Articles | Volume 17, issue 8
https://doi.org/10.5194/essd-17-4235-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/essd-17-4235-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
A dataset for lake level changes in the Tibetan Plateau from 2002 and 2010 to 2021 using multi-altimeter data
Jiaming Chen
Key Laboratory of Digital Earth Science, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China
Institute of Geodesy and Geoinformation, University of Bonn, Bonn, Germany
Key Laboratory of Digital Earth Science, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China
International Research Center of Big Data for Sustainable Development Goals, Beijing 100094, China
Shanmu Ma
Key Laboratory of Digital Earth Science, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China
University of Chinese Academy of Sciences, Beijing 100049, China
Yanhan Lou
Key Laboratory of Digital Earth Science, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China
University of Chinese Academy of Sciences, Beijing 100049, China
Guozhuang Shen
Key Laboratory of Digital Earth Science, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China
International Research Center of Big Data for Sustainable Development Goals, Beijing 100094, China
Lianchong Zhang
Key Laboratory of Digital Earth Science, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China
Yanhong Wu
Key Laboratory of Digital Earth Science, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China
International Research Center of Big Data for Sustainable Development Goals, Beijing 100094, China
Cited articles
Adrian, R., O'Reilly, C. M., Zagarese, H., Baines, S. B., Hessen, D. O., Keller, W., Livingstone, D. M., Sommaruga, R., Straile, D., Donk, E. V., Weyhenmeyer, G. A., and Winder, M.: Lakes as sentinels of climate change, Limnol. Oceanogr., 54, 2283–2297, https://doi.org/10.4319/lo.2009.54.6_part_2.2283, 2009.
Bamber, J. L.: Ice sheet altimeter processing scheme, Int. J. Remote Sens., 15, 925–938, https://doi.org/10.1080/01431169408954125, 1994.
Bhang, K. J., Schwartz, F. W., and Braun, A.: Verification of the Vertical Error in C-Band SRTM DEM Using ICESat and Landsat-7, Otter Tail County, MN, IEEE T. Geosci. Remote, 45, 36–44, https://doi.org/10.1109/TGRS.2006.885401, 2007.
Chen, J. and Liao, J.: Monitoring lake level changes in China using multi-altimeter data (2016–2019), J. Hydrol., 590, 125544, https://doi.org/10.1016/j.jhydrol.2020.125544, 2020.
Chen, J., Liao, J., and Wang, C.: Improved lake level estimation from radar altimeter using an automatic multiscale-based peak detection retracker, IEEE J. Sel. Top. Appl., 14, 1246–1259, https://doi.org/10.1109/JSTARS.2020.3035686, 2021.
Chen, J., Liao, J., Deng, W., Shen, G., Zhang, L., and Wang, C.: High-space-coverage lake level change data sets on the Tibetan Plateau from 2002 to 2021 using multiple altimeter data, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.973443, 2024.
Crétaux, J.-F., Arsen, A., Calmant, S., Kouraev, A., Vuglinski, V., Bergé-Nguyen, M., Gennero, M.-C., Nino, F., Abarca Del Rio, R., Cazenave, A., and Maisongrande, P.: SOLS: A lake database to monitor in the Near Real Time water level and storage variations from remote sensing data, Adv. Space Res., 47, 1497–1507, https://doi.org/10.1016/j.asr.2011.01.004, 2011.
Frappart, F., Calmant, S., Cauhopé, M., Seyler, F., and Cazenave, A.: Preliminary results of Envisat RA-2-derived water levels validation over the Amazon basin, Remote Sens. Environ., 100, 252–264, https://doi.org/10.1016/j.rse.2005.10.027, 2006.
Gao, L., Liao, J., and Shen, G.: Monitoring lake-level changes in the Qinghai-Tibetan Plateau using radar altimeter data (2002–2012), J. Appl. Remote Sens., 7, 073470, https://doi.org/10.1117/1.JRS.7.073470, 2013.
Göttl, F., Dettmering, D., Müller, F., and Christian, S.: Lake level estimation based on Cryosat-2 SAR altimetry and multi-looked waveform classification, Remote Sens., 8, 885, https://doi.org/10.3390/rs8110885, 2016.
Guerreiro, K., Fleury, S., Zakharova, E., Kouraev, A., Rémy, F., and Maisongrande, P.: Comparison of CryoSat-2 and ENVISAT radar freeboard over Arctic sea ice: toward an improved Envisat freeboard retrieval, The Cryosphere, 11, 2059–2073, https://doi.org/10.5194/tc-11-2059-2017, 2017.
Hwang, C., Cheng, Y., Han, J., Kao, R., Huang, C., Wei, S., and Wang, H.: Multi-decadal monitoring of lake level changes in the Qinghai-Tibet Plateau by the TOPEX/Poseidon-Family altimeters: Climate implication, Remote Sens., 8, 446, https://doi.org/10.3390/rs8060446, 2016.
Hwang, C., Cheng, Y., Yang, W., Zhang, G., Huang, Y., Shen, W., and Pan, Y.: Lake level changes in the Tibetan Plateau from Cryosat-2, SARAL, ICESat, and Jason-2 altimeters, Terr. Atmos. Ocean. Sci. 30, 1–18, https://doi.org/10.3319/TAO.2018.07.09.01, 2019.
Irvine, K. N. and Eberhardt, A. J.: Multiplicative, seasonal ARIMA models for Lake Erie and Lake Ontario water levels, Water Resour. Bull., 28, 385–396, https://doi.org/10.1111/j.1752-1688.1992.tb04004.x, 1992.
Jiang, L., Nielsen, K., Andersen, O. B., and Bauer-Gottwein, P.: Monitoring recent lake level variations on the Tibetan Plateau using Cryosat-2 SARIn mode data, J. Hydrol., 544, 109–124, https://doi.org/10.1016/j.jhydrol.2016.11.024, 2017.
Kleinherenbrink, M., Ditmar, P. G., and Lindenbergh, R. C.: Retracking Cryosat data in the SARIn mode and robust lake level extraction, Remote Sens. Environ., 152, 38–50, https://doi.org/10.1016/j.rse.2014.05.014, 2014.
Kleinherenbrink, M., Lindenbergh, R. C., and Ditmar, P. G.: Monitoring of lake level changes on the Tibetan Plateau and Tian Shan by retracking Cryosat SARIn waveforms, J. Hydrol., 521, 119–131, https://doi.org/10.1016/j.jhydrol.2014.11.063, 2015.
Kropáček, J., Braun, A., Kang, S., Feng, C., Ye, Q., and Hochschild, V.: Analysis of lake level changes in Nam Co in central Tibet utilizing synergistic satellite altimetry and optical imagery, Int. J. Appl. Earth Obs., 17, 3–11, https://doi.org/10.1016/j.jag.2011.10.001, 2012.
Lee, H., Shum, C. K., Kuo, C. Y., Yi, Y., and Braun, A.: Application of TOPEX altimetry for solid earth deformation studies, Terr. Atmos. Ocean. Sci., 19, 37–46, https://doi.org/10.3319/tao.2008.19.1-2.37(sa), 2008.
Lee, H., Shum, C. K., Tseng, K. H., Guo, J. Y., and Kuo, C. Y.: Present-day lake level variation from envisat altimetry over the northeastern Qinghai-Tibetan Plateau: links with precipitation and temperature, Terr. Atmos. Ocean. Sci., 22, 169–175, https://doi.org/10.3319/TAO.2010.08.09.01(TibXS), 2011.
Lee, S., Im, J., Kim, J., Kim, M., Shin, M., Kim, H. C., and Quackenbush, L. J.: Arctic sea ice thickness estimation from CryoSat-2 satellite data using machine learning-based lead detection, Remote Sens., 8, 698, https://doi.org/10.3390/rs8090698, 2016.
Lei, Y.: The water level observation of lakes on the Tibetan Plateau (2010–2017), National Tibetan Plateau Data Center, https://doi.org/10.11888/Hydrology.tpe.249464.db, 2018.
Li, H. W., Qiao, G., Wu, Y. J., Cao, Y. J., and Mi, H.: Water level monitoring on Tibetan Lakes based on Icesat and Envisat data series, Int. Arch. Photogramm., XLII-2/W7, 1529–1533, https://doi.org/10.5194/isprs-archives-XLII-2-W7-1529-2017, 2017.
Li, X., Long, D., Huang, Q., Han, P., Zhao, F., and Wada, Y.: High-temporal-resolution water level and storage change data sets for lakes on the Tibetan Plateau during 2000–2017 using multiple altimetric missions and Landsat-derived lake shoreline positions, Earth Syst. Sci. Data, 11, 1603–1627, https://doi.org/10.5194/essd-11-1603-2019, 2019.
Marshall, A. and Deng, X. L.: Image analysis for altimetry waveform selection over heterogeneous inland waters, IEEE Geosci. Remote S., 13, 1198–1202, https://doi.org/10.1109/LGRS.2016.2575068, 2016.
Martin, T. V., Zwally, H. J., Brenner, A. C., and Bindschadler, R. A.: Analysis and retracking of continental ice sheet radar altimeter waveforms, J. Geophys. Res.-Atmos., 88, 1608–1616, https://doi.org/10.1029/JC088iC03p01608, 1983.
Medina, C. E., Gomez-Enri, J., Alonso, J. J., and Villares, P.: Water level fluctuations derived from ENVISAT Radar Altimeter (RA-2) and in-situ measurements in a subtropical waterbody: Lake Izabal (Guatemala), Remote Sens. Environ., 112, 3604–3617, https://doi.org/10.1016/j.rse.2008.05.001, 2008.
Nielsen, K., Stenseng, L., Andersen, O. B., Villadsen, H., and Knudsen, P.: Validation of CryoSat-2 SAR mode based lake levels, Remote Sens. Environ., 171, 162–170, https://doi.org/10.1016/j.rse.2015.10.023, 2015.
Pavlis, N. K., Holmes, S. A., Kenyon, S. C., and Factor, J. K.: The development and evaluation of the Earth Gravitational Model 2008 (EGM2008), J. Geophys. Res. Sol. Ea., 117, 1–38, https://doi.org/10.1029/2011JB008916, 2012.
Pritchard, H. D.: Asia's glaciers are a regionally important buffer against drought, Nature, 545, 169–174, https://doi.org/10.1038/nature22062, 2017.
Ricker, R., Hendricks, S., Helm, V., Skourup, H., and Davidson, M.: Sensitivity of CryoSat-2 Arctic sea-ice freeboard and thickness on radar-waveform interpretation, The Cryosphere, 8, 1607–1622, https://doi.org/10.5194/tc-8-1607-2014, 2014.
Schindler, D. W.: Lakes as sentinels and integrators for the effects of climate change on watersheds, airsheds, and landscapes, Limnol. Oceanogr., 54, 2349–2358, https://doi.org/10.4319/lo.2009.54.6_part_2.2349, 2009.
Schwatke, C., Dettmering, D., Bosch, W., and Seitz, F.: DAHITI – an innovative approach for estimating water level time series over inland waters using multi-mission satellite altimetry, Hydrol. Earth Syst. Sci., 19, 4345–4364, https://doi.org/10.5194/hess-19-4345-2015, 2015.
Shen, X., Zhang, J., Zhang, X., Meng, J., and Ke, C.: Sea ice classification using Cryosat-2 altimeter data by optimal classifier feature assembly, IEEE Geosci. Remote S., 14, 1948–1952, https://doi.org/10.1109/LGRS.2017.2743339, 2017.
Song, C., Ye, Q., and Cheng,, X.: Shifts in water-level variation of Namco in the central Tibetan Plateau from ICESat and Cryosat-2 altimetry and station observations, Sci. Chin., 60, 1287–1297, https://doi.org/10.1007/s11434-015-0826-8, 2015.
Song, S., Liu, H., Beck, R. A., Frappart, F., Korhonen, J., Xu, M., Yang, B., Hinkel, K. M., Huang, Y., and Yu, B.: Analysis of Sentinel-3 SAR altimetry waveform retracking algorithms for deriving temporally consistent water levels over ice-covered lakes, Remote Sens. Environ., 239, 111643, https://doi.org/10.1016/j.rse.2020.111643, 2020.
Steunou, N., Desjonqueres, J.-D., Picot, N., Sengenes, P., Noubel, J., and Poisson, J. C.: AltiKa altimeter: instrument description and in flight performance, Mar. Geod., 38, 22–42, https://doi.org/10.1080/01490419.2014.988835, 2015.
Strawbridge, F. and Laxon, S.: ERS-1 altimeter fast delivery data quality flagging over land surfaces, Geophys. Res. Lett., 21, 1995–1998, https://doi.org/10.1029/94GL01730, 1994.
Wan, W., Long, D., Hong, Y., Ma, Y., Yuan, Y., Xiao, P., Duan, H., Han, Z., and Gu, X.: A lake data set for the Tibetan Plateau from the 1960s, 2005, and 2014, Sci. Data, 3, 160039, https://doi.org/10.1038/sdata.2016.39, 2016.
Wang, J.: The lake level observation data of Lake Namco from the Integrated Observation and Research Station of Multisphere in Namco (2007–2016), National Tibetan Plateau Data Center, 2018.
Zhang, G.: Changes in lakes on the Tibetan Plateau observed from satellite data and their responses to climate variations, Progr. Geogr., 37, 214–223, https://doi.org/10.18306/dlkxjz.2018.02.004, 2018.
Zhang, G., Xie, H., Kang, S., Yi, D., and Ackley, S. F.: Monitoring lake level changes on the Tibetan Plateau using ICESat altimetry data (2003–2009), Remote Sens. Environ. 115, 1733–1742, https://doi.org/10.1016/j.rse.2011.03.005, 2011.
Zhang, G., Xie, H., Yao, T., Liang, T., and Kang, S.: Snow cover dynamics of four lake basins over Tibetan Plateau using time series MODIS data (2001–2010), Water Resour. Res., 48, W10529, https://doi.org/10.1029/2012WR011971, 2012.
Zhang, G., Xie, H., Yao, T., and Kang, S.: Water balance estimates of ten greatest lakes in China using ICESat and Landsat data, Chin. Sci. Bull., 58, 3815–3829, https://doi.org/10.1007/s11434-013-5818-y, 2013a.
Zhang, G., Yao, T., Xie, H., Kang, S., and Lei, Y.: Increased mass over the Tibetan Plateau: from lakes or glaciers?, Geophys. Res. Lett., 40, 2125–2130, https://doi.org/10.1002/grl.50462, 2013b.
Zhang, G., Yao, T., Shum, C., Yi, S., Yang, K., Xie, H., Feng, W., Bolch, T., Wang, L., and Behrangi, A.: Lake volume and groundwater storage variations in Tibetan Plateau's endorheic basin, Geophys. Res. Lett., 44, 5550–5560, https://doi.org/10.1002/2017GL073773, 2017.
Zhang, G., Chen, W., and Xie, H.: Tibetan Plateau's lake level and volume changes from NASA's ICESat/ICESat-2 and Landsat missions, Geophys. Res. Lett., 46, 13107–13118, https://doi.org/10.1029/2019GL085032, 2019.
Zhang, Y., Li, B., and Zheng, D.: A discussion on the boundary and area of the Tibetan Plateau in China, Geogr. Res., 21, 1–8, https://doi.org/10.11821/yj2002010001, 2002.
Short summary
The Tibetan Plateau (TP) has the largest number of lakes in the world. Hydrological stations cannot be readily set up in this region due to the high altitude and remoteness. Satellite radar altimetry has become a very important alternative to in situ observations as a source of data. By combining eight sets of altimeter data, the trends of the changes in the water levels for 361 lakes in the TP during 2002 to 2021 were estimated, and the spatio-temporal changes in lake levels were explored.
The Tibetan Plateau (TP) has the largest number of lakes in the world. Hydrological stations...
Altmetrics
Final-revised paper
Preprint