Articles | Volume 17, issue 7
https://doi.org/10.5194/essd-17-3567-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/essd-17-3567-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Global Acritarch Database ( > 110 000 occurrences)
Xiang Shu
State Key Laboratory of Geomicrobiology and Environmental Changes, School of Earth Sciences, China University of Geosciences, 430074 Wuhan, China
State Key Laboratory of Geomicrobiology and Environmental Changes, School of Earth Sciences, China University of Geosciences, 430074 Wuhan, China
Yong Lei
School of Resources and Environment, Shanxi Agricultural University, 030801 Jinzhong, China
Daoliang Chu
State Key Laboratory of Geomicrobiology and Environmental Changes, School of Earth Sciences, China University of Geosciences, 430074 Wuhan, China
Jacopo Dal Corso
State Key Laboratory of Geomicrobiology and Environmental Changes, School of Earth Sciences, China University of Geosciences, 430074 Wuhan, China
Xiaokang Liu
State Key Laboratory of Geomicrobiology and Environmental Changes, School of Earth Sciences, China University of Geosciences, 430074 Wuhan, China
Qin Ye
State Key Laboratory of Geomicrobiology and Environmental Changes, School of Earth Sciences, China University of Geosciences, 430074 Wuhan, China
Hanchen Song
State Key Laboratory of Geomicrobiology and Environmental Changes, School of Earth Sciences, China University of Geosciences, 430074 Wuhan, China
Lai Wei
School of Future Technology, China University of Geosciences, 430074 Wuhan, China
Enhao Jia
State Key Laboratory of Geomicrobiology and Environmental Changes, School of Earth Sciences, China University of Geosciences, 430074 Wuhan, China
State Key Laboratory of Geomicrobiology and Environmental Changes, School of Earth Sciences, China University of Geosciences, 430074 Wuhan, China
State Key Laboratory of Geomicrobiology and Environmental Changes, School of Earth Sciences, China University of Geosciences, 430074 Wuhan, China
Huyue Song
State Key Laboratory of Geomicrobiology and Environmental Changes, School of Earth Sciences, China University of Geosciences, 430074 Wuhan, China
Wenchao Yu
State Key Laboratory of Geomicrobiology and Environmental Changes, School of Earth Sciences, China University of Geosciences, 430074 Wuhan, China
Qingzhong Liang
School of Computer Science, China University of Geosciences, 430074 Wuhan, China
Xinchuan Li
School of Computer Science, China University of Geosciences, 430074 Wuhan, China
School of Computer Science, China University of Geosciences, 430074 Wuhan, China
Yuyang Wu
CORRESPONDING AUTHOR
State Key Laboratory of Geomicrobiology and Environmental Changes, School of Earth Sciences, China University of Geosciences, 430074 Wuhan, China
College of Marine Science and Technology, China University of Geosciences, 430074 Wuhan, China
Related authors
No articles found.
Yong Du, Huyue Song, Thomas J. Algeo, Hui Zhang, Jianwei Peng, Yuyang Wu, Jiankang Lai, Xiang Shu, Hanchen Song, Lai Wei, Jincheng Zhang, Eva E. Stüeken, Stephen E. Grasby, Jacopo Dal Corso, Xiaokang Liu, Daoliang Chu, Li Tian, Qingzhong Liang, Xinchuan Li, Hong Yao, and Haijun Song
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-377, https://doi.org/10.5194/essd-2025-377, 2025
Preprint under review for ESSD
Short summary
Short summary
This study presents a global database of nitrogen isotope data from ancient ocean sediments, covering Earth's history from the present back to billions of years ago. The database includes over 71 000 nitrogen isotope records from 424 studies, along with essential geological context and related chemical data. This database will help reveal the mechanisms behind critical events like mass extinctions and major ocean changes, enhancing our understanding of Earth's long-term environmental processes.
Jiankang Lai, Haijun Song, Daoliang Chu, Jacopo Dal Corso, Erik A. Sperling, Yuyang Wu, Xiaokang Liu, Lai Wei, Mingtao Li, Hanchen Song, Yong Du, Enhao Jia, Yan Feng, Huyue Song, Wenchao Yu, Qingzhong Liang, Xinchuan Li, and Hong Yao
Earth Syst. Sci. Data, 17, 1613–1626, https://doi.org/10.5194/essd-17-1613-2025, https://doi.org/10.5194/essd-17-1613-2025, 2025
Short summary
Short summary
The Deep-Time Marine Sedimentary Element Database (DM-SED) expands upon the Sedimentary Geochemistry and Paleoenvironments Project (SGP) database, totalling 63 627 entries and covering major and trace elements and some stable isotopes in ancient marine sediments. This database is not only a significant reference for reconstructing Earth's system evolution but is also a valuable resource for studying palaeo-environments, palaeo-climates, and geochemical cycles.
Related subject area
Domain: ESSD – Ocean | Subject: Palaeooceanography, palaeoclimatology
Coral skeletal proxy records database for the Great Barrier Reef, Australia
A revised marine fossil record of the Mediterranean before and after the Messinian salinity crisis
DINOSTRAT version 2.1-GTS2020
An 800 kyr planktonic δ18O stack for the Western Pacific Warm Pool
Tephra data from varved lakes of the Last Glacial–Interglacial Transition: towards a global inventory and better chronologies on the Varved Sediments Database (VARDA)
The CoralHydro2k database: a global, actively curated compilation of coral δ18O and Sr ∕ Ca proxy records of tropical ocean hydrology and temperature for the Common Era
BENFEP: a quantitative database of benthic foraminifera from surface sediments of the eastern Pacific
Ariella K. Arzey, Helen V. McGregor, Tara R. Clark, Jody M. Webster, Stephen E. Lewis, Jennie Mallela, Nicholas P. McKay, Hugo W. Fahey, Supriyo Chakraborty, Tries B. Razak, and Matt J. Fischer
Earth Syst. Sci. Data, 16, 4869–4930, https://doi.org/10.5194/essd-16-4869-2024, https://doi.org/10.5194/essd-16-4869-2024, 2024
Short summary
Short summary
Coral skeletal records from the Great Barrier Reef (GBR) provide vital data on climate and environmental change. Presented here is the Great Barrier Reef Coral Skeletal Records Database, an extensive compilation of GBR coral records. The database includes key metadata, primary data, and access instructions, and it enhances research on past, present, and future climate and environmental variability of the GBR. The database will assist with contextualising present-day threats to reefs globally.
Konstantina Agiadi, Niklas Hohmann, Elsa Gliozzi, Danae Thivaiou, Francesca R. Bosellini, Marco Taviani, Giovanni Bianucci, Alberto Collareta, Laurent Londeix, Costanza Faranda, Francesca Bulian, Efterpi Koskeridou, Francesca Lozar, Alan Maria Mancini, Stefano Dominici, Pierre Moissette, Ildefonso Bajo Campos, Enrico Borghi, George Iliopoulos, Assimina Antonarakou, George Kontakiotis, Evangelia Besiou, Stergios D. Zarkogiannis, Mathias Harzhauser, Francisco Javier Sierro, Angelo Camerlenghi, and Daniel García-Castellanos
Earth Syst. Sci. Data, 16, 4767–4775, https://doi.org/10.5194/essd-16-4767-2024, https://doi.org/10.5194/essd-16-4767-2024, 2024
Short summary
Short summary
We present a dataset of 23032 fossil occurrences of marine organisms from the Late Miocene to the Early Pliocene (~11 to 3.6 million years ago) from the Mediterranean Sea. This dataset will allow us, for the first time, to quantify the biodiversity impact of the Messinian salinity crisis, a major geological event that possibly changed global and regional climate and biota.
Peter K. Bijl
Earth Syst. Sci. Data, 16, 1447–1452, https://doi.org/10.5194/essd-16-1447-2024, https://doi.org/10.5194/essd-16-1447-2024, 2024
Short summary
Short summary
This new version release of DINOSTRAT, version 2.1, aligns stratigraphic ranges of dinoflagellate cysts (dinocysts), a microfossil group, to the latest Geologic Time Scale. In this release I present the evolution of dinocyst subfamilies from the Middle Triassic to the modern period.
Christen L. Bowman, Devin S. Rand, Lorraine E. Lisiecki, and Samantha C. Bova
Earth Syst. Sci. Data, 16, 701–713, https://doi.org/10.5194/essd-16-701-2024, https://doi.org/10.5194/essd-16-701-2024, 2024
Short summary
Short summary
We estimate an average (stack) of Western Pacific Warm Pool (WPWP) sea surface climate records over the last 800 kyr from 10 ocean sediment cores. To better understand glacial–interglacial differences between the tropical WPWP and high-latitude climate change, we compare our WPWP stack to global and North Atlantic deep-ocean stacks. Although we see similar timing in glacial–interglacial change between the stacks, the WPWP exhibits less amplitude of change.
Anna Beckett, Cecile Blanchet, Alexander Brauser, Rebecca Kearney, Celia Martin-Puertas, Ian Matthews, Konstantin Mittelbach, Adrian Palmer, Arne Ramisch, and Achim Brauer
Earth Syst. Sci. Data, 16, 595–604, https://doi.org/10.5194/essd-16-595-2024, https://doi.org/10.5194/essd-16-595-2024, 2024
Short summary
Short summary
This paper focuses on volcanic ash (tephra) in European annually laminated (varve) lake records from the period 25 to 8 ka. Tephra enables the synchronisation of these lake records and their proxy reconstructions to absolute timescales. The data incorporate geochemical data from tephra layers across 19 varve lake records. We highlight the potential for synchronising multiple records using tephra layers across continental scales whilst supporting reproducibility through accessible data.
Rachel M. Walter, Hussein R. Sayani, Thomas Felis, Kim M. Cobb, Nerilie J. Abram, Ariella K. Arzey, Alyssa R. Atwood, Logan D. Brenner, Émilie P. Dassié, Kristine L. DeLong, Bethany Ellis, Julien Emile-Geay, Matthew J. Fischer, Nathalie F. Goodkin, Jessica A. Hargreaves, K. Halimeda Kilbourne, Hedwig Krawczyk, Nicholas P. McKay, Andrea L. Moore, Sujata A. Murty, Maria Rosabelle Ong, Riovie D. Ramos, Emma V. Reed, Dhrubajyoti Samanta, Sara C. Sanchez, Jens Zinke, and the PAGES CoralHydro2k Project Members
Earth Syst. Sci. Data, 15, 2081–2116, https://doi.org/10.5194/essd-15-2081-2023, https://doi.org/10.5194/essd-15-2081-2023, 2023
Short summary
Short summary
Accurately quantifying how the global hydrological cycle will change in the future remains challenging due to the limited availability of historical climate data from the tropics. Here we present the CoralHydro2k database – a new compilation of peer-reviewed coral-based climate records from the last 2000 years. This paper details the records included in the database and where the database can be accessed and demonstrates how the database can investigate past tropical climate variability.
Paula Diz, Víctor González-Guitián, Rita González-Villanueva, Aida Ovejero, and Iván Hernández-Almeida
Earth Syst. Sci. Data, 15, 697–722, https://doi.org/10.5194/essd-15-697-2023, https://doi.org/10.5194/essd-15-697-2023, 2023
Short summary
Short summary
Benthic foraminifera are key components of the ocean benthos and marine sediments. Determining their geographic distribution is highly relevant for improving our understanding of the recent and past ocean benthic ecosystem and establishing adequate conservation strategies. Here, we contribute to this knowledge by generating an open-access database of previously documented quantitative data of benthic foraminifera species from surface sediments of the eastern Pacific (BENFEP).
Cited articles
Agić, H.: Fossil focus: Acritarchs, Palaeontology, 6, 1–13, 2016.
Agić, H., Moczydłowska, M., and Yin, L. M.: Affinity, life cycle, and intracellular complexity of organic-walled microfossils from the Mesoproterozoic of Shanxi, China, J. Paleontol., 89, 28–50, https://doi.org/10.1017/jpa.2014.4, 2015.
Anderson, R. P., Macdonald, F. A., Jones, D. S., McMahon, S., and Briggs, D. E. G.: Doushantuo-type microfossils from latest Ediacaran phosphorites of northern Mongolia, Geology, 45, 1079–1082, https://doi.org/10.1130/G39576.1, 2017.
Arouri, K., Greenwood, P. F., and Walter, M. R.: A possible chlorophycean affinity of some Neoproterozoic acritarchs, Org. Geochem., 30, 1323–1337, https://doi.org/10.1016/s0146-6380(99)00105-9, 1999.
Bailey, J. V., Joye, S. B., Kalanetra, K. M., Flood, B., and Corsetti, F. A.: Evidence of giant Sulphur bacteria in Neoproterozoic phosphorites, Nature, 445, 198–201, https://doi.org/10.1038/nature05457, 2007.
Beraldi-Campesi, H.: Early life on land and the first terrestrial ecosystems, Ecol. Process., 2, 1, https://doi.org/10.1186/2192-1709-2-1, 2013.
Bernard, S., Benzerara, K., Beyssac, O., Balan, E., and Brown Jr., G. E.: Evolution of the macromolecular structure of sporopollenin during thermal degradation, Heliyon, 1, e00034, https://doi.org/10.1016/j.heliyon.2015.e00034, 2015.
Bernardi, M., Petti, F. M., Kustatscher, E., Franz M., Hartkopf-Fröder, C., Labandeira, C. C., Wappler, T., van Konijnenburg-van Cittert, J. H., Peecook, B. R., and Angielczyk, K. D.: Late Permian (Lopingian) terrestrial ecosystems: A global comparison with new data from the low-latitude Bletterbach Biota, Earth-Sci. Rev., 175, 18–43, https://doi.org/10.1016/j.earscirev.2017.10.002, 2017.
Buick, R.: Ancient acritarchs, Nature, 463, 885–886, https://doi.org/10.1038/463885a, 2010.
Butterfield, N. J.: Probable Proterozoic fungi, Paleobiology, 31, 165–182, https://doi.org/10.1666/0094-8373(2005)031<0165:PPF>2.0.CO;2, 2005.
Butterfield, N. J. and Rainbird, R. H.: Diverse organic-walled fossils, including “possible dinoflagellates,” from the early Neoproterozoic of arctic Canada, Geology, 26, 963–966, https://doi.org/10.1130/0091-7613(1998)026<0963:DOWFIP>2.3.CO;2, 1998.
Chamberlain, J., Chamberlain, R., and Brown, J. A.: Mineralized alga and acritarch dominated microbiota from the Tully Formation (Givetian) of Pennsylvania, USA, Geosciences, 6, 57, https://doi.org/10.3390/geosciences6040057, 2016.
Cohen, P. A., Knoll, A. H. and Kodner, R. B.: Large spinose microfossils in Ediacaran rocks as resting stages of early animals, P. Natl. Acad. Sci. USA, 106, 6519–6524, https://doi.org/10.1073/pnas.0902322106, 2009.
Colbath, G. K. and Grenfell, H. R.: Review of biological affinities of Paleozoic acid-resistant, organic-walled eukaryotic algal microfossils (including “acritarchs”), Rev. Palaeobot. Palynol., 86, 287–314, https://doi.org/10.1016/0034-6667(94)00148-d, 1995.
Dale, B.: Paleontological evidence for dinoflagellates and ciliates as early eukaryotes, J. Mar. Sci. Eng., 11, 533, https://doi.org/10.3390/jmse11030533, 2023.
Daners, G., Herisse, A. L., Breuer, P., and Veroslavsky, G.: Pragian–Emsian palynomorphs from the Cordobés Formation, Norte Basin, Uruguay: Stratigraphically restricted and regionally correlative palynological events in the cool-water Malvinokaffric Realm, Palynology, 41, 121–137, https://doi.org/10.1080/01916122.2017.1366115, 2017.
Evitt, W. R.: A discussion and proposals concerning fossil dinoflagellates, hystrichospheres, and acritarchs, I., P. Natl. Acad. Sci. USA, 49, 158–164, https://doi.org/10.1073/pnas.49.2.158, 1963.
Falkowski, P. and Knoll, A. H. (Eds.): Evolution of primary producers in the sea, Academic Press, https://doi.org/10.5860/choice.45-3183, 2011.
Fensome, R. A., Williams, G. L., Barss, M. S., Freeman, J. M. and Hill, J. M.: Acritarchs and fossil prasinophytes: an index to genera, species and infraspecific taxa, AASP Contrib. Ser., 25, 1–771, 1990.
Gaucher, C. and Sprechmann, P.: Neoproterozoic acritarch evolution, Dev. Precamb. Geol., 16, 319–326, https://doi.org/10.1016/S0166-2635(09)01622-3, 2009.
GeobiologyData: https://geobiologydata.cug.edu.cn/ (last access: 22 April 2025), 2025.
Gray, J. and Boucot, A. J.: Is Moyeria a euglenoid?, Lethaia, 22, 447–456, https://doi.org/10.1111/j.1502-3931.1989.tb01449.x, 1989.
Grey, K.: Ediacaran palynology of Australia, Memoir of the Association of Australasian Palaeontologists, 31, 1–439, 2005.
Huldtgren, T., Cunningham, J., Yin, C., Stampanoni, M., Marone, F., Donoghue, P. C. J., and Bengtson, S.: Fossilized nuclei and germination structures identify Ediacaran “animal embryos” as encysting protists, Science, 334, 1696–1699, https://doi.org/10.1126/science.1209537, 2011.
Huntley, J., Xiao, S., and Kowalewski, M.: 1.3 billion years of acritarch history: An empirical morphospace approach, Precamb. Res., 144, 52–68, https://doi.org/10.1016/j.precamres.2005.11.003, 2006.
Jacobson, S. R.: Acritarchs as paleoenvironmental indicators in Middle and Upper Ordovician rocks from Kentucky, Ohio and New York, J. Paleontol., 53, 1197–1212, 1979.
Javaux, E. J. and Marshal, C. P.: A new approach in deciphering early protist paleobiology and evolution: Combined microscopy and microchemistry of single Proterozoic acritarchs, Rev. Palaeobot. Palynol., 139, 1–15, https://doi.org/10.1016/j.revpalbo.2006.01.005, 2006.
Jia, E., Song, H., Lei, Y., Luo, G., and Jiang, S.: Paleozoic-Mesozoic turnover of marine biological pump and Mesozoic plankton revolution, Chin. Sci. Bull., 67, 1660–1676, https://doi.org/10.1360/TB-2021-1220, 2022.
Judd, E. J., Tierney, J. E., Huber, B. T., Wing, S. L., Lunt, D. J., Ford, H. L., Inglis, G. N., McClymont, E. L., O'Brien, C. L., Rattanasriampaipong, R., Si, W., Staitis, M. L., Thirumalai, K., Anagnostou, E., Cramwinckel, M. J., Dawson, R. R., Evans, D., Gray, W. R., Grossman, E. L., Henehan, M. J., Hupp, B. N., MacLeod, K. G., O'Connor, L. K., Sanchez Montes, M. L., Song, H., and Zhang, Y. G.: The PhanSST global database of Phanerozoic sea surface temperature proxy data, Sci. Data, 9, 753, https://doi.org/10.1038/s41597-022-01826-0, 2022.
Kroeck, D. M., Mullins, G., Zacaï, A., Monnet, C., and Servais, T.: A review of Paleozoic phytoplankton biodiversity: Driver for major evolutionary events?, Earth-Sci. Rev., 232, 104113, https://doi.org/10.1016/j.earscirev.2022.104113, 2022.
Lamb, D. M., Awramik, S. M., Chapman, D. J., and Zhu, S.: Evidence for eukaryotic diversification in the ∼1800 million-year-old Changzhougou Formation, North China, Precamb. Res., 173, 93–104, https://doi.org/10.1016/j.precamres.2009.05.005, 2009.
Le Hérissé, A., Al-Ruwaili, M., Miller, M., and Vecoli, M.: Environmental changes reflected by palynomorphs in the early Middle Ordovician Hanadir Member of the Qasim Formation, Saudi Arabia, Revue de micropaléontologie, 50, 3–16, https://doi.org/10.1016/j.revmic.2007.01.010, 2007.
Le Hérissé, A., Steemans, P., Wellman, C., and Vecoli, M.: Darriwilian (Middle-Ordovician) elements of primitive vegetation, marine palynomorphs and problematic microfossils, from the Saq/Qasim transitional beds in core QSIM 801, central Saudi Arabia. Discussion with eustatic and climatic events, in: 9th European Palaeobotany-Palynology conference, 26–31 August 2014, Padova, Italy, https://www.academia.edu/107773090 (last access: 25 July 2025), 2014.
Le Hérissé, A., Molyneux, S. G., and Miller, M. A.: Late Ordovician to early Silurian acritarchs from the Qusaiba-1 shallow core hole, central Saudi Arabia, Rev. Palaeobot. Palynol., 212, 22–59, https://doi.org/10.1016/j.revpalbo.2014.08.016, 2015.
Le Hérissé, A., Vecoli, M., Guidat, C., Not, F., Breuer, P., Wellman, C., and Steemans, P.: Middle Ordovician acritarchs and problematic organic-walled microfossils from the Saq-Hanadir transitional beds in the QSIM-801 well, Saudi Arabia, Rev. Micropaléontologie, 60, 289–318, https://doi.org/10.1016/j.revmic.2017.08.001, 2017.
Lei, Y., Servais, T., Feng, Q., and He, W.: The spatial (nearshore–offshore) distribution of latest Permian phytoplankton from the Yangtze Block, South China, Palaeogeogr. Palaeocl. Palaeoecol., 363–364, 151–162, https://doi.org/10.1016/j.palaeo.2012.09.010, 2012.
Lei, Y., Servais, T., and Feng, Q.: The diversity of the Permian phytoplankton, Rev. Palaeobot. Palynol., 198, 145–161, https://doi.org/10.1016/j.revpalbo.2013.03.004, 2013.
Mendelson, C. V.: Acritarchs. Series in Geology, Notes Short Course, 18, 62–86, https://doi.org/10.1017/S0271164800001500, 1987.
Moczydłowska, M. and Liu, P.: Ediacaran algal cysts from the Doushantuo Formation, South China, Geol. Mag., 159, 1050–1070, https://doi.org/10.1017/S0016756820001405, 2022.
Moldowan, J. M., Dahl, J., Jacobson, S. R., Huizinga, B. J., Fago, F. J., Shetty, R., Watt, D. S., and Peters, K. E.: Chemostratigraphic reconstruction of biofacies: Molecular evidence linking cyst-forming dinoflagellates with pre-Triassic ancestors, Geology, 24, 159–162, https://doi.org/10.1130/0091-7613(1996)024<0159:CROBME>2.3.CO;2, 1996.
Mudie, P. J., Aksu, A. E., and Yasar, D.: Late Quaternary dinoagellate cysts from the Black, Marmara and Aegean seas: Variations in assemblages, morphology and paleosalinity, Mar. Micropaleontol., 43, 155–178, https://doi.org/10.1016/S0377-8398(01)00006-8, 2001.
Palacios, T., Jensen, S., Barr, S. M., and White, C. E.: Acritarchs from the MacLean Brook Formation, southeastern Cape Breton Island, Nova Scotia, Canada: New data on Middle Cambrian–Lower Furongian acritarch zonation, Palaeogeogr. Palaeocl. Palaeoecol., 273, 123–141, https://doi.org/10.1016/j.palaeo.2008.12.006, 2009.
Palacios, T., Jensen, S., White, C. E., and Barr, S. M.: Cambrian acritarchs from the Bourinot belt, Cape Breton Island, Nova Scotia: Age and stratigraphic implications, Can. J. Earth Sci., 49, 289–307, https://doi.org/10.1139/e11-010, 2012.
Palacios, T., Jensen, S., Sánchez, I. C., and Mus, M. M.: First Lower Cambrian record of Wiwaxia from north- west Gondwana: Small carbonaceous fossils from the Lancara Formation, Cantabrian Mountains, northern Spain. Programme, Abstracts and AGM Papers, in: 58th Annual Meeting of the Palaeontological Association, University of Leeds, Leeds, UK, https://www.academia.edu/15114883 (last access: 24 July 2025), 2014.
Palacios, T., Jensen, S., Barr, S. M., White, C. E., and Miller, R. F.: Acritarchs from the Hanford Brook Formation, New Brunswick, Canada: New biochronological constraints on the Protolenus elegans Zone and the Cambrian Series 2–3 transition, Geol. Mag., 154, 571–590, https://doi.org/10.1017/S0016756816000224, 2017.
Palacios, T., Högström, A. E., Ebbestad, J. O. R., Agić, H., Høyberget, M., Jensen, S., Meinhold, G., and Taylor, W. L.: Acritarchs from the Duolbagáisá Formation (Cambrian Series 2, Miaolingian) on the Digermulen Peninsula, Finnmark, Arctic Norway: Towards a high-resolution Cambrian chronostratigraphy, Geol. Mag., 157, 2051–2066, 2020.
Palacios, T., Jensen, S., Álvaro, J. J., Zaldeugui, J. S., Eguiluz, L., Corfu, F., and Ibarguchi, J. G.: Acritarch-based chronostratigraphic and radiometric calibration of the Cambrian volcanosedimentary Vallehondo and Playón formations in the Cambrian Ossa-Morena Rift, Spain, Palaeogeogr. Palaeoclim. Palaeoecol., 565, 110216, https://doi.org/10.1016/j.palaeo.2021.110216, 2021.
Palynodata Inc. and White, J. M.: Palynodata Datafile: 2006 version, with Introduction by J. M. White, Geological Survey of Canada Open File 5793, 1 CD-ROM, Geological Survey of Canada, https://doi.org/10.4095/225704, 2008.
Paris, F., Hérissé, A. L., Monod, O., Kozlu, H., Ghienne, J. F., Dean, W. T., Vecoli, M., and Günay, Y.: Ordovician chitinozoans and acritarchs from southern and southeastern Turkey Revue de micropaléontologie, 50, 81–107, https://doi.org/10.1016/j.revmic.2006.11.004, 2007.
Park, R. G.: Geological structures and moving plates, Springer Science & Business Media, https://doi.org/10.1007/978-94-017-1685-7, 1988.
Schrank, E.: Small acritarchs from the Upper Cretaceous: Taxonomy, biological affinities and palaeoecology, Rev. Palaeobot. Palynol., 123, 199–235, https://doi.org/10.1016/S0034-6667(02)00228-2, 2003.
Schreck, M., Nam, S. I., Clotten, C., Fahl, K., De Schepper, S., Forwick, M., and Matthiessen, J.: Neogene dinoflagellate cysts and acritarchs from the high northern latitudes and their relation to sea surface temperature, Mar. Micropaleontol., 136, 51–65, https://doi.org/10.1016/j.marmicro.2017.09.003, 2017.
Scotese, C. R.: An atlas of Phanerozoic paleogeographic maps: The seas come in and the seas go out, Annu. Rev. Earth Planet. Sci., 49, 679–728, https://doi.org/10.1146/annurev-earth-081320-064052, 2021.
Servais, T., Brocke, R., Fatka, O., Herisse, A. L., and Molyneux, S. G.: Value and meaning of the term acritarch, in: Acritarcha in Praha 1996, Acta Universitatis Carolinae, edited by: Fatka, O. and Servais, T., Geologica, 40, 631–643, 1997.
Servais, T., Li, J., Molyneux, S., and Raevskaya, E.: Ordovician organic-walled microphytoplankton (acritarch) distribution: The global scenario, Palaeogeogr. Palaeoclim. Palaeoecol., 195, 149–172, https://doi.org/10.1016/S0031-0182(03)00306-7, 2003.
Shu, X.: Code encountered during the drawing process, Zenodo [code], https://doi.org/10.5281/zenodo.15147118, 2025.
Shu, X., Song, H., Lei, Y., Chu, D., Dal Corso, J., Liu, X., Song, H., Wei, L., Jia, E., Feng, Y., Du, Y., Song, H., Yu, W., Liang, Q., Li, X., Yao, H., and Wu, Y.: Global Acritarch Database, Zenodo [data set] https://doi.org/10.5281/zenodo.15208303, 2025.
Silvestro, D., Salamin, N., and Schnitzler, J.: PyRate: A new program to estimate speciation and extinction rates from incomplete fossil data, Meth. Ecol. Evol., 5, 1126–1131, https://doi.org/10.1111/2041-210X.12263, 2014.
Silvestro, D., Salamin, N., Antonelli, A., and Meyer, X.: Improved estimation of macroevolutionary rates from fossil data using a Bayesian framework, Paleobiology, 45, 546–570, https://doi.org/10.1017/pab.2019.23, 2019.
Strother, P. K.: A speculative review of factors controlling the evolution of phytoplankton during Paleozoic time, Revue de Micropaleontology, 51, 9–21, https://doi.org/10.1016/j.revmic.2007.01.007, 2008.
Tappan, H. and Loeblich Jr., A. R.: Evolution of the oceanic plankton, Earth-Sci. Rev., 9, 207–240, https://doi.org/10.1016/0012-8252(73)90092-5, 1973.
Vavrdová, M. and Dašková, J.: Middle Devonian palynomorphs from southern Moravia: An evidence of rapid change from terrestrial deltaic plain to carbonate platform conditions, Geol. Carpathica, 62, 109–119, https://doi.org/10.2478/v10096-011-0010-2, 2011.
Vavrdová, M. and Svobodová, M.: Amphitheca isaacsonii gen. et sp. nov. (Acritarcha) from the Ananea Formation (Silurian/Devonian transition), southern Peru, Journal of the National Museum (Prague), Natural History Series, 179, 189–196, 2010.
Vavrdová, M., Bek, J., Dufka, P., and Isaacson, P. E.: Palynology of the Devonian (Lochkovian to tournaisian) sequence, Madre de Dios Basin, northern Bolivia, Vestnik Ceskeho geologickeho ustavu, 71, 333–349, 1996.
Vavrdová, M., Isaacson, P. E., and Díaz-Martínez, E.: Early Silurian-Early Devonian acritarchs and prasinophytes from the Ananea and San Gabán Formations, southern Peru and their paleogeographic implications, Revista Española de Micropaleontología, 43, 157–172, 2011.
Vecoli, M. and Le Hérissé, A.: Biostratigraphy, taxonomic diversity and patterns of morphological evolution of Ordovician acritarchs (organic-walled microphytoplankton) from the northern Gondwana margin in relation to palaeoclimatic and palaeogeographic changes, Earth-Sci. Rev., 67, 267–311, https://doi.org/10.1016/j.earscirev.2004.03.002, 2004.
Wang, K., Xu, H. H., and Yin, L. M.: A palynological assemblage from the Cambrian (Series 2, Stage 4) of Shandong Province, China, and its implications to the transition from algae to land plants, Rev. Palaeobot. Palynol., 301, 104645, https://doi.org/10.1016/j.revpalbo.2022.104645, 2022.
Wicander, R.: Acritarchs: Proterozoic and Paleozoic enigmatic organic-walled microfossils, edited by: Hoover, R. B. and Levin, G. V., Instruments, Methods, and Mission for Astrobiology IV. Proc. Soc. Phot.-Opt. Instrum. Eng. (SPIE), 4495, 331–340, https://doi.org/10.1117/12.454771, 2002.
Williams, G. L.: Dinoflagellates, acritarchs and tasmanitids, in: Introduction to Marine Micropaleontology, Elsevier, 293–326, https://doi.org/10.1016/B978-044482672-5/50013-1, 1998.
Willman, S. and Moczydłowska, M.: Acritarchs in the Ediacaran of Australia – Local or global significance? Evidence from the Lake Maurice West 1 drillcore, Rev. Palaeobot. Palynol., 166, 12–28, https://doi.org/10.1016/j.revpalbo.2011.04.005, 2011.
Xiao, S. and Narbonne, G. M.: The Ediacaran Period, in: Geologic Time Scale 2020 (Volume 1), edited by: Gradstein, F. M., Ogg, J. G., Schmitz, M. D., and Ogg, G. M., Elsevier, Oxford, 521–561, https://doi.org/10.1016/B978-0-12-824360-2.00018-8, 2020.
Xiao, S., Zhang, Y., and Knoll, A. H.: Three-dimensional preservation of algae and animal embryos in a Neoproterozoic phosphorite, Nature, 391, 553–558, https://doi.org/10.1038/35318, 1998.
Yin, L.: Illustrated book of organic-walled microfossils, Zhejiang University Press, Zhejiang, ISBN 978-7-308-18633-9, 2018.
Yin, L., Zhu, M., Knoll, A. H., Yuan, X., Zhang, J., and Hu, J.: Doushantuo embryos preserved inside diapause egg cysts, Nature, 446, 661–663, https://doi.org/10.1038/nature05682, 2007.
Yin, Z., Sun, W., Liu, P., Zhu, M., and Donoghue, P. C. J.: Developmental biology of Helicoforamina reveals holozoan affinity, cryptic diversity, and adaptation to heterogenous environments in the early Ediacaran Weng'an biota (Doushantuo Formation, South China), Sci. Adv., 6, eabb0083, https://doi.org/10.1126/sciadv.abb0083, 2020.
Short summary
Building on the foundation of Palynodata, the Global Acritarch Database (GAD) added 29 new fields, 4531 new entries, 2 238 366 new metadata points, and 415 new references, resulting in a database comprising 115 860 entries, 43 fields, 3 050 852 metadata points, and 7791 references. GAD represents records from 1146 different sampling sites spanning geological history from the Precambrian to the Phanerozoic, and the fossil records include 1456 genera and 9865 species (excluding sp.).
Building on the foundation of Palynodata, the Global Acritarch Database (GAD) added 29 new...
Altmetrics
Final-revised paper
Preprint