., Han, X., and Jiang, Y.: Thresholds in decoupled soil-plant elements under changing climatic conditions, Plant Soil, 409, 159–173, https://doi.org/10.1007/s11104-016-2955-5, 2016a.
Luo, Y., Ahlström, A., Allison, S., Batjes, N., Brovkin, V., Carvalhais, N., Chappell, A., Ciais, P., Davidson, E., Finzi, A., Georgiou, K., Guenet, B., Hararuk, O., Harden, J., He, Y., Hopkins, F., Jiang, L., Koven, C., Jackson, R., Jones, C. D., Lara, M. J., Liang, J., McGuire, A. D., Parton, W., Peng, C., Randerson, J. T., Salazar, A., Sierra, C. A., Smith, M. J., Tian, H., Todd-Brown, K. E. O., Torn, M., van Groenigen, K. J., Wang, Y. P., West, T. O., Wei, Y., Wieder, W. R., Xia, J., Xu, X., Xu, X. F., and Zhou, T.: Toward more realistic projections of soil carbon dynamics by Earth system models, Global Biogeochem. Cy., 30, 40–56, https://doi.org/10.1002/2015GB005239, 2016b.
Lynch, J. P. and St. Clair, S. B.: Mineral stress: The missing link in understanding how global climate change will affect plants in real world soils, Field Crops Res., 90, 101–115, https://doi.org/10.1016/j.fcr.2004.07.008, 2004.
Maynard, D. G. and Curran, M. P.: Bulk density measurement in forest soils, Soil sampling and methods of analysis, edited by: Carter, M. R. and Gregorich, E. G., 863–869, https://doi.org/10.1201/9781420005271, 2007.
McLennan, S. M.: Weathering and Global Denudation, J. Geol., 101, 295–303, https://doi.org/10.1086/648222, 1993.
Molina, A., Vanacker, V., Chadwick, O., Zhiminaicela, S., Corre, M. D., and Veldkamp, E.: Vegetation patterns associated with nutrient availability and supply in high-elevation tropical Andean ecosystems, Biogeosciences, 21, 3075–3091, https://doi.org/10.5194/bg-21-3075-2024, 2024.
Moreno-Jiménez, E., Plaza, C., Saiz, H., Manzano, R., Flagmeier, M., and Maestre, F. T.: Aridity and reduced soil micronutrient availability in global drylands, Nat. Sustain., 2, 371–377, https://doi.org/10.1038/s41893-019-0262-x, 2019.
Moreno-Jiménez, E., Maestre, F. T., Flagmeier, M., Guirado, E., Berdugo, M., Bastida, F., Dacal, M., Díaz-Martínez, P., Ochoa-Hueso, R., Plaza, C., Rillig, M. C., Crowther, T. W., and Delgado-Baquerizo, M.: Soils in warmer and less developed countries have less micronutrients globally, Global Change Biol., 29, 522–532, https://doi.org/10.1111/gcb.16478, 2022.
Nagajyoti, P. C., Lee, K. D., and Sreekanth, T. V. M.: Heavy metals, occurrence and toxicity for plants: A review, Environ. Chem. Lett., 8, 199–216, https://doi.org/10.1007/s10311-010-0297-8, 2010.
Nesbitt, H. W. and Young, G. M.: Early Proterozoic climates and plate motions inferred from major element chemistry of lutites, Nature, 299, 715–717, https://doi.org/10.1038/299715a0, 1982.
Nogués-Bravo, D., Araújo, M. B., Errea, M. P., and Martínez-Rica, J. P.: Exposure of global mountain systems to climate warming during the 21st Century, Global Environ. Change, 17, 420–428, https://doi.org/10.1016/j.gloenvcha.2006.11.007, 2007.
Ochoa-Hueso, R., Delgado-Baquerizo, M., Risch, A. C., Ashton, L., Augustine, D., Bélanger, N., Bridgham, S., Britton, A. J., Bruckman, V. J., Camarero, J. J., Cornelissen, G., Crawford, J. A., Dijkstra, F. A., Diochon, A., Earl, S., Edgerley, J., Epstein, H., Felton, A., Fortier, J., Gagnon, D., Greer, K., Griffiths, H. M., Halde, C., Hanslin, H. M., Harris, L. I., Hartsock, J. A., Hendrickson, P., Hovstad, K. A., Hu, J., Jani, A. D., Kent, K., Kerdraon-Byrne, D., Khalsa, S. D. S., Lai, D. Y. F., Lambert, F., LaMontagne, J. M., Lavergne, S., Lawrence, B. A., Littke, K., Leeper, A. C., Licht, M. A., Liebig, M. A., Lynn, J. S., Maclean, J. E., Martinsen, V., McDaniel, M. D., McIntosh, A. C. S., Miesel, J. R., Miller, J., Mulvaney, M. J., Moreno, G., Newstead, L., Pakeman, R. J., Pergl, J., Pinno, B. D., Piñeiro, J., Quigley, K., Radtke, T. M., Reed, P., Rolo, V., Rudgers, J., Rutherford, P. M., Sayer, E. J., Serrano-Grijalva, L., Strack, M., Sukdeo, N., Taylor, A. F. S., Truax, B., Tsuji, L. J. S., van, G., Vaness, B. M., Van, S., Vítková, M., Weigel, R., Wilton, M. J., Yano, Y., Teen, E., and Bremer, E.: Bioavailability of macro and micronutrients across global topsoils: Main drivers and global change impacts, Global Biogeochem. Cy., 37, e2022GB007680, https://doi.org/10.1029/2022GB007680, 2023.
Peñuelas, J., Fernández-Martínez, M., Ciais, P., Jou, D., Piao, S. L., Obersteiner, M., Vicca, S., Janssens, I. A., and Sardans, J.: The bioelements, the elementome, and the biogeochemical niche, Ecology, 100, e02652, https://doi.org/10.1002/ecy.2652, 2019.
Ren, H., Zhou, Q., He, J., Hou, Y., Jiang, Y., Rodrigues, J. L. M., Cobb, A. B., Wilson, G. W. T., Hu, J., and Zhang, Y.: Determining landscape-level drivers of variability for over fifty soil chemical elements, Sci. Total Environ., 657, 279–286, https://doi.org/10.1016/j.scitotenv.2018.12.024, 2019.
Rizzo, G., Agus, F., Susanti, Z., Buresh, R., Cassman, K. G., Dobermann, A., Agustiani, N., Aristya, V. E., Batubara, S. F., Istiqomah, N., Oberthür, T., Pasuquin, J. M., Samijan, Witt, C., and Grassini, P.: Potassium limits productivity in intensive cereal cropping systems in Southeast Asia, Nat. Food, 5, 929–938, https://doi.org/10.1038/s43016-024-01065-z, 2024.
Sayer, E. J., Rodtassana, C., Sheldrake, M., Sheldrake, M., Bréchet, L. M., Ashford, O. S., Lopez-Sangil, L., Kerdraon-Byrne, D., Castro, B., Turner, B. L., Wright, S. J., and Tanner, E. V.: Revisiting nutrient cycling by litterfall – Insights from 15 years of litter manipulation in old-growth lowland tropical forest, Adv. Ecol. Res., 62, 173–223, https://doi.org/10.1016/bs.aecr.2020.01.002, 2020.
Schimel, D. S., Pavlick, R. P., Fisher, J. B., Asner, G. P., Saatchi, S. S., Townsend, P. A., Miller, C. E., Frankenberg, C., Hibbard, K. A., and Cox, P. M.: Observing terrestrial ecosystems and the carbon cycle from space, Global Change Biol., 21, 1762–1776, https://doi.org/10.1111/gcb.12822, 2015.
Shafiee, R. T., Diver, P., Snow, J. T., Zhang, Q., and Rickaby, R. E.: Marine ammonia-oxidising archaea and bacteria occupy distinct iron and copper niches, ISME Commun., 1, https://doi.org/10.1038/s43705-021-00001-7, 2021.
Shangguan, W., Dai, Y., Duan, Q., Liu, B., and Yuan, H.: A global soil data set for Earth system modeling, J. Adv. Model. Earth Syst., 6, 249–263, https://doi.org/10.1002/2013MS000293, 2014.
Shi, G. S., Sun, W. Y., Wei, S. G., Wei, Z. W., Yuan, H., Li, L., Sun, X. L., Zhang, Y. Liang, H. B., Li, D. X., Huang, F. N., Li, Q. L., and Dai, Y. J.: A China dataset of soil properties for land surface modeling (version 2), Earth Syst. Sci. Data, 17, 517–543, https://doi.org/10.5194/essd-17-517-2025, 2025.
Steinnes, E. and Lierhagen, S.: Geographical distribution of trace elements in natural surface soils: Atmospheric influence from natural and anthropogenic sources, Appl. Geochem., 88, 2–9, https://doi.org/10.1016/j.apgeochem.2017.03.013, 2018.
Sundqvist, M. K., Sanders, N. J., and Wardle, D. A.: Community and ecosystem responses to elevational gradients: processes, mechanisms and insights for global change, Annu. Rev. Ecol. Evol. Syst., 44, 261–280, https://doi.org/10.1146/annurev-ecolsys-110512-135750, 2013.
Tian, D., Reich, P. B., Chen, H. Y. H., Xiang, Y., Luo, Y., Shen, Y., Meng, C., Han, W., and Niu, S.: Global changes alter plant multi-element stoichiometric coupling, New Phytol., 221, 807–817, https://doi.org/10.1111/nph.15428, 2019.
Tito, R., Vasconcelos, H. L., and Feeley, K. J.: Mountain ecosystems as natural laboratories for climate change experiments, Front. For. Glob. Change, 3, https://doi.org/10.3389/ffgc.2020.00038, 2020.
Todd-Brown, K. E., Randerson, J. T., Post, W. M., Hoffman, F. M., Tarnócai, C., Schuur, E. A., and Allison, S. D.: Causes of variation in soil carbon simulations from CMIP5 Earth system models and comparison with observations, Biogeosciences, 10, 1717–1736, https://doi.org/10.5194/bg-10-1717-2013, 2013.
Vallicrosa, H.: Beyond nitrogen and phosphorus, Nat. Ecol. Evol., 6, 1056–1057, https://doi.org/10.1038/s41559-022-01788-x, 2022.
Wang, J., Hu, A., Meng, F., Zhao, W., Yang, Y., Soininen, J., Shen, J., and Zhou, J.: Embracing mountain microbiome and ecosystem functions under global change, New Phytol., 234, 1987–2002, https://doi.org/10.1111/nph.18051, 2022.
Wang, Y., Bing, H., Moorhead, D. L., Hou, E., Wu, Y., Wang, J., Duan, C., Cui, Q., Zhang, Z., and Zhu, H.: Bacterial community structure modulates soil phosphorus turnover at early stages of primary succession, Global Biogeochem. Cy., 38, e2024GB008174, https://doi.org/10.1029/2024GB008174, 2024.
Woodruff, L. G., Cannon, W. F., Eberl, D. D., Smith, D. B., Kilburn, J. E., Horton, J. D., Garrett, R. G., and Klassen, R. A.: Continental-scale patterns in soil geochemistry and mineralogy: Results from two transects across the United States and Canada, Appl. Geochem., 24, 1369–1381, https://doi.org/10.1016/j.apgeochem.2009.04.009, 2009.
Wu, Y. Y., Wang, Y. H., Ochoa-Hueso, R., Hou, E. Q., Li, J., Zhu, H., Sardans, J., Fang, L. C., Wu, Y. H., Zhang, G., Peñuelas, J., and Bing, H. J.: From bedrock to life activity and atmospheric deposition: Drivers of soil element coupling across horizons, Environ. Res., 271, 121070, https://doi.org/10.1016/j.envres.2025.121070, 2025a.
Wu, Y. Y., Bing, H. J., Wang, Y. H., Yang, W. Z., Zhang, J., Wu, Y. H., Li, J., and Zhang, G.: Multi-element dataset across diverse climatic zones and soil profiles in China's mountains, National Tibetan Plateau/Third Pole Environment Data Center [data set], https://doi.org/10.11888/Terre.tpdc.302620, 2025b.
Yang, W. Z., Bing, H. J., Tian, X., Liu, Y., Zhu, H., Fang, L. C., and Wu, Y. H.: Unearthing the importance of soil development in total phosphorus distribution in China's mountains, Catena, 228, 107193, https://doi.org/10.2139/ssrn.4357696, 2023.
Yang, Z. J., Bing, H. J., Zhou, J., Wu, Y. H., Sun, H. Y., Luo, J., Sun, S. Q., and Wang, J. P.: Variation of mineral composition along the soil chronosequence at the Hailuogou Glacier foreland of Gongga Mountain, Acta Pedol. Sin., 52, 507-516, https://doi.org/10.11766/trxb201406180301, 2015.
Yu, G. R., Jia, Y. L., He, N. P., Zhu, J. X., Chen, Z., Wang, Q. F., Piao, S. L., Liu, X. J., He, H. L., Guo, X. B., Wen, Z., Li, P., Ding, G. A., and Goulding, K.: Stabilization of atmospheric nitrogen deposition in China over the past decade, Nat. Geosci., 12, 424–429, https://doi.org/10.1038/s41561-019-0352-4, 2019.
Zhao, D., Bol, R., Wang, J., Jin, J., Wang, Y., Wang, T., Zhu, H., Wu, Y., Fang, L., and Bing, H.: Soil heavy metal pollution promotes extracellular enzyme production by mediating microbial community structure during vegetation restoration of metallic tailing reservoir, Sci. Total Environ., 948, 174783, https://doi.org/10.1016/j.scitotenv.2024.174783, 2024.
Zhao, W. Q., Kou, Y. P., Wang, X. H., Wu, Y. H., Bing, H. J., and Liu, Q.: Broad-scale distribution of diazotrophic communities is driven more by aridity index and temperature than by soil properties across various forests, Global Ecol. Biogeogr., 29, 2119–2130, https://doi.org/10.1111/geb.13178, 2020.
Zhi, X. C., Jin, Y. B., Meng, Q., and Gao, T. S.: Trace element geochemistry of Raobazhai ultramafic complex, North Dabie Mountain, Acta Petrol. Sin., 20, 463–472, 2004.
Zomer, R. J., Xu, J., and Trabucco, A.: Version 3 of the global aridity index and potential evapotranspiration database, Sci. Data, 9, 409, https://doi.org/10.1038/s41597-022-01493-1, 2022.
Zuo, Z. J., Reich, P. B., Qiao, X. J., Zhao, H. C., Zhang, L. J., Yang, L., Lv, T., Tang, Z. Y., Yu, D., and Wang, Z.: Coordination between bioelements induce more stable macroelements than microelements in wetland plants, Ecol. Lett., 27, e70025, https://doi.org/10.1111/ele.70025, 2024.
Short summary
We developed a large, open-access dataset of mountain soil chemistry in China, based on over 1,300 samples from 166 sites across diverse climates and vegetation types. The dataset includes concentrations of 24 elements and key environmental variables like temperature, rainfall, and soil properties. This dataset offers a valuable resource for studying mountain ecosystems, supporting Earth system modeling, and predicting how soils respond to environmental change.
We developed a large, open-access dataset of mountain soil chemistry in China, based on over...
Altmetrics
Final-revised paper
Preprint