Articles | Volume 17, issue 8
https://doi.org/10.5194/essd-17-3701-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/essd-17-3701-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
The Italian contribution to the Synoptic Arctic Survey programme: the 2021 CASSANDRA cruise (LB21) through the Greenland Sea Gyre along the 75° N transect
National Institute of Oceanography and Applied Geophysics, OGS, Trieste, Italy
Giuseppe Civitarese
National Institute of Oceanography and Applied Geophysics, OGS, Trieste, Italy
Diego Borme
National Institute of Oceanography and Applied Geophysics, OGS, Trieste, Italy
Carmela Caroppo
Water Research Institute, National Research Council, CNR-IRSA, Taranto, Italy
Gabriella Caruso
Institute of Polar Sciences, National Research Council, CNR-ISP, Messina, Italy
Federica Cerino
National Institute of Oceanography and Applied Geophysics, OGS, Trieste, Italy
Franco Decembrini
Institute of Polar Sciences, National Research Council, CNR-ISP, Messina, Italy
Alessandra de Olazabal
National Institute of Oceanography and Applied Geophysics, OGS, Trieste, Italy
Tommaso Diociaiuti
National Institute of Oceanography and Applied Geophysics, OGS, Trieste, Italy
Michele Giani
National Institute of Oceanography and Applied Geophysics, OGS, Trieste, Italy
Vedrana Kovacevic
National Institute of Oceanography and Applied Geophysics, OGS, Trieste, Italy
Martina Kralj
National Institute of Oceanography and Applied Geophysics, OGS, Trieste, Italy
Angelina Lo Giudice
Institute of Polar Sciences, National Research Council, CNR-ISP, Messina, Italy
Giovanna Maimone
Institute of Polar Sciences, National Research Council, CNR-ISP, Messina, Italy
Marina Monti
National Institute of Oceanography and Applied Geophysics, OGS, Trieste, Italy
Maria Papale
Institute of Polar Sciences, National Research Council, CNR-ISP, Messina, Italy
Luisa Patrolecco
Institute of Polar Sciences, National Research Council, CNR-ISP, Rome, Italy
Elisa Putelli
National Institute of Oceanography and Applied Geophysics, OGS, Trieste, Italy
Alessandro Ciro Rappazzo
Institute of Polar Sciences, National Research Council, CNR-ISP, Messina, Italy
Federica Relitti
National Institute of Oceanography and Applied Geophysics, OGS, Trieste, Italy
Carmen Rizzo
Institute of Polar Sciences, National Research Council, CNR-ISP, Messina, Italy
Stazione Zoologica Anton Dohrn, Sicily Marine Centre, SZN-SMC, Messina, Italy
Francesca Spataro
Institute of Polar Sciences, National Research Council, CNR-ISP, Rome, Italy
Valentina Tirelli
National Institute of Oceanography and Applied Geophysics, OGS, Trieste, Italy
Clara Turetta
Institute of Polar Sciences, National Research Council, CNR-ISP, Venice, Italy
Maurizio Azzaro
Institute of Polar Sciences, National Research Council, CNR-ISP, Messina, Italy
Related authors
Manuel Bensi, Vedrana Kovačević, Federica Donda, Philip Edward O'Brien, Linda Armbrecht, and Leanne Kay Armand
Earth Syst. Sci. Data, 14, 65–78, https://doi.org/10.5194/essd-14-65-2022, https://doi.org/10.5194/essd-14-65-2022, 2022
Short summary
Short summary
The Totten Glacier (Sabrina Coast, East Antarctica) has undergone significant retreat in recent years, underlining its sensitivity to climate change and its potential contribution to global sea-level rise. The melting process is strongly influenced by ocean dynamics and the spatial distribution of water masses appears to be linked to the complex morpho-bathymetry of the area, supporting the hypothesis that downwelling processes contribute to shaping the architecture of the continental margin.
Miroslav Gačić, Laura Ursella, Vedrana Kovačević, Milena Menna, Vlado Malačič, Manuel Bensi, Maria-Eletta Negretti, Vanessa Cardin, Mirko Orlić, Joël Sommeria, Ricardo Viana Barreto, Samuel Viboud, Thomas Valran, Boris Petelin, Giuseppe Siena, and Angelo Rubino
Ocean Sci., 17, 975–996, https://doi.org/10.5194/os-17-975-2021, https://doi.org/10.5194/os-17-975-2021, 2021
Short summary
Short summary
Experiments in rotating tanks can simulate the Earth system and help to represent the real ocean, where rotation plays an important role. We wanted to show the minor importance of the wind in driving the flow in the Ionian Sea. We did this by observing changes in the water current in a rotating tank affected only by the pumping of dense water into the system. The flow variations were similar to those in the real sea, confirming the scarce importance of the wind for the flow in the Ionian Sea.
V. Cardin, G. Civitarese, D. Hainbucher, M. Bensi, and A. Rubino
Ocean Sci., 11, 53–66, https://doi.org/10.5194/os-11-53-2015, https://doi.org/10.5194/os-11-53-2015, 2015
Short summary
Short summary
The results of this study reveal that the thermohaline properties in the study area in 2011 lie between the thermohaline characteristics of the EMT and those of the pre-EMT phase, indicating a possible slow return towards the latter. It highlights the relationship between the hydrological property distribution of the upper layer in the Levantine basin and the alternate circulation regimes in the Ionian, which modulates the salinity distribution in the Eastern Mediterranean Sea.
D. Hainbucher, A. Rubino, V. Cardin, T. Tanhua, K. Schroeder, and M. Bensi
Ocean Sci., 10, 669–682, https://doi.org/10.5194/os-10-669-2014, https://doi.org/10.5194/os-10-669-2014, 2014
M. Gačić, G. Civitarese, V. Kovačević, L. Ursella, M. Bensi, M. Menna, V. Cardin, P.-M. Poulain, S. Cosoli, G. Notarstefano, and C. Pizzi
Ocean Sci., 10, 513–522, https://doi.org/10.5194/os-10-513-2014, https://doi.org/10.5194/os-10-513-2014, 2014
Stefania Bianco, Manuela Bordiga, Gerald Langer, Patrizia Ziveri, Federica Cerino, Andrea Di Giulio, and Claudia Lupi
Biogeosciences, 22, 1821–1837, https://doi.org/10.5194/bg-22-1821-2025, https://doi.org/10.5194/bg-22-1821-2025, 2025
Short summary
Short summary
This work focuses on the response in culture experiments to increasing CO2 of the coccolithophore species Helicosphaera carteri, a unicellular marine calcifying microalgae. The absence of significant changes in coccolith malformations, along with stable size, shape, and calcification-to-photosynthesis ratio, is indicative of H. carteri low sensitivity to CO2 rise, together with its ability to maintain a stable contribution to the marine rain ratio under future climate changes.
Riccardo Martellucci, Michele Giani, Elena Mauri, Laurent Coppola, Melf Paulsen, Marine Fourrier, Sara Pensieri, Vanessa Cardin, Carlotta Dentico, Roberto Bozzano, Carolina Cantoni, Anna Lucchetta, Alfredo Izquierdo, Miguel Bruno, and Ingunn Skjelvan
Earth Syst. Sci. Data, 16, 5333–5356, https://doi.org/10.5194/essd-16-5333-2024, https://doi.org/10.5194/essd-16-5333-2024, 2024
Short summary
Short summary
As part of the ATL2MED demonstration experiment, two autonomous surface vehicles undertook a 9-month mission from the northeastern Atlantic to the Adriatic Sea. Biofouling affected the measurement of variables such as conductivity and dissolved oxygen. COVID-19 limited the availability of discrete samples for validation. We present correction methods for salinity and dissolved oxygen. We use model products to correct salinity and apply the Argo floats in-air correction method for oxygen
Riccardo Martellucci, Francesco Tiralongo, Sofia F. Darmaraki, Michela D'Alessandro, Giorgio Mancinelli, Emanuele Mancini, Roberto Simonini, Milena Menna, Annunziata Pirro, Diego Borme, Rocco Auriemma, Marco Graziano, and Elena Mauri
State Planet Discuss., https://doi.org/10.5194/sp-2024-16, https://doi.org/10.5194/sp-2024-16, 2024
Revised manuscript accepted for SP
Short summary
Short summary
In 2023, global mean air temperatures reached unprecedented highs and the Mediterranean was hit by the longest marine heatwave in four decades. These conditions favored the spread of invasive species affecting fisheries in the central Mediterranean. This study provides new insights into the cascading impacts of climate-driven extreme events on marine ecosystems and fisheries and suggests actionable strategies for dealing with invasive species in a changing climate.
Elena Barbaro, Matteo Feltracco, Fabrizio De Blasi, Clara Turetta, Marta Radaelli, Warren Cairns, Giulio Cozzi, Giovanna Mazzi, Marco Casula, Jacopo Gabrieli, Carlo Barbante, and Andrea Gambaro
Atmos. Chem. Phys., 24, 2821–2835, https://doi.org/10.5194/acp-24-2821-2024, https://doi.org/10.5194/acp-24-2821-2024, 2024
Short summary
Short summary
The study analyzed a year of atmospheric aerosol composition at Col Margherita in the Italian Alps. Over 100 chemical markers were identified, including major ions, organic compounds, and trace elements. It revealed sources of aerosol, highlighted impacts of Saharan dust events, and showed anthropogenic pollution's influence despite the site's remoteness. Enrichment factors emphasized non-natural sources of trace elements. Source apportionment identified four key factors affecting the area.
Christian Lønborg, Cátia Carreira, Gwenaël Abril, Susana Agustí, Valentina Amaral, Agneta Andersson, Javier Arístegui, Punyasloke Bhadury, Mariana B. Bif, Alberto V. Borges, Steven Bouillon, Maria Ll. Calleja, Luiz C. Cotovicz Jr., Stefano Cozzi, Maryló Doval, Carlos M. Duarte, Bradley Eyre, Cédric G. Fichot, E. Elena García-Martín, Alexandra Garzon-Garcia, Michele Giani, Rafael Gonçalves-Araujo, Renee Gruber, Dennis A. Hansell, Fuminori Hashihama, Ding He, Johnna M. Holding, William R. Hunter, J. Severino P. Ibánhez, Valeria Ibello, Shan Jiang, Guebuem Kim, Katja Klun, Piotr Kowalczuk, Atsushi Kubo, Choon-Weng Lee, Cláudia B. Lopes, Federica Maggioni, Paolo Magni, Celia Marrase, Patrick Martin, S. Leigh McCallister, Roisin McCallum, Patricia M. Medeiros, Xosé Anxelu G. Morán, Frank E. Muller-Karger, Allison Myers-Pigg, Marit Norli, Joanne M. Oakes, Helena Osterholz, Hyekyung Park, Maria Lund Paulsen, Judith A. Rosentreter, Jeff D. Ross, Digna Rueda-Roa, Chiara Santinelli, Yuan Shen, Eva Teira, Tinkara Tinta, Guenther Uher, Masahide Wakita, Nicholas Ward, Kenta Watanabe, Yu Xin, Youhei Yamashita, Liyang Yang, Jacob Yeo, Huamao Yuan, Qiang Zheng, and Xosé Antón Álvarez-Salgado
Earth Syst. Sci. Data, 16, 1107–1119, https://doi.org/10.5194/essd-16-1107-2024, https://doi.org/10.5194/essd-16-1107-2024, 2024
Short summary
Short summary
In this paper, we present the first edition of a global database compiling previously published and unpublished measurements of dissolved organic matter (DOM) collected in coastal waters (CoastDOM v1). Overall, the CoastDOM v1 dataset will be useful to identify global spatial and temporal patterns and to facilitate reuse in studies aimed at better characterizing local biogeochemical processes and identifying a baseline for modelling future changes in coastal waters.
Andrea Spolaor, Federico Scoto, Catherine Larose, Elena Barbaro, Francois Burgay, Mats P. Bjorkman, David Cappelletti, Federico Dallo, Fabrizio de Blasi, Dmitry Divine, Giuliano Dreossi, Jacopo Gabrieli, Elisabeth Isaksson, Jack Kohler, Tonu Martma, Louise S. Schmidt, Thomas V. Schuler, Barbara Stenni, Clara Turetta, Bartłomiej Luks, Mathieu Casado, and Jean-Charles Gallet
The Cryosphere, 18, 307–320, https://doi.org/10.5194/tc-18-307-2024, https://doi.org/10.5194/tc-18-307-2024, 2024
Short summary
Short summary
We evaluate the impact of the increased snowmelt on the preservation of the oxygen isotope (δ18O) signal in firn records recovered from the top of the Holtedahlfonna ice field located in the Svalbard archipelago. Thanks to a multidisciplinary approach we demonstrate a progressive deterioration of the isotope signal in the firn core. We link the degradation of the δ18O signal to the increased occurrence and intensity of melt events associated with the rapid warming occurring in the archipelago.
François Burgay, Rafael Pedro Fernández, Delia Segato, Clara Turetta, Christopher S. Blaszczak-Boxe, Rachael H. Rhodes, Claudio Scarchilli, Virginia Ciardini, Carlo Barbante, Alfonso Saiz-Lopez, and Andrea Spolaor
The Cryosphere, 17, 391–405, https://doi.org/10.5194/tc-17-391-2023, https://doi.org/10.5194/tc-17-391-2023, 2023
Short summary
Short summary
The paper presents the first ice-core record of bromine (Br) in the Antarctic plateau. By the observation of the ice core and the application of atmospheric chemical models, we investigate the behaviour of bromine after its deposition into the snowpack, with interest in the effect of UV radiation change connected to the formation of the ozone hole, the role of volcanic deposition, and the possible use of Br to reconstruct past sea ice changes from ice core collect in the inner Antarctic plateau.
Nydia Catalina Reyes Suárez, Valentina Tirelli, Laura Ursella, Matjaž Ličer, Massimo Celio, and Vanessa Cardin
Ocean Sci., 18, 1321–1337, https://doi.org/10.5194/os-18-1321-2022, https://doi.org/10.5194/os-18-1321-2022, 2022
Short summary
Short summary
Explaining the dynamics of jellyfish blooms is a challenge for scientists. Biological and meteo-oceanographic data were combined on different timescales to explain the exceptional bloom of the jellyfish Rhizostoma pulmo in the Gulf of Trieste (Adriatic Sea) in April 2021. The bloom was associated with anomalously warm seasonal sea conditions. Then, a strong bora wind event enhanced upwelling and mixing of the water column, causing jellyfish to rise to the surface and accumulate along the coast.
Manuel Bensi, Vedrana Kovačević, Federica Donda, Philip Edward O'Brien, Linda Armbrecht, and Leanne Kay Armand
Earth Syst. Sci. Data, 14, 65–78, https://doi.org/10.5194/essd-14-65-2022, https://doi.org/10.5194/essd-14-65-2022, 2022
Short summary
Short summary
The Totten Glacier (Sabrina Coast, East Antarctica) has undergone significant retreat in recent years, underlining its sensitivity to climate change and its potential contribution to global sea-level rise. The melting process is strongly influenced by ocean dynamics and the spatial distribution of water masses appears to be linked to the complex morpho-bathymetry of the area, supporting the hypothesis that downwelling processes contribute to shaping the architecture of the continental margin.
Miroslav Gačić, Laura Ursella, Vedrana Kovačević, Milena Menna, Vlado Malačič, Manuel Bensi, Maria-Eletta Negretti, Vanessa Cardin, Mirko Orlić, Joël Sommeria, Ricardo Viana Barreto, Samuel Viboud, Thomas Valran, Boris Petelin, Giuseppe Siena, and Angelo Rubino
Ocean Sci., 17, 975–996, https://doi.org/10.5194/os-17-975-2021, https://doi.org/10.5194/os-17-975-2021, 2021
Short summary
Short summary
Experiments in rotating tanks can simulate the Earth system and help to represent the real ocean, where rotation plays an important role. We wanted to show the minor importance of the wind in driving the flow in the Ionian Sea. We did this by observing changes in the water current in a rotating tank affected only by the pumping of dense water into the system. The flow variations were similar to those in the real sea, confirming the scarce importance of the wind for the flow in the Ionian Sea.
Delia Segato, Maria Del Carmen Villoslada Hidalgo, Ross Edwards, Elena Barbaro, Paul Vallelonga, Helle Astrid Kjær, Marius Simonsen, Bo Vinther, Niccolò Maffezzoli, Roberta Zangrando, Clara Turetta, Dario Battistel, Orri Vésteinsson, Carlo Barbante, and Andrea Spolaor
Clim. Past, 17, 1533–1545, https://doi.org/10.5194/cp-17-1533-2021, https://doi.org/10.5194/cp-17-1533-2021, 2021
Short summary
Short summary
Human influence on fire regimes in the past is poorly understood, especially at high latitudes. We present 5 kyr of fire proxies levoglucosan, black carbon, and ammonium in the RECAP ice core in Greenland and reconstruct for the first time the fire regime in the high North Atlantic region, comprising coastal east Greenland and Iceland. Climate is the main driver of the fire regime, but at 1.1 kyr BP a contribution may be made by the deforestation resulting from Viking colonization of Iceland.
François Burgay, Andrea Spolaor, Jacopo Gabrieli, Giulio Cozzi, Clara Turetta, Paul Vallelonga, and Carlo Barbante
Clim. Past, 17, 491–505, https://doi.org/10.5194/cp-17-491-2021, https://doi.org/10.5194/cp-17-491-2021, 2021
Short summary
Short summary
We present the first Fe record from the NEEM ice core, which provides insight into past atmospheric Fe deposition in the Arctic. Considering the biological relevance of Fe, we questioned if the increased eolian Fe supply during glacial periods could explain the marine productivity variability in the Fe-limited subarctic Pacific Ocean. We found no overwhelming evidence that eolian Fe fertilization triggered any phytoplankton blooms, likely because other factors play a more relevant role.
Niccolò Maffezzoli, Paul Vallelonga, Ross Edwards, Alfonso Saiz-Lopez, Clara Turetta, Helle Astrid Kjær, Carlo Barbante, Bo Vinther, and Andrea Spolaor
Clim. Past, 15, 2031–2051, https://doi.org/10.5194/cp-15-2031-2019, https://doi.org/10.5194/cp-15-2031-2019, 2019
Short summary
Short summary
This study provides the first ice-core-based history of sea ice in the North Atlantic Ocean, reaching 120 000 years back in time. This record was obtained from bromine and sodium measurements in the RECAP ice core, drilled in east Greenland. We found that, during the last deglaciation, sea ice started to melt ~ 17 500 years ago. Over the 120 000 years of the last glacial cycle, sea ice extent was maximal during MIS2, while minimum sea ice extent exists for the Holocene.
Andrea Spolaor, Elena Barbaro, David Cappelletti, Clara Turetta, Mauro Mazzola, Fabio Giardi, Mats P. Björkman, Federico Lucchetta, Federico Dallo, Katrine Aspmo Pfaffhuber, Hélène Angot, Aurelien Dommergue, Marion Maturilli, Alfonso Saiz-Lopez, Carlo Barbante, and Warren R. L. Cairns
Atmos. Chem. Phys., 19, 13325–13339, https://doi.org/10.5194/acp-19-13325-2019, https://doi.org/10.5194/acp-19-13325-2019, 2019
Short summary
Short summary
The main aims of the study are to (a) detect whether mercury in the surface snow undergoes a daily cycle as determined in the atmosphere, (b) compare the mercury concentration in surface snow with the concentration in the atmosphere, (c) evaluate the effect of snow depositions, (d) detect whether iodine and bromine in the surface snow undergo a daily cycle, and (e) evaluate the role of metereological and atmospheric conditions. Different behaviours were determined during different seasons.
Elena Barbaro, Cristiano Varin, Xanthi Pedeli, Jean Marc Christille, Torben Kirchgeorg, Fabio Giardi, David Cappelletti, Clara Turetta, Andrea Gambaro, Andrea Bernagozzi, Jean Charles Gallet, Mats P. Björkman, and Andrea Spolaor
The Cryosphere Discuss., https://doi.org/10.5194/tc-2019-124, https://doi.org/10.5194/tc-2019-124, 2019
Preprint withdrawn
Mirna Batistić, Damir Viličić, Vedrana Kovačević, Nenad Jasprica, Héloise Lavigne, Marina Carić, Rade Garić, and Ana Car
Biogeosciences Discuss., https://doi.org/10.5194/bg-2017-205, https://doi.org/10.5194/bg-2017-205, 2017
Preprint retracted
Short summary
Short summary
Contrary to earlier statements winter bloom is typical of the open South Adriatic.
Its intensity depends on different water masses that enter the Adriatic, synergy of regional meteorology and mixing processes that affect these water masses. More intense blooms have occurred under certain hydroclimatic conditions: the East Mediterranean Transient (EMT), extreme winters, and reversal years that switch between anticyclonic and ciclonic circulation in the Ionian Sea.
V. Cardin, G. Civitarese, D. Hainbucher, M. Bensi, and A. Rubino
Ocean Sci., 11, 53–66, https://doi.org/10.5194/os-11-53-2015, https://doi.org/10.5194/os-11-53-2015, 2015
Short summary
Short summary
The results of this study reveal that the thermohaline properties in the study area in 2011 lie between the thermohaline characteristics of the EMT and those of the pre-EMT phase, indicating a possible slow return towards the latter. It highlights the relationship between the hydrological property distribution of the upper layer in the Levantine basin and the alternate circulation regimes in the Ionian, which modulates the salinity distribution in the Eastern Mediterranean Sea.
A. Spolaor, P. Vallelonga, J. Gabrieli, T. Martma, M. P. Björkman, E. Isaksson, G. Cozzi, C. Turetta, H. A. Kjær, M. A. J. Curran, A. D. Moy, A. Schönhardt, A.-M. Blechschmidt, J. P. Burrows, J. M. C. Plane, and C. Barbante
Atmos. Chem. Phys., 14, 9613–9622, https://doi.org/10.5194/acp-14-9613-2014, https://doi.org/10.5194/acp-14-9613-2014, 2014
D. Hainbucher, A. Rubino, V. Cardin, T. Tanhua, K. Schroeder, and M. Bensi
Ocean Sci., 10, 669–682, https://doi.org/10.5194/os-10-669-2014, https://doi.org/10.5194/os-10-669-2014, 2014
M. Gačić, G. Civitarese, V. Kovačević, L. Ursella, M. Bensi, M. Menna, V. Cardin, P.-M. Poulain, S. Cosoli, G. Notarstefano, and C. Pizzi
Ocean Sci., 10, 513–522, https://doi.org/10.5194/os-10-513-2014, https://doi.org/10.5194/os-10-513-2014, 2014
A. Spolaor, P. Vallelonga, J. M. C. Plane, N. Kehrwald, J. Gabrieli, C. Varin, C. Turetta, G. Cozzi, R. Kumar, C. Boutron, and C. Barbante
Atmos. Chem. Phys., 13, 6623–6635, https://doi.org/10.5194/acp-13-6623-2013, https://doi.org/10.5194/acp-13-6623-2013, 2013
Related subject area
Domain: ESSD – Ocean | Subject: Physical oceanography
A revisiting of early 18th-century environmental data to identify Gulf of Lion properties before the industrial era
A high-resolution temperature–salinity dataset observed by autonomous underwater vehicles for the evolution of mesoscale eddies and associated submesoscale processes in the South China Sea
A global daily mesoscale front dataset from satellite observations: in situ validation and cross-dataset comparison
ASM-SS: the first quasi-global high-spatial-resolution coastal storm surge dataset reconstructed from tide gauge records
Expendable bathythermograph (XBT) data collected along the Southern Ocean chokepoint between Aotearoa / New Zealand and Antarctica, 1994–2024
HHU24SWDSCS: a shallow-water depth model over island areas in the South China Sea retrieved from satellite-derived bathymetry
Gap-filled sub-surface mooring dataset off Western Australia during 2010–2023
The International Altimetry Service 2024 (IAS2024) coastal sea level dataset and first evaluations
Hydrodynamic and Atmospheric Conditions in a Volcanic Caldera: A Comprehensive Dataset at Deception Island, Antarctica
Global ocean surface heat fluxes derived from the maximum entropy production framework accounting for ocean heat storage and Bowen ratio adjustments
A European database of resources on coastal storm impacts
Multi-year observations of near-bed hydrodynamics and suspended sediment at the core of the estuarine turbidity maximum of the Changjiang Estuary
Surface current variability in the East Australian Current from long-term high-frequency radar observations
SDUST2023VGGA: a global ocean vertical gradient of gravity anomaly model determined from multidirectional data from mean sea surface
Satellite-based Analysis of Ocean-Surface Stress across the Ice-free and Ice-covered Polar Oceans
A new multi-grid bathymetric dataset of the Gulf of Naples (Italy) from complementary multi-beam echo sounders
A New-Generation Internal Tide Model Based on 30 Years of Satellite Sea Surface Height Measurements
A submesoscale eddy identification dataset in the northwest Pacific Ocean derived from GOCI I chlorophyll a data based on deep learning
MASCS 1.0: synchronous atmospheric and oceanic data from a cross-shaped moored array in the northern South China Sea during 2014–2015
Reprocessing of eXpendable BathyThermograph (XBT) profiles from the Ligurian and Tyrrhenian seas over the time period 1999–2019 with a full metadata upgrade
Coastal Atmosphere and Sea Time Series (CoASTS) and Bio-Optical mapping of Marine Properties (BiOMaP): the CoASTS-BiOMaP dataset
Spatio-temporal changes in China's mainland shorelines over 30 years using Landsat time series data (1990–2019)
ISASO2: recent trends and regional patterns of ocean dissolved oxygen change
Constructing a 22-year internal wave dataset for the northern South China Sea: spatiotemporal analysis using MODIS imagery and deep learning
Near-real-time atmospheric and oceanic science products of Himawari-8 and Himawari-9 geostationary satellites over the South China Sea
ReefTEMPS: The Pacific Islands Coastal Temperature Network
High-resolution observations of the ocean upper layer south of Cape St. Vincent, the western northern margin of the Gulf of Cádiz
Catalogue of coastal-based instances with bathymetric and topographic data
Oceanographic monitoring in Hornsund fjord, Svalbard
Salinity and Stratification at the Sea Ice Edge (SASSIE): an oceanographic field campaign in the Beaufort Sea
Weekly green tide mapping in the Yellow Sea with deep learning: integrating optical and synthetic aperture radar ocean imagery
30 months dataset of glider physico-chemical data off Mayotte Island near the Fani Maoré volcano
IAPv4 ocean temperature and ocean heat content gridded dataset
Probabilistic reconstruction of sea-level changes and their causes since 1900
Global Coastal Characteristics (GCC): a global dataset of geophysical, hydrodynamic, and socioeconomic coastal indicators
Insights from a topo-bathymetric and oceanographic dataset for coastal flooding studies: the French Flooding Prevention Action Program of Saint-Malo
Gap-filling techniques applied to the GOCI-derived daily sea surface salinity product for the Changjiang diluted water front in the East China Sea
A daily reconstructed chlorophyll-a dataset in the South China Sea from MODIS using OI-SwinUnet
Underwater light environment in Arctic fjords
Multiyear surface wave dataset from the subsurface “DeepLev” eastern Levantine moored station
SDUST2020MGCR: a global marine gravity change rate model determined from multi-satellite altimeter data
Lagrangian surface drifter observations in the North Sea: an overview of high-resolution tidal dynamics and surface currents
The physical and biogeochemical parameters along the coastal waters of Saudi Arabia during field surveys in summer, 2021
A Lagrangian coherent eddy atlas for biogeochemical applications in the North Pacific Subtropical Gyre
Global marine gravity gradient tensor inverted from altimetry-derived deflections of the vertical: CUGB2023GRAD
Reconstruction of hourly coastal water levels and counterfactuals without sea level rise for impact attribution
3D reconstruction of horizontal and vertical quasi-geostrophic currents in the North Atlantic Ocean
Laboratory data linking the reconfiguration of and drag on individual plants to the velocity structure and wave dissipation over a meadow of salt marsh plants under waves with and without current
Exploring multi-decadal time series of temperature extremes in Australian coastal waters
Measurements of morphodynamics of a sheltered beach along the Dutch Wadden Sea
Marina Locritani, Sara Garvani, Giancarlo Tamburello, Antonio Guarnieri, and Giuseppe Manzella
Earth Syst. Sci. Data, 17, 3553–3566, https://doi.org/10.5194/essd-17-3553-2025, https://doi.org/10.5194/essd-17-3553-2025, 2025
Short summary
Short summary
The Histoire physique de la mer, written by Luigi Ferdinando Marsili in 1725, was one of the first treatises to analyse the science of the sea. However, it is difficult to understand Marsili's original data. This paper reports the results of a major effort that has been undertaken to re-evaluate Marsili's observations, converting historical measurements into modern units – water weight to water density – with bathymetric profiles mapping the locations where these measurements were made and sea level variations alongside consideration of the associated error.
Chunhua Qiu, Zhenyang Du, Haibo Tang, Zhenhui Yi, Jiawei Qiao, Dongxiao Wang, Xiaoming Zhai, and Wenbo Wang
Earth Syst. Sci. Data, 17, 3189–3202, https://doi.org/10.5194/essd-17-3189-2025, https://doi.org/10.5194/essd-17-3189-2025, 2025
Short summary
Short summary
The high-resolution autonomous underwater vehicle (AUV) dataset for the South China Sea (SCS) provides 13 491 temperature and salinity profiles and covers 463 d of experiments. To our knowledge, the resolution and length of this dataset are enough to detect the asymmetry, vertical tilt, and temporal evolution of mesoscale eddies (MEs) and the corresponding submesoscale processes. The dataset is expected to improve the accuracy of current and biogeochemistry numerical models. More projects conducting AUV experiments will be promoted in the future.
Qinwang Xing, Haiqing Yu, Wei Yu, Xinjun Chen, and Hui Wang
Earth Syst. Sci. Data, 17, 2831–2848, https://doi.org/10.5194/essd-17-2831-2025, https://doi.org/10.5194/essd-17-2831-2025, 2025
Short summary
Short summary
Ocean fronts play a key role in marine ecosystems and often implicitly exist in satellite observations. This work presents the first publicly available daily global front dataset spanning 1982 to 2023, with comprehensive validations using in situ global observations. Our validations enhance confidence in the application of satellite-based front detection and provide independent support for global front occurrence patterns. The dataset is expected to be widely used in front-related studies.
Lianjun Yang, Taoyong Jin, and Weiping Jiang
Earth Syst. Sci. Data, 17, 2793–2807, https://doi.org/10.5194/essd-17-2793-2025, https://doi.org/10.5194/essd-17-2793-2025, 2025
Short summary
Short summary
Storm surges (SSs) cause massive loss of life and property in coastal areas each year. High-spatial-resolution and long-term SS records are important for assessing such events. However, tide gauges can provide limited SS information due to sparse and uneven distributions. Based on artificial intelligence technology and tide gauges, a high-spatial-coverage SS dataset was generated for the period from 1940 to 2020, which can provide possible alternative support for deepening our understanding of SSs.
Giuseppe Aulicino, Antonino Ian Ferola, Laura Fortunato, Giorgio Budillon, Pasquale Castagno, Pierpaolo Falco, Giannetta Fusco, Naomi Krauzig, Giancarlo Spezie, Enrico Zambianchi, and Yuri Cotroneo
Earth Syst. Sci. Data, 17, 2625–2640, https://doi.org/10.5194/essd-17-2625-2025, https://doi.org/10.5194/essd-17-2625-2025, 2025
Short summary
Short summary
This study presents 30 years of water temperature data from expendable bathythermograph (XBT) probes collected between Aotearoa / New Zealand and the Ross Sea (Antarctica). Gathered during research cruises by the Italian National Antarctic Research Program, the data were rigorously verified and corrected for depth and temperature bias. This dataset provides a valuable insight into the Southern Ocean's climate and enhances satellite observations and ocean models.
Yihao Wu, Hongkai Shi, Dongzhen Jia, Ole Baltazar Andersen, Xiufeng He, Zhicai Luo, Yu Li, Shiyuan Chen, Xiaohuan Si, Sisu Diao, Yihuang Shi, and Yanglin Chen
Earth Syst. Sci. Data, 17, 2463–2488, https://doi.org/10.5194/essd-17-2463-2025, https://doi.org/10.5194/essd-17-2463-2025, 2025
Short summary
Short summary
We developed a high-quality and cost-effective shallow-water depth model for >120 islands in the South China Sea, using ICESat-2 and Sentinel-2 satellite data. This model maps water depths with an accuracy of ~1 m. Our findings highlight the limitations of existing global bathymetry models in shallow regions. Our model exhibited superior performance in capturing fine-scale bathymetric features with unprecedented spatial resolution, providing essential data for marine applications.
Toan Bui, Ming Feng, and Christopher C. Chapman
Earth Syst. Sci. Data, 17, 1693–1705, https://doi.org/10.5194/essd-17-1693-2025, https://doi.org/10.5194/essd-17-1693-2025, 2025
Short summary
Short summary
Moored time series data are crucial for detecting changes in the ocean. However, mooring losses or instrument failures often result in data gaps. A gap-filled time series dataset of a shelf mooring array off the Western Australian coast is created using a machine learning tool to fill the data gaps. The gap-filled data show consistency with observations and can be used to characterize marine heat waves and cold spells influenced by ocean boundary currents.
Fukai Peng, Xiaoli Deng, Yunzhong Shen, and Xiao Cheng
Earth Syst. Sci. Data, 17, 1441–1460, https://doi.org/10.5194/essd-17-1441-2025, https://doi.org/10.5194/essd-17-1441-2025, 2025
Short summary
Short summary
A new reprocessed altimeter coastal sea level dataset, International Altimetry Service 2024 (IAS2024), for monitoring sea level changes along the world’s coastlines is presented. The evaluation and validation results confirm the reliability of this dataset. The altimeter-based virtual stations along the world’s coastlines can be built using this dataset to monitor the coastal sea level changes where tide gauges are unavailable. Therefore, it is beneficial for both oceanographic communities and policymakers.
Francesco Ferrari, Carmen Zarzuelo, Alejandro López-Ruiz, and Andrea Lira-Loarca
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-92, https://doi.org/10.5194/essd-2025-92, 2025
Revised manuscript accepted for ESSD
Short summary
Short summary
This study presents a high-resolution, open-access dataset for Deception Island, Antarctica, covering 2005–2020. Using WRF and DELFT3D models, it includes 161 atmospheric variables (e.g., wind, precipitation, pressure) and hydrodynamic data (e.g., sea surface height, currents, wave height). Capturing spatial, seasonal, and extreme event variability, it enhances understanding of Antarctic coastal dynamics, supporting research on glacial melt, nutrient transport, and climate change impacts.
Yong Yang, Huaiwei Sun, Jingfeng Wang, Wenxin Zhang, Gang Zhao, Weiguang Wang, Lei Cheng, Lu Chen, Hui Qin, and Zhanzhang Cai
Earth Syst. Sci. Data, 17, 1191–1216, https://doi.org/10.5194/essd-17-1191-2025, https://doi.org/10.5194/essd-17-1191-2025, 2025
Short summary
Short summary
Traditional methods for estimating ocean heat flux often introduce large uncertainties due to complex parameterizations. To tackle this issue, we developed a novel framework based on maximum entropy production (MEP) theory. By incorporating heat storage effects and refining the Bowen ratio, we enhanced the MEP method's accuracy. This research derives a new long-term global ocean latent heat flux dataset that offers high accuracy, enhancing our understanding of ocean energy dynamics.
Paola Emilia Souto-Ceccon, Juan Montes, Enrico Duo, Paolo Ciavola, Tomás Fernández-Montblanc, and Clara Armaroli
Earth Syst. Sci. Data, 17, 1041–1054, https://doi.org/10.5194/essd-17-1041-2025, https://doi.org/10.5194/essd-17-1041-2025, 2025
Short summary
Short summary
This dataset supports the growing need for information on coastal storm impacts. It covers different European countries and is an open-access tool that can be exploited, updated, or complemented by different users and for different purposes. Via labelling with unique identifiers, the database allows for a quick and consistent retrieval of all of the resources associated with a storm event. The adopted approach can be easily exported to all European countries and beyond.
Zaiyang Zhou, Jianzhong Ge, Dirk Sebastiaan van Maren, Hualong Luan, Wenyun Guo, Jianfei Ma, Yingjia Tao, Peng Xu, Fuhai Dao, Wanlun Yang, Keteng Ke, Shenyang Shi, Jingting Zhang, Yu Kuai, Cheng Li, Jinghua Gu, and Pingxing Ding
Earth Syst. Sci. Data, 17, 917–935, https://doi.org/10.5194/essd-17-917-2025, https://doi.org/10.5194/essd-17-917-2025, 2025
Short summary
Short summary
The North Passage (NP) is the primary navigation channel of the Changjiang Estuary, supporting the shipping needs of Shanghai and its surrounding regions. To enhance our understanding of hydrodynamics and sediment dynamics of the NP, a multi-year field observation campaign was designed and conducted from 2015 to 2018. This campaign improves the temporal and spatial coverage compared to previous observations, enabling more detailed investigations of this important channel system.
Manh Cuong Tran, Moninya Roughan, and Amandine Schaeffer
Earth Syst. Sci. Data, 17, 937–963, https://doi.org/10.5194/essd-17-937-2025, https://doi.org/10.5194/essd-17-937-2025, 2025
Short summary
Short summary
The East Australian Current (EAC) plays an important role in the marine ecosystem and climate of the region. To understand the EAC regime and the inner shelf dynamics, we implement a variational approach to produce the first multiyear coastal radar dataset (2012–2023) in this region. The validated data allow for a comprehensive investigation of the EAC dynamics. This dataset will be useful for understanding the complex EAC regime and its far-reaching impacts on the shelf environment.
Ruichen Zhou, Jinyun Guo, Shaoshuai Ya, Heping Sun, and Xin Liu
Earth Syst. Sci. Data, 17, 817–836, https://doi.org/10.5194/essd-17-817-2025, https://doi.org/10.5194/essd-17-817-2025, 2025
Short summary
Short summary
SDUST2023VGGA is a high-resolution (1' × 1') model developed to map the ocean's vertical gradient of gravity anomaly. By using multidirectional mean sea surface data, it reduces the impact of ocean dynamics and provides detailed global gravity anomaly change rates. This model provides critical insights into seafloor structures and ocean mass distribution, contributing to research in marine geophysics and oceanography. The dataset is freely available on Zenodo.
Chao Liu and Lisan Yu
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-14, https://doi.org/10.5194/essd-2025-14, 2025
Revised manuscript accepted for ESSD
Short summary
Short summary
A daily dataset on ocean-surface stress is synthesized for both ice-covered and ice-free Arctic and Antarctic areas. It is based on satellite data on ocean winds, ice movement, and sea surface height. Sensitivity analyses address uncertainties, including variations in sea level products and ice-water drag. The dataset's accuracy is validated against in situ measurements, showing moderate to good agreement on monthly and longer timescales.
Federica Foglini, Marzia Rovere, Renato Tonielli, Giorgio Castellan, Mariacristina Prampolini, Francesca Budillon, Marco Cuffaro, Gabriella Di Martino, Valentina Grande, Sara Innangi, Maria Filomena Loreto, Leonardo Langone, Fantina Madricardo, Alessandra Mercorella, Paolo Montagna, Camilla Palmiotto, Claudio Pellegrini, Antonio Petrizzo, Lorenzo Petracchini, Alessandro Remia, Marco Sacchi, Daphnie Sanchez Galvez, Anna Nora Tassetti, and Fabio Trincardi
Earth Syst. Sci. Data, 17, 181–203, https://doi.org/10.5194/essd-17-181-2025, https://doi.org/10.5194/essd-17-181-2025, 2025
Short summary
Short summary
In 2022, the new CNR research vessel Gaia Blu explored the seabed of the Naples and Pozzuoli gulfs and the Amalfi coastal area (Tyrrhenian Sea, Italy) from 50–2000 m water depth, covering 5000 m2 of seafloor. This paper describes data acquisition and processing and provides maps in unprecedented detail of this area affected by geological changes and human impacts. The findings support future geological and geomorphological investigations and mapping and monitoring of the seafloor and habitats.
Zhongxiang Zhao
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-611, https://doi.org/10.5194/essd-2024-611, 2025
Revised manuscript accepted for ESSD
Short summary
Short summary
Internal tides are generated by barotropic tidal currents flowing over variable topography. They play an important role in a variety of ocean processes such as diapycnal mixing and tracer transport. A global internal tide model is developed using 30 years of satellite altimetry data and a new mapping technique. It decomposes the internal tide field into 60 plane waves at each point, giving numerous long-range beams that contain key information on their generation, propagation, and dissipation.
Yan Wang, Ge Chen, Jie Yang, Zhipeng Gui, and Dehua Peng
Earth Syst. Sci. Data, 16, 5737–5752, https://doi.org/10.5194/essd-16-5737-2024, https://doi.org/10.5194/essd-16-5737-2024, 2024
Short summary
Short summary
Mesoscale eddies are ubiquitous in the ocean and account for 90 % of its kinetic energy, but their generation and dissipation are difficult to observe using current remote sensing technology. Our submesoscale eddy dataset, formed by suppressing large-scale circulation signals and enhancing small-scale chlorophyll structures, has important implications for understanding marine environments and ecosystems, as well as improving climate model predictions.
Han Zhang, Dake Chen, Tongya Liu, Di Tian, Min He, Qi Li, Guofei Wei, and Jian Liu
Earth Syst. Sci. Data, 16, 5665–5679, https://doi.org/10.5194/essd-16-5665-2024, https://doi.org/10.5194/essd-16-5665-2024, 2024
Short summary
Short summary
This paper provides a cross-shaped moored array dataset (MASCS 1.0) of observations that consist of five buoys and four moorings in the northern South China Sea from 2014 to 2015. The moored array is influenced by atmospheric forcings such as tropical cyclones and monsoon as well as oceanic tides and flows. The data reveal variations of the air–sea interface and the ocean itself, which are valuable for studies of air–sea interactions and ocean dynamics in the northern South China Sea.
Simona Simoncelli, Franco Reseghetti, Claudia Fratianni, Lijing Cheng, and Giancarlo Raiteri
Earth Syst. Sci. Data, 16, 5531–5561, https://doi.org/10.5194/essd-16-5531-2024, https://doi.org/10.5194/essd-16-5531-2024, 2024
Short summary
Short summary
This data review is about the reprocessing of historical eXpendable BathyThermograp (XBT) profiles from the Ligurian and Tyrrhenian seas over the time period 1999–2019. A new automated quality control analysis has been performed starting from the original raw data and operational log sheets. The data have been formatted and standardized according to the latest community best practices, and all available metadata have been inserted, including calibration information and uncertainty specification.
Giuseppe Zibordi and Jean-François Berthon
Earth Syst. Sci. Data, 16, 5477–5502, https://doi.org/10.5194/essd-16-5477-2024, https://doi.org/10.5194/essd-16-5477-2024, 2024
Short summary
Short summary
The Coastal Atmosphere and Sea Time Series (CoASTS) and Bio-Optical mapping of Marine Properties (BiOMaP) programs produced bio-optical data supporting satellite ocean color applications across European seas for almost 2 decades. CoASTS and BiOMaP applied equal standardized instruments, measurement methods, quality control schemes and processing codes to ensure temporal and spatial consistency with data products.
Gang Yang, Ke Huang, Lin Zhu, Weiwei Sun, Chao Chen, Xiangchao Meng, Lihua Wang, and Yong Ge
Earth Syst. Sci. Data, 16, 5311–5331, https://doi.org/10.5194/essd-16-5311-2024, https://doi.org/10.5194/essd-16-5311-2024, 2024
Short summary
Short summary
Continuous monitoring of shoreline dynamics is critical to understanding the drivers of shoreline change and evolution. This study uses long-term sequences of Landsat Landsat Thematic Mapper (TM), Enhanced Thematic Mapper Plus (ETM+), and Operational Land Imager (OLI) images to analyze the spatio-temporal evolution characteristics of the coastlines of Hainan, mainland China, Taiwan, and other countries from 1990 to 2019.
Nicolas Kolodziejczyk, Esther Portela, Virginie Thierry, and Annaig Prigent
Earth Syst. Sci. Data, 16, 5191–5206, https://doi.org/10.5194/essd-16-5191-2024, https://doi.org/10.5194/essd-16-5191-2024, 2024
Short summary
Short summary
Oceanic dissolved oxygen (DO) is fundamental for ocean biogeochemical cycles and marine life. To ease the computation of the ocean oxygen budget from in situ DO data, mapping of data on a regular 3D grid is useful. Here, we present a new DO gridded product from the Argo database. We compare it with existing DO mapping from a historical dataset. We suggest that the ocean has generally been losing oxygen since the 1980s, but large interannual and regional variabilities should be considered.
Xudong Zhang and Xiaofeng Li
Earth Syst. Sci. Data, 16, 5131–5144, https://doi.org/10.5194/essd-16-5131-2024, https://doi.org/10.5194/essd-16-5131-2024, 2024
Short summary
Short summary
Internal wave (IW) is an important ocean process and is frequently observed in the South China Sea (SCS). This study presents a detailed IW dataset for the northern SCS spanning from 2000 to 2022, with a spatial resolution of 250 m, comprising 3085 IW MODIS images. This dataset can enhance understanding of IW dynamics and serve as a valuable resource for studying ocean dynamics, validating numerical models, and advancing AI-driven model building, fostering further exploration into IW phenomena.
Jian Liu, Jingjing Yu, Chuyong Lin, Min He, Haiyan Liu, Wei Wang, and Min Min
Earth Syst. Sci. Data, 16, 4949–4969, https://doi.org/10.5194/essd-16-4949-2024, https://doi.org/10.5194/essd-16-4949-2024, 2024
Short summary
Short summary
The Japanese Himawari-8 and Himawari-9 (H8/9) geostationary (GEO) satellites are strategically positioned over the South China Sea (SCS), spanning from 3 November 2022 to the present. They mainly provide cloud mask, fraction, height, phase, optical, and microphysical property; layered precipitable water; and sea surface temperature products within a temporal resolution of 10 min and a gridded resolution of 0.05° × 0.05°.
Romain Le Gendre, David Varillon, Sylvie Fiat, Régis Hocdé, Antoine De Ramon N'Yeurt, Jérôme Aucan, Sophie Cravatte, Maxime Duphil, Alexandre Ganachaud, Baptiste Gaudron, Elodie Kestenare, Vetea Liao, Bernard Pelletier, Alexandre Peltier, Anne-Lou Schaefer, Thomas Trophime, Simon Van Wynsberge, Yves Dandonneau, Michel Allenbach, and Christophe Menkes
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-394, https://doi.org/10.5194/essd-2024-394, 2024
Revised manuscript accepted for ESSD
Short summary
Short summary
Due to ocean warming, coral reef ecosystems are strongly impacted with dystrophic events and corals experiencing increasing frequencies of bleaching events. In-situ observation remains the best alternative for accurate characterization of trends and extremes in these shallow environments. This paper presents the coastal temperature dataset of the ReefTEMPS monitoring network which spreads over multiple Pacific Island Countries and Territories (PICTS) in the Western and Central South Pacific.
Sarah A. Rautenbach, Carlos Mendes de Sousa, Mafalda Carapuço, and Paulo Relvas
Earth Syst. Sci. Data, 16, 4641–4654, https://doi.org/10.5194/essd-16-4641-2024, https://doi.org/10.5194/essd-16-4641-2024, 2024
Short summary
Short summary
This article presents the data of a 4-month observation of the Iberian Margin Cape St. Vincent ocean observatory, in Portugal (2022), a European Multidisciplinary Seafloor and water column Observatory node. Three instruments at depths between 150 and 200 m collected physical/biogeochemical parameters at different spatial and temporal scales. EMSO-ERIC aims at developing strategies to enable sustainable ocean observation with regards to costs, time, and resolution.
Owein Thuillier, Nicolas Le Josse, Alexandru-Liviu Olteanu, Marc Sevaux, and Hervé Tanguy
Earth Syst. Sci. Data, 16, 4529–4556, https://doi.org/10.5194/essd-16-4529-2024, https://doi.org/10.5194/essd-16-4529-2024, 2024
Short summary
Short summary
Our study unveils a comprehensive catalogue of 17 700 unique coastal digital elevation models (DEMs) derived from the General Bathymetric Chart of the Oceans (GEBCO) as of 2022. These DEMs are designed to support a variety of scientific and educational purposes. Organised into three libraries, they cover a wide range of coastal geometries and different sizes. Data and custom colour palettes for visualisation are made freely available online, promoting open science and collaboration.
Meri Korhonen, Mateusz Moskalik, Oskar Głowacki, and Vineet Jain
Earth Syst. Sci. Data, 16, 4511–4527, https://doi.org/10.5194/essd-16-4511-2024, https://doi.org/10.5194/essd-16-4511-2024, 2024
Short summary
Short summary
Since 2015, temperature and salinity have been monitored in Hornsund fjord (Svalbard), where retreating glaciers add meltwater and terrestrial matter to coastal waters. Therefore, turbidity and water sampling for suspended sediment concentration and sediment deposition are measured. The monitoring spans from May to October, enabling studies on seasonality and its variability over the years, and the dataset covers the whole fjord, including the inner basins in close proximity to the glaciers.
Kyla Drushka, Elizabeth Westbrook, Frederick M. Bingham, Peter Gaube, Suzanne Dickinson, Severine Fournier, Viviane Menezes, Sidharth Misra, Jaynice Pérez Valentín, Edwin J. Rainville, Julian J. Schanze, Carlyn Schmidgall, Andrey Shcherbina, Michael Steele, Jim Thomson, and Seth Zippel
Earth Syst. Sci. Data, 16, 4209–4242, https://doi.org/10.5194/essd-16-4209-2024, https://doi.org/10.5194/essd-16-4209-2024, 2024
Short summary
Short summary
The NASA SASSIE mission aims to understand the role of salinity in modifying sea ice formation in early autumn. The 2022 SASSIE campaign collected measurements of upper-ocean properties, including stratification (layering of the ocean) and air–sea fluxes in the Beaufort Sea. These data are presented here and made publicly available on the NASA Physical Oceanography Distributed Active Archive Center (PO.DAAC), along with code to manipulate the data and generate the figures presented herein.
Le Gao, Yuan Guo, and Xiaofeng Li
Earth Syst. Sci. Data, 16, 4189–4207, https://doi.org/10.5194/essd-16-4189-2024, https://doi.org/10.5194/essd-16-4189-2024, 2024
Short summary
Short summary
Since 2008, the Yellow Sea has faced a significant ecological issue, the green tide, which has become one of the world's largest marine disasters. Satellite remote sensing plays a pivotal role in detecting this phenomenon. This study uses AI-based models to extract the daily green tide from MODIS and SAR images and integrates these daily data to introduce a continuous weekly dataset, which aids research in disaster simulation, forecasting, and prevention.
Alexandre Heumann, Félix Margirier, Emmanuel Rinnert, Pascale Lherminier, Carla Scalabrin, Louis Geli, Orens Pasqueron de Fommervault, and Laurent Beguery
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-377, https://doi.org/10.5194/essd-2024-377, 2024
Revised manuscript accepted for ESSD
Short summary
Short summary
Following an seismic crisis in May 2018 in Mayotte, an observation network has been created with the given objective of monitoring this volcanic phenomena. A SeaExplorer glider has been deployed to supplement the data obtained during a series of oceanographic surveys. The glider performed a continuous monitoring of 30 months of the water column from the sea surface to 1250 meters water depth with the objective to acquire hydrological properties, water currents and dissolved gas concentrations.
Lijing Cheng, Yuying Pan, Zhetao Tan, Huayi Zheng, Yujing Zhu, Wangxu Wei, Juan Du, Huifeng Yuan, Guancheng Li, Hanlin Ye, Viktor Gouretski, Yuanlong Li, Kevin E. Trenberth, John Abraham, Yuchun Jin, Franco Reseghetti, Xiaopei Lin, Bin Zhang, Gengxin Chen, Michael E. Mann, and Jiang Zhu
Earth Syst. Sci. Data, 16, 3517–3546, https://doi.org/10.5194/essd-16-3517-2024, https://doi.org/10.5194/essd-16-3517-2024, 2024
Short summary
Short summary
Observational gridded products are essential for understanding the ocean, the atmosphere, and climate change; they support policy decisions and socioeconomic developments. This study provides an update of an ocean subsurface temperature and ocean heat content gridded product, named the IAPv4 data product, which is available for the upper 6000 m (119 levels) since 1940 (more reliable after ~1955) for monthly and 1° × 1° temporal and spatial resolutions.
Sönke Dangendorf, Qiang Sun, Thomas Wahl, Philip Thompson, Jerry X. Mitrovica, and Ben Hamlington
Earth Syst. Sci. Data, 16, 3471–3494, https://doi.org/10.5194/essd-16-3471-2024, https://doi.org/10.5194/essd-16-3471-2024, 2024
Short summary
Short summary
Sea-level information from the global ocean is sparse in time and space, with comprehensive data being limited to the period since 2005. Here we provide a novel reconstruction of sea level and its contributing causes, as determined by a Kalman smoother approach applied to tide gauge records over the period 1900–2021. The new reconstruction shows a continuing acceleration in global mean sea-level rise since 1970 that is dominated by melting land ice. Contributors vary significantly by region.
Panagiotis Athanasiou, Ap van Dongeren, Maarten Pronk, Alessio Giardino, Michalis Vousdoukas, and Roshanka Ranasinghe
Earth Syst. Sci. Data, 16, 3433–3452, https://doi.org/10.5194/essd-16-3433-2024, https://doi.org/10.5194/essd-16-3433-2024, 2024
Short summary
Short summary
The shape of the coast, the intensity of waves, the height of the water levels, the presence of people or critical infrastructure, and the land use are important information to assess the vulnerability of the coast to coastal hazards. Here, we provide 80 indicators of this kind at consistent locations along the global ice-free coastline using open-access global datasets. These can be valuable for quick assessments of the vulnerability of the coast and at data-poor locations.
Léo Seyfried, Laurie Biscara, Héloïse Michaud, Fabien Leckler, Audrey Pasquet, Marc Pezerat, and Clément Gicquel
Earth Syst. Sci. Data, 16, 3345–3367, https://doi.org/10.5194/essd-16-3345-2024, https://doi.org/10.5194/essd-16-3345-2024, 2024
Short summary
Short summary
In Saint-Malo, France, an initiative to enhance marine submersion prevention began in 2018. Shom conducted an extensive sea campaign, mapping the bay's topography and exploring coastal processes. High-resolution data improve knowledge of the interactions between waves, tide and surge and determine processes responsible for submersion. Beyond science, these findings contribute crucially to a local warning system, providing a tangible solution to protect the community from coastal threats.
Jisun Shin, Dae-Won Kim, So-Hyun Kim, Gi Seop Lee, Boo-Keun Khim, and Young-Heon Jo
Earth Syst. Sci. Data, 16, 3193–3211, https://doi.org/10.5194/essd-16-3193-2024, https://doi.org/10.5194/essd-16-3193-2024, 2024
Short summary
Short summary
We overcame the limitations of satellite and reanalysis sea surface salinity (SSS) datasets and produced a gap-free gridded SSS product with reasonable accuracy and a spatial resolution of 1 km using a machine learning model. Our data enabled the recognition of SSS distribution and movement patterns of the Changjiang diluted water (CDW) front in the East China Sea (ECS) during summer. These results will further advance our understanding and monitoring of long-term SSS variations in the ECS.
Haibin Ye, Chaoyu Yang, Yuan Dong, Shilin Tang, and Chuqun Chen
Earth Syst. Sci. Data, 16, 3125–3147, https://doi.org/10.5194/essd-16-3125-2024, https://doi.org/10.5194/essd-16-3125-2024, 2024
Short summary
Short summary
A deep-learning model for gap-filling based on expected variance was developed. OI-SwinUnet achieves good performance reconstructing chlorophyll-a concentration data on the South China Sea. The reconstructed dataset depicts both the spatiotemporal patterns at the seasonal scale and a fast-change process at the weather scale. Reconstructed data show chlorophyll perturbations of individual eddies at different life stages, giving academics a unique and complete perspective on eddy studies.
Robert W. Schlegel, Rakesh Kumar Singh, Bernard Gentili, Simon Bélanger, Laura Castro de la Guardia, Dorte Krause-Jensen, Cale A. Miller, Mikael Sejr, and Jean-Pierre Gattuso
Earth Syst. Sci. Data, 16, 2773–2788, https://doi.org/10.5194/essd-16-2773-2024, https://doi.org/10.5194/essd-16-2773-2024, 2024
Short summary
Short summary
Fjords play a vital role in the Arctic ecosystems and human communities. It is therefore important to have as clear of an understanding of the processes within these systems as possible. While temperature and salinity tend to be well measured, light is usually not. The dataset described in this paper uses remotely sensed data from 2003 to 2022 to address this problem by providing high-spatial-resolution surface, water column, and seafloor light data for several well-studied Arctic fjords.
Nir Haim, Vika Grigorieva, Rotem Soffer, Boaz Mayzel, Timor Katz, Ronen Alkalay, Eli Biton, Ayah Lazar, Hezi Gildor, Ilana Berman-Frank, Yishai Weinstein, Barak Herut, and Yaron Toledo
Earth Syst. Sci. Data, 16, 2659–2668, https://doi.org/10.5194/essd-16-2659-2024, https://doi.org/10.5194/essd-16-2659-2024, 2024
Short summary
Short summary
This paper outlines the process of creating an open-access surface wave dataset, drawing from deep-sea research station observations located 50 km off the coast of Israel. The discussion covers the wave monitoring procedure, from instrument configuration to wave field retrieval, and aspects of quality assurance. The dataset presented spans over 5 years, offering uncommon in situ wave measurements in the deep sea, and addresses the existing gap in wave information within the region.
Fengshun Zhu, Jinyun Guo, Huiying Zhang, Lingyong Huang, Heping Sun, and Xin Liu
Earth Syst. Sci. Data, 16, 2281–2296, https://doi.org/10.5194/essd-16-2281-2024, https://doi.org/10.5194/essd-16-2281-2024, 2024
Short summary
Short summary
We used multi-satellite altimeter data to construct a high-resolution marine gravity change rate (MGCR) model on 5′×5′ grids, named SDUST2020MGCR. The spatial distribution of SDUST2020MGCR and GRACE MGCR are similar, such as in the eastern seas of Japan (dipole), western seas of the Nicobar Islands (rising), and southern seas of Greenland (falling). The SDUST2020MGCR can provide a detailed view of long-term marine gravity change, which will help to study the seawater mass migration.
Lisa Deyle, Thomas H. Badewien, Oliver Wurl, and Jens Meyerjürgens
Earth Syst. Sci. Data, 16, 2099–2112, https://doi.org/10.5194/essd-16-2099-2024, https://doi.org/10.5194/essd-16-2099-2024, 2024
Short summary
Short summary
A dataset from the North Sea of 85 surface drifters from 2017–2021 is presented. Surface drifters enable the analysis of ocean currents by determining the velocities of surface currents and tidal effects. The entire North Sea has not been studied using drifters before, but the analysis of ocean currents is essential, e.g., to understand the pathways of plastic. The results show that there are strong tidal effects in the shallow North Sea area and strong surface currents in the deep areas.
Yasser O. Abualnaja, Alexandra Pavlidou, James H. Churchill, Ioannis Hatzianestis, Dimitris Velaoras, Harilaos Kontoyiannis, Vassilis P. Papadopoulos, Aristomenis P. Karageorgis, Georgia Assimakopoulou, Helen Kaberi, Theodoros Kannelopoulos, Constantine Parinos, Christina Zeri, Dionysios Ballas, Elli Pitta, Vassiliki Paraskevopoulou, Afroditi Androni, Styliani Chourdaki, Vassileia Fioraki, Stylianos Iliakis, Georgia Kabouri, Angeliki Konstantinopoulou, Georgios Krokos, Dimitra Papageorgiou, Alkiviadis Papageorgiou, Georgios Pappas, Elvira Plakidi, Eleni Rousselaki, Ioanna Stavrakaki, Eleni Tzempelikou, Panagiota Zachioti, Anthi Yfanti, Theodore Zoulias, Abdulah Al Amoudi, Yasser Alshehri, Ahmad Alharbi, Hammad Al Sulami, Taha Boksmati, Rayan Mutwalli, and Ibrahim Hoteit
Earth Syst. Sci. Data, 16, 1703–1731, https://doi.org/10.5194/essd-16-1703-2024, https://doi.org/10.5194/essd-16-1703-2024, 2024
Short summary
Short summary
We present oceanographic measurements obtained during two surveillance cruises conducted in June and September 2021 in the Red Sea and the Arabian Gulf. It is the first multidisciplinary survey within the Saudi Arabian coastal zone, extending from near the Saudi–Jordanian border in the north of the Red Sea to the south close to the Saudi--Yemen border and in the Arabian Gulf. The objective was to record the pollution status along the coastal zone of the kingdom related to specific pressures.
Alexandra E. Jones-Kellett and Michael J. Follows
Earth Syst. Sci. Data, 16, 1475–1501, https://doi.org/10.5194/essd-16-1475-2024, https://doi.org/10.5194/essd-16-1475-2024, 2024
Short summary
Short summary
Ocean eddies can limit horizontal mixing, potentially isolating phytoplankton populations and affecting their concentration. We used two decades of satellite data and computer simulations to identify and track eddy-trapping boundaries in the Pacific Ocean for application in phytoplankton research. Although some eddies trap water masses for months, many continuously mix with surrounding waters. A case study shows how eddy trapping can enhance the signature of a phytoplankton bloom.
Richard Fiifi Annan, Xiaoyun Wan, Ruijie Hao, and Fei Wang
Earth Syst. Sci. Data, 16, 1167–1176, https://doi.org/10.5194/essd-16-1167-2024, https://doi.org/10.5194/essd-16-1167-2024, 2024
Short summary
Short summary
Gravity gradient tensor, a set of six unique gravity signals, is suitable for detecting undersea features. However, due to poor spatial resolution in past years, it has received less research interest and investment. However, current datasets have better accuracy and resolutions, thereby necessitating a revisit. Our analysis shows comparable results with reference models. We conclude that current-generation altimetry datasets can precisely resolve all six gravity gradients.
Simon Treu, Sanne Muis, Sönke Dangendorf, Thomas Wahl, Julius Oelsmann, Stefanie Heinicke, Katja Frieler, and Matthias Mengel
Earth Syst. Sci. Data, 16, 1121–1136, https://doi.org/10.5194/essd-16-1121-2024, https://doi.org/10.5194/essd-16-1121-2024, 2024
Short summary
Short summary
This article describes a reconstruction of monthly coastal water levels from 1900–2015 and hourly data from 1979–2015, both with and without long-term sea level rise. The dataset is based on a combination of three datasets that are focused on different aspects of coastal water levels. Comparison with tide gauge records shows that this combination brings reconstructions closer to the observations compared to the individual datasets.
Sarah Asdar, Daniele Ciani, and Bruno Buongiorno Nardelli
Earth Syst. Sci. Data, 16, 1029–1046, https://doi.org/10.5194/essd-16-1029-2024, https://doi.org/10.5194/essd-16-1029-2024, 2024
Short summary
Short summary
Estimating 3D currents is crucial for the understanding of ocean dynamics, and a precise knowledge of ocean circulation is essential to ensure a sustainable ocean. In this context, a new high-resolution (1 / 10°) data-driven dataset of 3D ocean currents has been developed within the European Space Agency World Ocean Circulation project, providing 10 years (2010–2019) of horizontal and vertical quasi-geostrophic currents at daily resolution over the North Atlantic Ocean, down to 1500 m depth.
Xiaoxia Zhang and Heidi Nepf
Earth Syst. Sci. Data, 16, 1047–1062, https://doi.org/10.5194/essd-16-1047-2024, https://doi.org/10.5194/essd-16-1047-2024, 2024
Short summary
Short summary
This study measured the wave-induced plant drag, flow structure, turbulent intensity, and wave energy attenuation in the presence of a salt marsh. We showed that leaves contribute to most of the total plant drag and wave dissipation. Plant resistance significantly reshapes the velocity profile and enhances turbulence intensity. Adding current obviously impact the plants' wave decay capacity. The dataset can be reused to develop and calibrate marsh-flow theoretical and numerical models.
Michael Hemming, Moninya Roughan, and Amandine Schaeffer
Earth Syst. Sci. Data, 16, 887–901, https://doi.org/10.5194/essd-16-887-2024, https://doi.org/10.5194/essd-16-887-2024, 2024
Short summary
Short summary
We present new datasets that are useful for exploring extreme ocean temperature events in Australian coastal waters. These datasets span multiple decades, starting from the 1940s and 1950s, and include observations from the surface to the bottom at four coastal sites. The datasets provide valuable insights into the intensity, frequency and timing of extreme warm and cold temperature events and include event characteristics such as duration, onset and decline rates and their categorisation.
Marlies A. van der Lugt, Jorn W. Bosma, Matthieu A. de Schipper, Timothy D. Price, Marcel C. G. van Maarseveen, Pieter van der Gaag, Gerben Ruessink, Ad J. H. M. Reniers, and Stefan G. J. Aarninkhof
Earth Syst. Sci. Data, 16, 903–918, https://doi.org/10.5194/essd-16-903-2024, https://doi.org/10.5194/essd-16-903-2024, 2024
Short summary
Short summary
A 6-week field campaign was carried out at a sheltered sandy beach on Texel along the Dutch Wadden Sea with the aim of gaining new insights into the driving processes behind sheltered beach morphodynamics. Detailed measurements of the local hydrodynamics, bed-level changes and sediment composition were collected. The morphological evolution on this sheltered site is the result of the subtle interplay between waves, currents and bed composition.
Cited articles
Ahme, A., Von Jackowski, A., McPherson, R. A., Wolf, K. K. E., Hoppmann, M., Neuhaus, S., and John, U.: Winners and Losers of Atlantification: The Degree of Ocean Warming Affects the Structure of Arctic Microbial Communities, Genes, 14, 623, https://doi.org/10.3390/genes14030623, 2023.
Aminot, A., Kirkwood, D., and Carlberg, S.: The QUASIMEME laboratory performance studies (1993–1995): Overview of the nutrients section, Mar. Pollut. Bull., 35, 28–41, https://doi.org/10.1016/S0025-326X(97)80876-4, 1997.
Andersen, P. and Throndsen, J.: Estimating cell numbers, in: Manual on Harmful Marine Microalgae, edited by: Hallegraeff, G. M., Anderson, D. M., and Cembella, A., Monographs on Oceanographic Methodology, Unesco Publishing, Paris, France, 11, 99–130, 2004.
Anderson, L. G., Drange, H., Chierici, M., Fransson, A., Johannessen, T., Skjelvan, I., and Rey, F.: Annual carbon fluxes in the upper Greenland Sea based on measurements and a box-model approach, Tellus B, 52, 1013–1024, 2000.
Azzaro, M., La Ferla, R., and Azzaro, F.: Microbial respiration in the aphotic zone of the Ross Sea (Antarctica), Mar. Chem., 99, 199–209, https://doi.org/10.1016/j.marchem.2005.09.011, 2006.
Azzaro, M., Aliani, S., Maimone, G., Decembrini, F., Caroppo, C., Giglio, F., Langone, L., Miserocchi, S., Cosenza, A., Azzaro, F., Rappazzo, A. C., Mancuso, M., and La Ferla, R.: Short-term dynamics of nutrients, planktonic abundances and microbial respiratory activity in the Arctic Kongsfjorden (Svalbard, Norway), Polar Biol., 44, 361–378, https://doi.org/10.1007/s00300-020-02798-w, 2021.
Azzaro, M., Specchiulli, A., Maimone, G., Azzaro, F., Lo Giudice, A., Papale, M., La Ferla, R., Paranhos, R., Souza Cabral, A., Rappazzo, A. C., Renzi, M., Castagno, P., Falco, P., Rivaro, P., and Caruco, G.: Trophic and Microbial Patterns in the Ross Sea Area (Antarctica): Spatial Variability during the Summer Season, J. Mar. Sci. Eng., 10, 1666, https://doi.org/10.3390/jmse10111666, 2022.
Azzaro, M., Bensi, M., Civitarese, G., Giani, M., Monti, M., Diociaiuti, T., Relitti, F., Kralj, M., Tirelli, V., Borme, D., Goruppi, A., Putelli, E., de Olazabal, A., Ogrinc, N., Cerino, F., Rappazzo, A. C., Papale, M., Turetta, C., Decembrini, F., Caroppo, C., Maimone, G., Patrolecco, L., Spataro, F., Rizzo, C., and Caruso, G.: CTD (data from NISKIN Bottles) LB21 ARCTIC Cruise Italian Arctic project CASSANDRA, ISP-CNR [data set], https://doi.org/10.71761/f7474404-3331-43e5-883b-25755e94956d, 2024.
Babb, D. G., Galley, R. J., Kirillov, S., Landy, J. C., Howell, S. E. L., Stroeve, J. C., Meier, W., Ehn, J. K., and Barber, D. G.: The stepwise reduction of multiyear sea ice area in the Arctic Ocean since 1980, J. Geophys. Res.-Oceans, 128, e2023JC020157, https://doi.org/10.1029/2023JC020157, 2023.
Beers, J. R. and Stewart, G. L.: Numerical abundance and estimated biomass of microzooplankton, in: The ecology of the plankton off La Jolla, California, in the period April through September 1967, edited by: Strickland, J. D. H., University of California Press, Berkeley, USA, 67–87, 1970.
Bensi, M., Kovacevic, V., and Mansutti, P.: CTD (DOWNCAST) LB21 ARCTIC Cruise Italian Arctic project CASSANDRA, IADC [data set], https://doi.org/10.71761/c082c3ca-40bf-42b1-a61a-7b3697ab2c5a, 2024.
Brakstad, A., Våge, K., Håvik, L., and Moore, G. W. K.: Water Mass Transformation in the Greenland Sea during the Period 1986–2016, J. Phys. Oceanogr., 49, 121–140, https://doi.org/10.1175/JPO-D-17-0273.1, 2019.
Carmack, E., Polyakov, I., Padman, L., Fer, I., Hunke, E., Hutchings, J., Jackson, J., Kelley, D., Kwok, R., Layton, C., Melling, H., Perovich, D., Persson, O., Ruddick, B., Timmermans, M., Toole, J., Ross, T., Vavrus, S., and Winsor, P.: Toward Quantifying the Increasing Role of Oceanic Heat in Sea Ice Loss in the New Arctic, B. Am. Meteorol. Soc., 96, 2079-2105, https://doi.org/10.1175/BAMS-D-13-00177.1, 2015.
Carter-Gates, M., Balestreri, C., Thorpe, S. E., Cottier, F., Baylay, A., Bibby, T. S., Moore, C. M., and Schroeder, D. C.: Implications of increasing Atlantic influence for Arctic microbial community structure, Sci. Rep., 10, 19262, https://doi.org/10.1038/s41598-020-76293-x, 2020.
Caruso, G., La Ferla, R., Azzaro, M., Zoppini, A., Marino, G., Petochi, T., Corinaldesi, C., Leonardi, M., Zaccone, R., Fonda Umani, S., Caroppo, C., Monticelli, L., Azzaro, F., Decembrini, F., Maimone, G., Cavallo, R. A., Stabili, L., Hristova Todorova, N., Karamfilov, V., Rastelli, E., Cappello, S., Acquaviva, M. I., Narracci, M., De Angelis, R., Del Negro, P., Latini, M., and Danovaro, R.: Microbial assemblages for environmental quality assessment: knowledge, gaps and usefulness in the European Marine Strategy Framework Directive, Crit. Rev. Microbiol., 42, 883–904, https://doi.org/10.3109/1040841X.2015.1087380, 2015.
Caruso, G., Madonia, A., Bonamano, S., Miserocchi, S., Giglio, F., Maimone, G., Azzaro, F., Decembrini, F., La Ferla, R., and Piermattei, V.: Microbial abundance and enzyme activity patterns: response to changing environmental characteristics along a transect in Kongsfjorden (Svalbard Islands), J. Mar. Sci. Eng., 8, 824, https://doi.org/10.3390/jmse8100824, 2020.
Chatterjee, S., Raj, R. P., Bertino, L., Skagseth, Ø., Ravichandran, M., and Johannessen, O. M.: Role of Greenland Sea Gyre Circulation on Atlantic Water Temperature Variability in the Fram Strait, Geophys. Res. Lett., 45, 8399–8406, https://doi.org/10.1029/2018GL079174, 2018.
Clarke, R., Swift, J., Reid, J., and Koltermann, K.: The formation of Greenland Sea Deep Water: double diffusion or deep convection? Deep-Sea Res. Pt. A, 37, 1385–1424 https://doi.org/10.1016/0198-0149(90)90135-I, 1990.
Csapó, H. R., Grabowski, M., and Węsławski, J. M. K.: Coming home – Boreal ecosystem claims Atlantic sector of the Arctic, Sci. Total Environ., 771, 144817, https://doi.org/10.1016/j.scitotenv.2020.144817, 2021.
Decembrini, F., Caroppo C., Caruso, G., and Bergamasco, A.: Linking microbial functioning and trophic pathways to mesoscale processes and ecological status in a coastal ecosystem: Gulf of Manfredonia (south Adriatic Sea), Water, 13, 1325, https://doi.org/10.3390/w13091325, 2021.
de Steur, L., Sumata, H., Divine, D. V., Granskog, M. A., and Pavlova, O.: Upper ocean warming and sea ice reduction in the East Greenland Current from 2003 to 2019, Commun. Earth Environ., 4, 261, https://doi.org/10.1038/s43247-023-00913-3, 2023.
Dickson, A. G., Afghan, J. D., and Anderson, G. C.: Reference materials for oceanic CO2 analysis: a method for the certification of total alkalinity, Mar. Chem., 80, 185–197, https://doi.org/10.1016/S0304-4203(02)00133-0, 2003.
Dickson, R. R., Osborn, T. J., Hurrell, J. W., Meincke, J., Blindheim, J., Adlandsvik, B., Vinjie, T., Alekseev, G., and Maslowski, W.: The Arctic Ocean Response to the North Atlantic Oscillation, J. Climate, 13, 2671–2696, https://doi.org/10.1175/1520-0442(2000)013<2671:TAORTT>2.0.CO;2, 2000.
Dukhovskoy, D. S., Yashayaev, I., Proshutinsky, A., Bamber, J. L., Bashmachnikov, I. L., Chassignet, E. P., Lee, C. M., and Tedstone, A. J.: Role of Greenland freshwater anomaly in the recent freshening of the subpolar North Atlantic. J. Geophys. Res.-Oceans, 124, 3333–3360, https://doi.org/10.1029/2018JC014686, 2019.
Edler, L.: Recommendations for marine biological studies in the Baltic Sea. Phytoplankton and chlorophyll, Baltic Mar. Biol., 5, 1–37, 1979.
Fan, H., Borchert, L. F., Brune, S., Koul, V., and Baehr, J.: North Atlantic subpolar gyre provides downstream ocean predictability, npj Clim. Atmos. Sci., 6, 145, https://doi.org/10.1038/s41612-023-00469-1, 2023.
Fransner, F., Fröb, F., Tjiputra, J., Goris, N., Lauvset, S. K., Skjelvan, I., Jeansson, E., Omar, A., Chierici, M., Jones, E., Fransson, A., Ólafsdóttir, S. R., Johannessen, T., and Olsen, A.: Acidification of the Nordic Seas, Biogeosciences, 19, 979–1012, https://doi.org/10.5194/bg-19-979-2022, 2022.
Grasshoff, K., Kremling, K., and Ehrhardt, M.: Methods of Seawater Analysis, Wiley-VCH, Weinheim, 600 pp., 1999.
Hansen, H. P. and Koroleff, F.: Determination of nutrients, in: Methods of Seawater Analysis, 3rd Edn., edited by: Grasshoff, K., Kremling, K., and Ehrhardt, M., Wiley-VCH, Weinheim, 159–228, https://doi.org/10.1002/9783527613984.ch10, 1999.
Hoppe, H. G.: Use of fluorogenic model substrates for extracellular enzyme activity (EEA) measurement of bacteria, 1st edn., in: Handbook of methods in aquatic microbial ecology, edited by: Kemp, P. F., Sherr, B. F., Sherr, E. B., and Cole, J. J., Lewis Publisher, Boca Raton, FL-USA, 423–432, https://doi.org/10.1201/9780203752746, 1993.
Ingrosso, G., Giani, M., Comici, C., Kralj, M., Piacentino, S., De Vittor, C., and Del Negro, P.: Drivers of the carbonate system seasonal variations in a Mediterranean gulf, Estuar. Coast. Shelf S., 168, 58–70, https://doi.org/10.1016/j.ecss.2015.11.001, 2016a.
Ingrosso, G., Giani, M., Cibic, T., Karuza, A., Kralj, M., and Del Negro, P.: Carbonate chemistry dynamics and biological processes along a river–sea gradient (Gulf of Trieste, northern Adriatic Sea), J. Marine Syst., 155, 35–49, https://doi.org/10.1016/j.jmarsys.2015.10.013, 2016b.
Ingvaldsen, R. B., Assmann, K. M., Primicerio, R., Fossheim, M., Polyakov, I. V., and Dolgov, A. V.: Physical manifestations and ecological implications of Arctic Atlantification, Nat. Rev. Earth Environ., 2, 874–889, https://doi.org/10.1038/s43017-021-00228-x, 2021.
La Ferla, R., Maimone, G., Azzaro, M., Conversano, F., Brunet, C., Cabral, A. S., and Paranhos, R.: Vertical distribution of the prokaryotic cell size in the Mediterranean Sea, Helgol. Mar. Res., 66, 635–650, https://doi.org/10.1007/s10152-012-0297-0, 2012.
Noji, T. T., Rey, F., Miller, L. A., Borsheim, K. Y., and Urban-Rich, J.: Fate of biogenic carbon in the upper 200 m of the central Greenland Sea, Deep-Sea Res. Pt. II, 46, 1497–1509, https://doi.org/10.1016/S0967-0645(99)00032-6, 1999.
Norwegian Polar Institute: Sea ice extent in the Fram Strait in September. Environmental monitoring of Svalbard and Jan Mayen (MOSJ), https://mosj.no/en/indikator/climate/ocean/sea-ice-extent-in-the-barents-sea-and-fram-strait/ (last access: 3 June 2025), 2024.
Onarheim, I. H., Årthun, M., Teigen, S. H., Eik, K. J., and Steele, M.: Recent Thickening of the Barents Sea ice cover, Geophys. Res. Lett., 51, e2024GL108225, https://doi.org/10.1029/2024GL108225, 2024.
Oudot, C., Gerard, R., Morin, P., and Gningue, I.: Precise shipboard determination of dissolved oxygen (Winkler procedure) for productivity studies with commercial system, Limnol. Oceanogr. 33, 146–150, https://doi.org/10.4319/lo.1988.33.6part2.1646, 1998.
Pettine, M., Capri, S., Manganelli, M., Patrolecco, L., Puddu, A., and Zoppini, A.: The Dynamics of DOM in the Northern Adriatic Sea, Estuar. Coast. Shelf S., 52, 471–489, https://doi.org/10.1006/ecss.2000.0752, 2001.
Polyakov, I. V., Pnyushkov, A. V., Alkire, M. B., Ashik, I. M., Baumann, T. M., Carmack, E. C., Goszczko, I., Guthrie, J., Ivanov, V. V., Kanzow, T., Krishfield, R., Kwok, R., Sundfjord, A., Morison, J., Rember, R., and Yulin, A.: Greater role for Atlantic inflows on sea-ice loss in the Eurasian Basin of the Arctic Ocean, Science, 356, 285–291, https://doi.org/10.1126/science.aai8204, 2017.
Polyakov, I. V., Ingvaldsen, R. B., Pnyushkov, A. V., Bhatt, U. S., Francis, J. A., Janout, M., Kwok, R., and Skagseth, Ø.: Fluctuating Atlantic inflows modulate Arctic Atlantification, Science, 381, 972–979, https://doi.org/10.1126/science.adh5158, 2023.
Postel, L., Fock, H., and Hagen, W.: Biomass and abundance, in: ICES Zooplankton Methodology Manual, edited by: Harris, R., Wiebe, P., Lenz, J., Skjoldal, H. R., and Huntley, M., Academic Press, London, 83–192, https://doi.org/10.1016/B978-012327645-2/50005-0, 2000.
Priest, T., von Appen, W. J., Oldenburg, E., Popa, O., Torre-Valdés, S., Bienhold, C., Metfies, K., Boulton, W., Mock, T., Fuchs, B. M., Amann, R., Boetius, A., and Wietz, M.: Atlantic water influx and sea-ice cover drive taxonomic and functional shifts in Arctic marine bacterial communities, ISME J., 17, 1612–1625, https://doi.org/10.1038/s41396-023-01461-6, 2023.
Putt, M. and Stoecker, D. K.: An experimentally determined carbon: volume ratio for marine “oligotrichous” ciliates from estuarine and coastal waters, Limnol. Oceanogr., 34, 1097–1107, https://doi.org/10.4319/lo.1989.34.6.1097, 1989.
Rantanen, M., Karpechko, A. Y., Lipponen, A., Nordling, K., Hyvärinen, O., Ruosteenoja, K., Vihma, T., and Laaksonen, A.: The Arctic has warmed nearly four times faster than the globe since 1979, Commun. Earth Environ., 3, 168, https://doi.org/10.1038/s43247-022-00498-3, 2022.
Relitti, F., Ogrinc, N., Giani, M., Cerino, F., Smodlaka Tankovic, M., Baricevic, A., Urbini, L., Krajnc B., Del Negro, P., and De Vittor, C.: Stable carbon isotopes of phytoplankton as a tool to monitor anthropogenic CO2 submarine leakages, Water, 12, 3573, https://doi.org/10.3390/w12123573, 2020.
Rudels, B., Friedrich, H. J., and Quadfasel, D.: The Arctic Circumpolar Boundary Current, Deep-Sea Res. Pt. II, 46, 1023–1062, https://doi.org/10.1016/S0967-0645(99)00015-6, 1999.
Schlitzer, R.: Ocean Data View, https://odv.awi.de (last access: 10 February 2025), 2024.
Simpkins, G.: Greenland Sea convection, Nat. Clim. Change, 9, 7, https://doi.org/10.1038/s41558-018-0384-6, 2019.
Skjelvan, I., Olsen, A., Anderson, L. G., Bellerby, R. G. J., Falck, E, Kasajima, Y., Kivimäe, C., Abdirahman, O., Rey, F., Olsson, K. A., Johannessen, T., and Heinze, C.: A review of the inorganic carbon cycle of the Nordic Seas and Barents Sea, in: The Nordic Seas: An Integrated Perspective Oceanography, Climatology, Biogeochemistry, and Modeling, Geophys. Monogr. Ser. 158, edited by: Drange, H., Dokken, T., Furevik, T., Gerdes, R., and Berger, W., AGU, Washington, D.C., 157–175, https://doi.org/10.1029/158GM11, 2005.
Smedsrud, L. H., Muilwijk, M., Brakstad, A., Madonna, E., Lauvset, S. K., Spensberger, C., Born, A., Eldevik, T., Drange, H., Jeansson, E., Li, C., Olsen, A., Skagseth, Ø., Slater, D. A., Straneo, F., Våge, K., and Årthun, M.: Nordic Seas Heat Loss, Atlantic Inflow, and Arctic Sea Ice Cover Over the Last Century, Rev. Geophys., 60, e2020RG000725, https://doi.org/10.1029/2020RG000725, 2022.
The MathWorks Inc.: MATLAB version: 9.13.0 (R2020b), https://www.mathworks.com (last access: 1 January 2024), 2024.
Throndsen, J.: Preservation and Storage, in: Phytoplankton Manual, edited by: Sournia, A., Unesco Publishing, Paris, France, 69–74, 1978.
Urbini, L., Ingrosso, G., Djakovac, T., Piacentino, S., and Giani, M.: Temporal and Spatial Variability of the CO2 System in a Riverine Influenced Area of the Mediterranean Sea, the Northern Adriatic, Front. Mar. Sci., 7, 679, https://doi.org/10.3389/fmars.2020.00679, 2020.
Utermöhl, H.: Zur Vervollkommung der quantitativen Phytoplankton-Methodik, Mitt. Int. Ver. Theor. Angew. Limn., 9, 1–38, 1958.
van Guelpen, L., Markle, D. F., and Duggan, D. J.: An evaluation of accuracy, precision, and speed of several zooplankton subsampling techniques, ICES J. Mar. Sci., 40, 226–236, https://doi.org/10.1093/icesjms/40.3.226, 1982.
Verity, P. G. and Lagdon, C.: Relationship between lorica volume, carbon, nitrogen, and ATP content of tintinnids in Narragansett Bay, J. Plankton Res., 6, 859–868, https://doi.org/10.1093/plankt/6.5.859, 1984.
von Bodungen, B., Antia, A., Bauerfeind, E., Haupt, O., Koeve, W., Machado, E., Peeken, I., Peinert, R., Reitmeier, S., Thomsen, C., Voss, M., Wunsch, M., Zeller, U., and Zeitzschel, B.: Pelagic processes and vertical flux of particles: an overview of a long-term comparative study in the Norwegian Sea and Greenland Sea, Geol. Rundsch., 84, 11–27, https://doi.org/10.1007/BF00192239, 1995.
Wang, X., Zhao, J., Hattermann, T., Lin, L., and Chen, P.: Transports and accumulations of Greenland Sea intermediate waters in the Norwegian Sea, J. Geophys. Res.-Oceans, 126, e2020JC016582, https://doi.org/10.1029/2020JC016582, 2021.
Whitt, D. B.: Global Warming Increases Interannual and Multidecadal Variability of Subarctic Atlantic Nutrients and Biological Production in the CESM1-LE, Geophys. Res. Lett., 50, e2023GL104272, https://doi.org/10.1029/2023GL104272, 2023.
Yergeau, E., Michel, C., Tremblay, J., Niemi, A., King, T. L., Wyglinski, J., Lee, K., and Greer, C. W.: Metagenomic survey of the taxonomic and functional microbial communities of seawater and sea ice from the Canadian Arctic, Sci. Rep., 7, 42242, https://doi.org/10.1038/srep42242, 2017.
Zingone, A., Totti, C., Sarno, D., Cabrini, M., Caroppo, C., Giacobbe, M. G., Lugliè, A., Nuccio, C., and Socal, G.: Fitoplancton: metodiche di analisi quali-quantitativa, in: Metodologie di studio del plancton marino, edited by: Socal, G., Buttino, I., Cabrini, M., Mangoni, O., Penna, A., and Totti, C., Manuali e Linee Guida ISPRA SIBM, Rome, Italy, 213–237, 2010.
Short summary
In September 2021, the Italian Arctic Research Programme funded a multidisciplinary study along 75° N in the Greenland Sea as part of the CASSANDRA project and the Synoptic Arctic Survey (SAS) programme. This study emphasises the spatial variability of water properties, nutrient distribution, and biological communities determined by oceanographic dynamics in a region influenced by sea ice melting, Atlantic Water inflow, and climatic teleconnections during a record low summer sea ice extent.
In September 2021, the Italian Arctic Research Programme funded a multidisciplinary study along...
Altmetrics
Final-revised paper
Preprint