Articles | Volume 17, issue 8
https://doi.org/10.5194/essd-17-3701-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/essd-17-3701-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
The Italian contribution to the Synoptic Arctic Survey programme: the 2021 CASSANDRA cruise (LB21) through the Greenland Sea Gyre along the 75° N transect
National Institute of Oceanography and Applied Geophysics, OGS, Trieste, Italy
Giuseppe Civitarese
National Institute of Oceanography and Applied Geophysics, OGS, Trieste, Italy
Diego Borme
National Institute of Oceanography and Applied Geophysics, OGS, Trieste, Italy
Carmela Caroppo
Water Research Institute, National Research Council, CNR-IRSA, Taranto, Italy
Gabriella Caruso
Institute of Polar Sciences, National Research Council, CNR-ISP, Messina, Italy
Federica Cerino
National Institute of Oceanography and Applied Geophysics, OGS, Trieste, Italy
Franco Decembrini
Institute of Polar Sciences, National Research Council, CNR-ISP, Messina, Italy
Alessandra de Olazabal
National Institute of Oceanography and Applied Geophysics, OGS, Trieste, Italy
Tommaso Diociaiuti
National Institute of Oceanography and Applied Geophysics, OGS, Trieste, Italy
Michele Giani
National Institute of Oceanography and Applied Geophysics, OGS, Trieste, Italy
Vedrana Kovacevic
National Institute of Oceanography and Applied Geophysics, OGS, Trieste, Italy
Martina Kralj
National Institute of Oceanography and Applied Geophysics, OGS, Trieste, Italy
Angelina Lo Giudice
Institute of Polar Sciences, National Research Council, CNR-ISP, Messina, Italy
Giovanna Maimone
Institute of Polar Sciences, National Research Council, CNR-ISP, Messina, Italy
Marina Monti
National Institute of Oceanography and Applied Geophysics, OGS, Trieste, Italy
Maria Papale
Institute of Polar Sciences, National Research Council, CNR-ISP, Messina, Italy
Luisa Patrolecco
Institute of Polar Sciences, National Research Council, CNR-ISP, Rome, Italy
Elisa Putelli
National Institute of Oceanography and Applied Geophysics, OGS, Trieste, Italy
Alessandro Ciro Rappazzo
Institute of Polar Sciences, National Research Council, CNR-ISP, Messina, Italy
Federica Relitti
National Institute of Oceanography and Applied Geophysics, OGS, Trieste, Italy
Carmen Rizzo
Institute of Polar Sciences, National Research Council, CNR-ISP, Messina, Italy
Stazione Zoologica Anton Dohrn, Sicily Marine Centre, SZN-SMC, Messina, Italy
Francesca Spataro
Institute of Polar Sciences, National Research Council, CNR-ISP, Rome, Italy
Valentina Tirelli
National Institute of Oceanography and Applied Geophysics, OGS, Trieste, Italy
Clara Turetta
Institute of Polar Sciences, National Research Council, CNR-ISP, Venice, Italy
Maurizio Azzaro
Institute of Polar Sciences, National Research Council, CNR-ISP, Messina, Italy
Related authors
Manuel Bensi, Vedrana Kovačević, Federica Donda, Philip Edward O'Brien, Linda Armbrecht, and Leanne Kay Armand
Earth Syst. Sci. Data, 14, 65–78, https://doi.org/10.5194/essd-14-65-2022, https://doi.org/10.5194/essd-14-65-2022, 2022
Short summary
Short summary
The Totten Glacier (Sabrina Coast, East Antarctica) has undergone significant retreat in recent years, underlining its sensitivity to climate change and its potential contribution to global sea-level rise. The melting process is strongly influenced by ocean dynamics and the spatial distribution of water masses appears to be linked to the complex morpho-bathymetry of the area, supporting the hypothesis that downwelling processes contribute to shaping the architecture of the continental margin.
Miroslav Gačić, Laura Ursella, Vedrana Kovačević, Milena Menna, Vlado Malačič, Manuel Bensi, Maria-Eletta Negretti, Vanessa Cardin, Mirko Orlić, Joël Sommeria, Ricardo Viana Barreto, Samuel Viboud, Thomas Valran, Boris Petelin, Giuseppe Siena, and Angelo Rubino
Ocean Sci., 17, 975–996, https://doi.org/10.5194/os-17-975-2021, https://doi.org/10.5194/os-17-975-2021, 2021
Short summary
Short summary
Experiments in rotating tanks can simulate the Earth system and help to represent the real ocean, where rotation plays an important role. We wanted to show the minor importance of the wind in driving the flow in the Ionian Sea. We did this by observing changes in the water current in a rotating tank affected only by the pumping of dense water into the system. The flow variations were similar to those in the real sea, confirming the scarce importance of the wind for the flow in the Ionian Sea.
Riccardo Martellucci, Francesco Tiralongo, Sofia F. Darmaraki, Michela D'Alessandro, Giorgio Mancinelli, Emanuele Mancini, Roberto Simonini, Milena Menna, Annunziata Pirro, Diego Borme, Rocco Auriemma, Marco Graziano, and Elena Mauri
State Planet, 6-osr9, 9, https://doi.org/10.5194/sp-6-osr9-9-2025, https://doi.org/10.5194/sp-6-osr9-9-2025, 2025
Short summary
Short summary
In 2023, global mean air temperatures reached unprecedented highs and the Mediterranean was hit by the longest marine heatwave in four decades. These conditions favoured the spread of invasive species affecting fisheries in the central Mediterranean. This study provides new insights into the cascading impacts of climate-driven extreme events on marine ecosystems and fisheries and suggests actionable strategies for dealing with invasive species in a changing climate.
Stefania Bianco, Manuela Bordiga, Gerald Langer, Patrizia Ziveri, Federica Cerino, Andrea Di Giulio, and Claudia Lupi
Biogeosciences, 22, 1821–1837, https://doi.org/10.5194/bg-22-1821-2025, https://doi.org/10.5194/bg-22-1821-2025, 2025
Short summary
Short summary
This work focuses on the response in culture experiments to increasing CO2 of the coccolithophore species Helicosphaera carteri, a unicellular marine calcifying microalgae. The absence of significant changes in coccolith malformations, along with stable size, shape, and calcification-to-photosynthesis ratio, is indicative of H. carteri low sensitivity to CO2 rise, together with its ability to maintain a stable contribution to the marine rain ratio under future climate changes.
Riccardo Martellucci, Michele Giani, Elena Mauri, Laurent Coppola, Melf Paulsen, Marine Fourrier, Sara Pensieri, Vanessa Cardin, Carlotta Dentico, Roberto Bozzano, Carolina Cantoni, Anna Lucchetta, Alfredo Izquierdo, Miguel Bruno, and Ingunn Skjelvan
Earth Syst. Sci. Data, 16, 5333–5356, https://doi.org/10.5194/essd-16-5333-2024, https://doi.org/10.5194/essd-16-5333-2024, 2024
Short summary
Short summary
As part of the ATL2MED demonstration experiment, two autonomous surface vehicles undertook a 9-month mission from the northeastern Atlantic to the Adriatic Sea. Biofouling affected the measurement of variables such as conductivity and dissolved oxygen. COVID-19 limited the availability of discrete samples for validation. We present correction methods for salinity and dissolved oxygen. We use model products to correct salinity and apply the Argo floats in-air correction method for oxygen
Elena Barbaro, Matteo Feltracco, Fabrizio De Blasi, Clara Turetta, Marta Radaelli, Warren Cairns, Giulio Cozzi, Giovanna Mazzi, Marco Casula, Jacopo Gabrieli, Carlo Barbante, and Andrea Gambaro
Atmos. Chem. Phys., 24, 2821–2835, https://doi.org/10.5194/acp-24-2821-2024, https://doi.org/10.5194/acp-24-2821-2024, 2024
Short summary
Short summary
The study analyzed a year of atmospheric aerosol composition at Col Margherita in the Italian Alps. Over 100 chemical markers were identified, including major ions, organic compounds, and trace elements. It revealed sources of aerosol, highlighted impacts of Saharan dust events, and showed anthropogenic pollution's influence despite the site's remoteness. Enrichment factors emphasized non-natural sources of trace elements. Source apportionment identified four key factors affecting the area.
Christian Lønborg, Cátia Carreira, Gwenaël Abril, Susana Agustí, Valentina Amaral, Agneta Andersson, Javier Arístegui, Punyasloke Bhadury, Mariana B. Bif, Alberto V. Borges, Steven Bouillon, Maria Ll. Calleja, Luiz C. Cotovicz Jr., Stefano Cozzi, Maryló Doval, Carlos M. Duarte, Bradley Eyre, Cédric G. Fichot, E. Elena García-Martín, Alexandra Garzon-Garcia, Michele Giani, Rafael Gonçalves-Araujo, Renee Gruber, Dennis A. Hansell, Fuminori Hashihama, Ding He, Johnna M. Holding, William R. Hunter, J. Severino P. Ibánhez, Valeria Ibello, Shan Jiang, Guebuem Kim, Katja Klun, Piotr Kowalczuk, Atsushi Kubo, Choon-Weng Lee, Cláudia B. Lopes, Federica Maggioni, Paolo Magni, Celia Marrase, Patrick Martin, S. Leigh McCallister, Roisin McCallum, Patricia M. Medeiros, Xosé Anxelu G. Morán, Frank E. Muller-Karger, Allison Myers-Pigg, Marit Norli, Joanne M. Oakes, Helena Osterholz, Hyekyung Park, Maria Lund Paulsen, Judith A. Rosentreter, Jeff D. Ross, Digna Rueda-Roa, Chiara Santinelli, Yuan Shen, Eva Teira, Tinkara Tinta, Guenther Uher, Masahide Wakita, Nicholas Ward, Kenta Watanabe, Yu Xin, Youhei Yamashita, Liyang Yang, Jacob Yeo, Huamao Yuan, Qiang Zheng, and Xosé Antón Álvarez-Salgado
Earth Syst. Sci. Data, 16, 1107–1119, https://doi.org/10.5194/essd-16-1107-2024, https://doi.org/10.5194/essd-16-1107-2024, 2024
Short summary
Short summary
In this paper, we present the first edition of a global database compiling previously published and unpublished measurements of dissolved organic matter (DOM) collected in coastal waters (CoastDOM v1). Overall, the CoastDOM v1 dataset will be useful to identify global spatial and temporal patterns and to facilitate reuse in studies aimed at better characterizing local biogeochemical processes and identifying a baseline for modelling future changes in coastal waters.
Andrea Spolaor, Federico Scoto, Catherine Larose, Elena Barbaro, Francois Burgay, Mats P. Bjorkman, David Cappelletti, Federico Dallo, Fabrizio de Blasi, Dmitry Divine, Giuliano Dreossi, Jacopo Gabrieli, Elisabeth Isaksson, Jack Kohler, Tonu Martma, Louise S. Schmidt, Thomas V. Schuler, Barbara Stenni, Clara Turetta, Bartłomiej Luks, Mathieu Casado, and Jean-Charles Gallet
The Cryosphere, 18, 307–320, https://doi.org/10.5194/tc-18-307-2024, https://doi.org/10.5194/tc-18-307-2024, 2024
Short summary
Short summary
We evaluate the impact of the increased snowmelt on the preservation of the oxygen isotope (δ18O) signal in firn records recovered from the top of the Holtedahlfonna ice field located in the Svalbard archipelago. Thanks to a multidisciplinary approach we demonstrate a progressive deterioration of the isotope signal in the firn core. We link the degradation of the δ18O signal to the increased occurrence and intensity of melt events associated with the rapid warming occurring in the archipelago.
François Burgay, Rafael Pedro Fernández, Delia Segato, Clara Turetta, Christopher S. Blaszczak-Boxe, Rachael H. Rhodes, Claudio Scarchilli, Virginia Ciardini, Carlo Barbante, Alfonso Saiz-Lopez, and Andrea Spolaor
The Cryosphere, 17, 391–405, https://doi.org/10.5194/tc-17-391-2023, https://doi.org/10.5194/tc-17-391-2023, 2023
Short summary
Short summary
The paper presents the first ice-core record of bromine (Br) in the Antarctic plateau. By the observation of the ice core and the application of atmospheric chemical models, we investigate the behaviour of bromine after its deposition into the snowpack, with interest in the effect of UV radiation change connected to the formation of the ozone hole, the role of volcanic deposition, and the possible use of Br to reconstruct past sea ice changes from ice core collect in the inner Antarctic plateau.
Nydia Catalina Reyes Suárez, Valentina Tirelli, Laura Ursella, Matjaž Ličer, Massimo Celio, and Vanessa Cardin
Ocean Sci., 18, 1321–1337, https://doi.org/10.5194/os-18-1321-2022, https://doi.org/10.5194/os-18-1321-2022, 2022
Short summary
Short summary
Explaining the dynamics of jellyfish blooms is a challenge for scientists. Biological and meteo-oceanographic data were combined on different timescales to explain the exceptional bloom of the jellyfish Rhizostoma pulmo in the Gulf of Trieste (Adriatic Sea) in April 2021. The bloom was associated with anomalously warm seasonal sea conditions. Then, a strong bora wind event enhanced upwelling and mixing of the water column, causing jellyfish to rise to the surface and accumulate along the coast.
Manuel Bensi, Vedrana Kovačević, Federica Donda, Philip Edward O'Brien, Linda Armbrecht, and Leanne Kay Armand
Earth Syst. Sci. Data, 14, 65–78, https://doi.org/10.5194/essd-14-65-2022, https://doi.org/10.5194/essd-14-65-2022, 2022
Short summary
Short summary
The Totten Glacier (Sabrina Coast, East Antarctica) has undergone significant retreat in recent years, underlining its sensitivity to climate change and its potential contribution to global sea-level rise. The melting process is strongly influenced by ocean dynamics and the spatial distribution of water masses appears to be linked to the complex morpho-bathymetry of the area, supporting the hypothesis that downwelling processes contribute to shaping the architecture of the continental margin.
Miroslav Gačić, Laura Ursella, Vedrana Kovačević, Milena Menna, Vlado Malačič, Manuel Bensi, Maria-Eletta Negretti, Vanessa Cardin, Mirko Orlić, Joël Sommeria, Ricardo Viana Barreto, Samuel Viboud, Thomas Valran, Boris Petelin, Giuseppe Siena, and Angelo Rubino
Ocean Sci., 17, 975–996, https://doi.org/10.5194/os-17-975-2021, https://doi.org/10.5194/os-17-975-2021, 2021
Short summary
Short summary
Experiments in rotating tanks can simulate the Earth system and help to represent the real ocean, where rotation plays an important role. We wanted to show the minor importance of the wind in driving the flow in the Ionian Sea. We did this by observing changes in the water current in a rotating tank affected only by the pumping of dense water into the system. The flow variations were similar to those in the real sea, confirming the scarce importance of the wind for the flow in the Ionian Sea.
Delia Segato, Maria Del Carmen Villoslada Hidalgo, Ross Edwards, Elena Barbaro, Paul Vallelonga, Helle Astrid Kjær, Marius Simonsen, Bo Vinther, Niccolò Maffezzoli, Roberta Zangrando, Clara Turetta, Dario Battistel, Orri Vésteinsson, Carlo Barbante, and Andrea Spolaor
Clim. Past, 17, 1533–1545, https://doi.org/10.5194/cp-17-1533-2021, https://doi.org/10.5194/cp-17-1533-2021, 2021
Short summary
Short summary
Human influence on fire regimes in the past is poorly understood, especially at high latitudes. We present 5 kyr of fire proxies levoglucosan, black carbon, and ammonium in the RECAP ice core in Greenland and reconstruct for the first time the fire regime in the high North Atlantic region, comprising coastal east Greenland and Iceland. Climate is the main driver of the fire regime, but at 1.1 kyr BP a contribution may be made by the deforestation resulting from Viking colonization of Iceland.
François Burgay, Andrea Spolaor, Jacopo Gabrieli, Giulio Cozzi, Clara Turetta, Paul Vallelonga, and Carlo Barbante
Clim. Past, 17, 491–505, https://doi.org/10.5194/cp-17-491-2021, https://doi.org/10.5194/cp-17-491-2021, 2021
Short summary
Short summary
We present the first Fe record from the NEEM ice core, which provides insight into past atmospheric Fe deposition in the Arctic. Considering the biological relevance of Fe, we questioned if the increased eolian Fe supply during glacial periods could explain the marine productivity variability in the Fe-limited subarctic Pacific Ocean. We found no overwhelming evidence that eolian Fe fertilization triggered any phytoplankton blooms, likely because other factors play a more relevant role.
Cited articles
Ahme, A., Von Jackowski, A., McPherson, R. A., Wolf, K. K. E., Hoppmann, M., Neuhaus, S., and John, U.: Winners and Losers of Atlantification: The Degree of Ocean Warming Affects the Structure of Arctic Microbial Communities, Genes, 14, 623, https://doi.org/10.3390/genes14030623, 2023.
Aminot, A., Kirkwood, D., and Carlberg, S.: The QUASIMEME laboratory performance studies (1993–1995): Overview of the nutrients section, Mar. Pollut. Bull., 35, 28–41, https://doi.org/10.1016/S0025-326X(97)80876-4, 1997.
Andersen, P. and Throndsen, J.: Estimating cell numbers, in: Manual on Harmful Marine Microalgae, edited by: Hallegraeff, G. M., Anderson, D. M., and Cembella, A., Monographs on Oceanographic Methodology, Unesco Publishing, Paris, France, 11, 99–130, 2004.
Anderson, L. G., Drange, H., Chierici, M., Fransson, A., Johannessen, T., Skjelvan, I., and Rey, F.: Annual carbon fluxes in the upper Greenland Sea based on measurements and a box-model approach, Tellus B, 52, 1013–1024, 2000.
Azzaro, M., La Ferla, R., and Azzaro, F.: Microbial respiration in the aphotic zone of the Ross Sea (Antarctica), Mar. Chem., 99, 199–209, https://doi.org/10.1016/j.marchem.2005.09.011, 2006.
Azzaro, M., Aliani, S., Maimone, G., Decembrini, F., Caroppo, C., Giglio, F., Langone, L., Miserocchi, S., Cosenza, A., Azzaro, F., Rappazzo, A. C., Mancuso, M., and La Ferla, R.: Short-term dynamics of nutrients, planktonic abundances and microbial respiratory activity in the Arctic Kongsfjorden (Svalbard, Norway), Polar Biol., 44, 361–378, https://doi.org/10.1007/s00300-020-02798-w, 2021.
Azzaro, M., Specchiulli, A., Maimone, G., Azzaro, F., Lo Giudice, A., Papale, M., La Ferla, R., Paranhos, R., Souza Cabral, A., Rappazzo, A. C., Renzi, M., Castagno, P., Falco, P., Rivaro, P., and Caruco, G.: Trophic and Microbial Patterns in the Ross Sea Area (Antarctica): Spatial Variability during the Summer Season, J. Mar. Sci. Eng., 10, 1666, https://doi.org/10.3390/jmse10111666, 2022.
Azzaro, M., Bensi, M., Civitarese, G., Giani, M., Monti, M., Diociaiuti, T., Relitti, F., Kralj, M., Tirelli, V., Borme, D., Goruppi, A., Putelli, E., de Olazabal, A., Ogrinc, N., Cerino, F., Rappazzo, A. C., Papale, M., Turetta, C., Decembrini, F., Caroppo, C., Maimone, G., Patrolecco, L., Spataro, F., Rizzo, C., and Caruso, G.: CTD (data from NISKIN Bottles) LB21 ARCTIC Cruise Italian Arctic project CASSANDRA, ISP-CNR [data set], https://doi.org/10.71761/f7474404-3331-43e5-883b-25755e94956d, 2024.
Babb, D. G., Galley, R. J., Kirillov, S., Landy, J. C., Howell, S. E. L., Stroeve, J. C., Meier, W., Ehn, J. K., and Barber, D. G.: The stepwise reduction of multiyear sea ice area in the Arctic Ocean since 1980, J. Geophys. Res.-Oceans, 128, e2023JC020157, https://doi.org/10.1029/2023JC020157, 2023.
Beers, J. R. and Stewart, G. L.: Numerical abundance and estimated biomass of microzooplankton, in: The ecology of the plankton off La Jolla, California, in the period April through September 1967, edited by: Strickland, J. D. H., University of California Press, Berkeley, USA, 67–87, 1970.
Bensi, M., Kovacevic, V., and Mansutti, P.: CTD (DOWNCAST) LB21 ARCTIC Cruise Italian Arctic project CASSANDRA, IADC [data set], https://doi.org/10.71761/c082c3ca-40bf-42b1-a61a-7b3697ab2c5a, 2024.
Brakstad, A., Våge, K., Håvik, L., and Moore, G. W. K.: Water Mass Transformation in the Greenland Sea during the Period 1986–2016, J. Phys. Oceanogr., 49, 121–140, https://doi.org/10.1175/JPO-D-17-0273.1, 2019.
Carmack, E., Polyakov, I., Padman, L., Fer, I., Hunke, E., Hutchings, J., Jackson, J., Kelley, D., Kwok, R., Layton, C., Melling, H., Perovich, D., Persson, O., Ruddick, B., Timmermans, M., Toole, J., Ross, T., Vavrus, S., and Winsor, P.: Toward Quantifying the Increasing Role of Oceanic Heat in Sea Ice Loss in the New Arctic, B. Am. Meteorol. Soc., 96, 2079-2105, https://doi.org/10.1175/BAMS-D-13-00177.1, 2015.
Carter-Gates, M., Balestreri, C., Thorpe, S. E., Cottier, F., Baylay, A., Bibby, T. S., Moore, C. M., and Schroeder, D. C.: Implications of increasing Atlantic influence for Arctic microbial community structure, Sci. Rep., 10, 19262, https://doi.org/10.1038/s41598-020-76293-x, 2020.
Caruso, G., La Ferla, R., Azzaro, M., Zoppini, A., Marino, G., Petochi, T., Corinaldesi, C., Leonardi, M., Zaccone, R., Fonda Umani, S., Caroppo, C., Monticelli, L., Azzaro, F., Decembrini, F., Maimone, G., Cavallo, R. A., Stabili, L., Hristova Todorova, N., Karamfilov, V., Rastelli, E., Cappello, S., Acquaviva, M. I., Narracci, M., De Angelis, R., Del Negro, P., Latini, M., and Danovaro, R.: Microbial assemblages for environmental quality assessment: knowledge, gaps and usefulness in the European Marine Strategy Framework Directive, Crit. Rev. Microbiol., 42, 883–904, https://doi.org/10.3109/1040841X.2015.1087380, 2015.
Caruso, G., Madonia, A., Bonamano, S., Miserocchi, S., Giglio, F., Maimone, G., Azzaro, F., Decembrini, F., La Ferla, R., and Piermattei, V.: Microbial abundance and enzyme activity patterns: response to changing environmental characteristics along a transect in Kongsfjorden (Svalbard Islands), J. Mar. Sci. Eng., 8, 824, https://doi.org/10.3390/jmse8100824, 2020.
Chatterjee, S., Raj, R. P., Bertino, L., Skagseth, Ø., Ravichandran, M., and Johannessen, O. M.: Role of Greenland Sea Gyre Circulation on Atlantic Water Temperature Variability in the Fram Strait, Geophys. Res. Lett., 45, 8399–8406, https://doi.org/10.1029/2018GL079174, 2018.
Clarke, R., Swift, J., Reid, J., and Koltermann, K.: The formation of Greenland Sea Deep Water: double diffusion or deep convection? Deep-Sea Res. Pt. A, 37, 1385–1424 https://doi.org/10.1016/0198-0149(90)90135-I, 1990.
Csapó, H. R., Grabowski, M., and Węsławski, J. M. K.: Coming home – Boreal ecosystem claims Atlantic sector of the Arctic, Sci. Total Environ., 771, 144817, https://doi.org/10.1016/j.scitotenv.2020.144817, 2021.
Decembrini, F., Caroppo C., Caruso, G., and Bergamasco, A.: Linking microbial functioning and trophic pathways to mesoscale processes and ecological status in a coastal ecosystem: Gulf of Manfredonia (south Adriatic Sea), Water, 13, 1325, https://doi.org/10.3390/w13091325, 2021.
de Steur, L., Sumata, H., Divine, D. V., Granskog, M. A., and Pavlova, O.: Upper ocean warming and sea ice reduction in the East Greenland Current from 2003 to 2019, Commun. Earth Environ., 4, 261, https://doi.org/10.1038/s43247-023-00913-3, 2023.
Dickson, A. G., Afghan, J. D., and Anderson, G. C.: Reference materials for oceanic CO2 analysis: a method for the certification of total alkalinity, Mar. Chem., 80, 185–197, https://doi.org/10.1016/S0304-4203(02)00133-0, 2003.
Dickson, R. R., Osborn, T. J., Hurrell, J. W., Meincke, J., Blindheim, J., Adlandsvik, B., Vinjie, T., Alekseev, G., and Maslowski, W.: The Arctic Ocean Response to the North Atlantic Oscillation, J. Climate, 13, 2671–2696, https://doi.org/10.1175/1520-0442(2000)013<2671:TAORTT>2.0.CO;2, 2000.
Dukhovskoy, D. S., Yashayaev, I., Proshutinsky, A., Bamber, J. L., Bashmachnikov, I. L., Chassignet, E. P., Lee, C. M., and Tedstone, A. J.: Role of Greenland freshwater anomaly in the recent freshening of the subpolar North Atlantic. J. Geophys. Res.-Oceans, 124, 3333–3360, https://doi.org/10.1029/2018JC014686, 2019.
Edler, L.: Recommendations for marine biological studies in the Baltic Sea. Phytoplankton and chlorophyll, Baltic Mar. Biol., 5, 1–37, 1979.
Fan, H., Borchert, L. F., Brune, S., Koul, V., and Baehr, J.: North Atlantic subpolar gyre provides downstream ocean predictability, npj Clim. Atmos. Sci., 6, 145, https://doi.org/10.1038/s41612-023-00469-1, 2023.
Fransner, F., Fröb, F., Tjiputra, J., Goris, N., Lauvset, S. K., Skjelvan, I., Jeansson, E., Omar, A., Chierici, M., Jones, E., Fransson, A., Ólafsdóttir, S. R., Johannessen, T., and Olsen, A.: Acidification of the Nordic Seas, Biogeosciences, 19, 979–1012, https://doi.org/10.5194/bg-19-979-2022, 2022.
Grasshoff, K., Kremling, K., and Ehrhardt, M.: Methods of Seawater Analysis, Wiley-VCH, Weinheim, 600 pp., 1999.
Hansen, H. P. and Koroleff, F.: Determination of nutrients, in: Methods of Seawater Analysis, 3rd Edn., edited by: Grasshoff, K., Kremling, K., and Ehrhardt, M., Wiley-VCH, Weinheim, 159–228, https://doi.org/10.1002/9783527613984.ch10, 1999.
Hoppe, H. G.: Use of fluorogenic model substrates for extracellular enzyme activity (EEA) measurement of bacteria, 1st edn., in: Handbook of methods in aquatic microbial ecology, edited by: Kemp, P. F., Sherr, B. F., Sherr, E. B., and Cole, J. J., Lewis Publisher, Boca Raton, FL-USA, 423–432, https://doi.org/10.1201/9780203752746, 1993.
Ingrosso, G., Giani, M., Comici, C., Kralj, M., Piacentino, S., De Vittor, C., and Del Negro, P.: Drivers of the carbonate system seasonal variations in a Mediterranean gulf, Estuar. Coast. Shelf S., 168, 58–70, https://doi.org/10.1016/j.ecss.2015.11.001, 2016a.
Ingrosso, G., Giani, M., Cibic, T., Karuza, A., Kralj, M., and Del Negro, P.: Carbonate chemistry dynamics and biological processes along a river–sea gradient (Gulf of Trieste, northern Adriatic Sea), J. Marine Syst., 155, 35–49, https://doi.org/10.1016/j.jmarsys.2015.10.013, 2016b.
Ingvaldsen, R. B., Assmann, K. M., Primicerio, R., Fossheim, M., Polyakov, I. V., and Dolgov, A. V.: Physical manifestations and ecological implications of Arctic Atlantification, Nat. Rev. Earth Environ., 2, 874–889, https://doi.org/10.1038/s43017-021-00228-x, 2021.
La Ferla, R., Maimone, G., Azzaro, M., Conversano, F., Brunet, C., Cabral, A. S., and Paranhos, R.: Vertical distribution of the prokaryotic cell size in the Mediterranean Sea, Helgol. Mar. Res., 66, 635–650, https://doi.org/10.1007/s10152-012-0297-0, 2012.
Noji, T. T., Rey, F., Miller, L. A., Borsheim, K. Y., and Urban-Rich, J.: Fate of biogenic carbon in the upper 200 m of the central Greenland Sea, Deep-Sea Res. Pt. II, 46, 1497–1509, https://doi.org/10.1016/S0967-0645(99)00032-6, 1999.
Norwegian Polar Institute: Sea ice extent in the Fram Strait in September. Environmental monitoring of Svalbard and Jan Mayen (MOSJ), https://mosj.no/en/indikator/climate/ocean/sea-ice-extent-in-the-barents-sea-and-fram-strait/ (last access: 3 June 2025), 2024.
Onarheim, I. H., Årthun, M., Teigen, S. H., Eik, K. J., and Steele, M.: Recent Thickening of the Barents Sea ice cover, Geophys. Res. Lett., 51, e2024GL108225, https://doi.org/10.1029/2024GL108225, 2024.
Oudot, C., Gerard, R., Morin, P., and Gningue, I.: Precise shipboard determination of dissolved oxygen (Winkler procedure) for productivity studies with commercial system, Limnol. Oceanogr. 33, 146–150, https://doi.org/10.4319/lo.1988.33.6part2.1646, 1998.
Pettine, M., Capri, S., Manganelli, M., Patrolecco, L., Puddu, A., and Zoppini, A.: The Dynamics of DOM in the Northern Adriatic Sea, Estuar. Coast. Shelf S., 52, 471–489, https://doi.org/10.1006/ecss.2000.0752, 2001.
Polyakov, I. V., Pnyushkov, A. V., Alkire, M. B., Ashik, I. M., Baumann, T. M., Carmack, E. C., Goszczko, I., Guthrie, J., Ivanov, V. V., Kanzow, T., Krishfield, R., Kwok, R., Sundfjord, A., Morison, J., Rember, R., and Yulin, A.: Greater role for Atlantic inflows on sea-ice loss in the Eurasian Basin of the Arctic Ocean, Science, 356, 285–291, https://doi.org/10.1126/science.aai8204, 2017.
Polyakov, I. V., Ingvaldsen, R. B., Pnyushkov, A. V., Bhatt, U. S., Francis, J. A., Janout, M., Kwok, R., and Skagseth, Ø.: Fluctuating Atlantic inflows modulate Arctic Atlantification, Science, 381, 972–979, https://doi.org/10.1126/science.adh5158, 2023.
Postel, L., Fock, H., and Hagen, W.: Biomass and abundance, in: ICES Zooplankton Methodology Manual, edited by: Harris, R., Wiebe, P., Lenz, J., Skjoldal, H. R., and Huntley, M., Academic Press, London, 83–192, https://doi.org/10.1016/B978-012327645-2/50005-0, 2000.
Priest, T., von Appen, W. J., Oldenburg, E., Popa, O., Torre-Valdés, S., Bienhold, C., Metfies, K., Boulton, W., Mock, T., Fuchs, B. M., Amann, R., Boetius, A., and Wietz, M.: Atlantic water influx and sea-ice cover drive taxonomic and functional shifts in Arctic marine bacterial communities, ISME J., 17, 1612–1625, https://doi.org/10.1038/s41396-023-01461-6, 2023.
Putt, M. and Stoecker, D. K.: An experimentally determined carbon: volume ratio for marine “oligotrichous” ciliates from estuarine and coastal waters, Limnol. Oceanogr., 34, 1097–1107, https://doi.org/10.4319/lo.1989.34.6.1097, 1989.
Rantanen, M., Karpechko, A. Y., Lipponen, A., Nordling, K., Hyvärinen, O., Ruosteenoja, K., Vihma, T., and Laaksonen, A.: The Arctic has warmed nearly four times faster than the globe since 1979, Commun. Earth Environ., 3, 168, https://doi.org/10.1038/s43247-022-00498-3, 2022.
Relitti, F., Ogrinc, N., Giani, M., Cerino, F., Smodlaka Tankovic, M., Baricevic, A., Urbini, L., Krajnc B., Del Negro, P., and De Vittor, C.: Stable carbon isotopes of phytoplankton as a tool to monitor anthropogenic CO2 submarine leakages, Water, 12, 3573, https://doi.org/10.3390/w12123573, 2020.
Rudels, B., Friedrich, H. J., and Quadfasel, D.: The Arctic Circumpolar Boundary Current, Deep-Sea Res. Pt. II, 46, 1023–1062, https://doi.org/10.1016/S0967-0645(99)00015-6, 1999.
Schlitzer, R.: Ocean Data View, https://odv.awi.de (last access: 10 February 2025), 2024.
Simpkins, G.: Greenland Sea convection, Nat. Clim. Change, 9, 7, https://doi.org/10.1038/s41558-018-0384-6, 2019.
Skjelvan, I., Olsen, A., Anderson, L. G., Bellerby, R. G. J., Falck, E, Kasajima, Y., Kivimäe, C., Abdirahman, O., Rey, F., Olsson, K. A., Johannessen, T., and Heinze, C.: A review of the inorganic carbon cycle of the Nordic Seas and Barents Sea, in: The Nordic Seas: An Integrated Perspective Oceanography, Climatology, Biogeochemistry, and Modeling, Geophys. Monogr. Ser. 158, edited by: Drange, H., Dokken, T., Furevik, T., Gerdes, R., and Berger, W., AGU, Washington, D.C., 157–175, https://doi.org/10.1029/158GM11, 2005.
Smedsrud, L. H., Muilwijk, M., Brakstad, A., Madonna, E., Lauvset, S. K., Spensberger, C., Born, A., Eldevik, T., Drange, H., Jeansson, E., Li, C., Olsen, A., Skagseth, Ø., Slater, D. A., Straneo, F., Våge, K., and Årthun, M.: Nordic Seas Heat Loss, Atlantic Inflow, and Arctic Sea Ice Cover Over the Last Century, Rev. Geophys., 60, e2020RG000725, https://doi.org/10.1029/2020RG000725, 2022.
The MathWorks Inc.: MATLAB version: 9.13.0 (R2020b), https://www.mathworks.com (last access: 1 January 2024), 2024.
Throndsen, J.: Preservation and Storage, in: Phytoplankton Manual, edited by: Sournia, A., Unesco Publishing, Paris, France, 69–74, 1978.
Urbini, L., Ingrosso, G., Djakovac, T., Piacentino, S., and Giani, M.: Temporal and Spatial Variability of the CO2 System in a Riverine Influenced Area of the Mediterranean Sea, the Northern Adriatic, Front. Mar. Sci., 7, 679, https://doi.org/10.3389/fmars.2020.00679, 2020.
Utermöhl, H.: Zur Vervollkommung der quantitativen Phytoplankton-Methodik, Mitt. Int. Ver. Theor. Angew. Limn., 9, 1–38, 1958.
van Guelpen, L., Markle, D. F., and Duggan, D. J.: An evaluation of accuracy, precision, and speed of several zooplankton subsampling techniques, ICES J. Mar. Sci., 40, 226–236, https://doi.org/10.1093/icesjms/40.3.226, 1982.
Verity, P. G. and Lagdon, C.: Relationship between lorica volume, carbon, nitrogen, and ATP content of tintinnids in Narragansett Bay, J. Plankton Res., 6, 859–868, https://doi.org/10.1093/plankt/6.5.859, 1984.
von Bodungen, B., Antia, A., Bauerfeind, E., Haupt, O., Koeve, W., Machado, E., Peeken, I., Peinert, R., Reitmeier, S., Thomsen, C., Voss, M., Wunsch, M., Zeller, U., and Zeitzschel, B.: Pelagic processes and vertical flux of particles: an overview of a long-term comparative study in the Norwegian Sea and Greenland Sea, Geol. Rundsch., 84, 11–27, https://doi.org/10.1007/BF00192239, 1995.
Wang, X., Zhao, J., Hattermann, T., Lin, L., and Chen, P.: Transports and accumulations of Greenland Sea intermediate waters in the Norwegian Sea, J. Geophys. Res.-Oceans, 126, e2020JC016582, https://doi.org/10.1029/2020JC016582, 2021.
Whitt, D. B.: Global Warming Increases Interannual and Multidecadal Variability of Subarctic Atlantic Nutrients and Biological Production in the CESM1-LE, Geophys. Res. Lett., 50, e2023GL104272, https://doi.org/10.1029/2023GL104272, 2023.
Yergeau, E., Michel, C., Tremblay, J., Niemi, A., King, T. L., Wyglinski, J., Lee, K., and Greer, C. W.: Metagenomic survey of the taxonomic and functional microbial communities of seawater and sea ice from the Canadian Arctic, Sci. Rep., 7, 42242, https://doi.org/10.1038/srep42242, 2017.
Zingone, A., Totti, C., Sarno, D., Cabrini, M., Caroppo, C., Giacobbe, M. G., Lugliè, A., Nuccio, C., and Socal, G.: Fitoplancton: metodiche di analisi quali-quantitativa, in: Metodologie di studio del plancton marino, edited by: Socal, G., Buttino, I., Cabrini, M., Mangoni, O., Penna, A., and Totti, C., Manuali e Linee Guida ISPRA SIBM, Rome, Italy, 213–237, 2010.
Short summary
In September 2021, the Italian Arctic Research Programme funded a multidisciplinary study along 75° N in the Greenland Sea as part of the CASSANDRA project and the Synoptic Arctic Survey (SAS) programme. This study emphasises the spatial variability of water properties, nutrient distribution, and biological communities determined by oceanographic dynamics in a region influenced by sea ice melting, Atlantic Water inflow, and climatic teleconnections during a record low summer sea ice extent.
In September 2021, the Italian Arctic Research Programme funded a multidisciplinary study along...
Altmetrics
Final-revised paper
Preprint