Articles | Volume 17, issue 6
https://doi.org/10.5194/essd-17-2249-2025
https://doi.org/10.5194/essd-17-2249-2025
Data description paper
 | 
02 Jun 2025
Data description paper |  | 02 Jun 2025

Distribution and characteristics of lightning-ignited wildfires in boreal forests – the BoLtFire database

Brittany Engle, Ivan Bratoev, Morgan A. Crowley, Yanan Zhu, and Cornelius Senf

Related authors

Natural disturbances increasingly affect Europe’s most mature and carbon-rich forests
Simon Besnard, Alba Viana-Soto, Henrik Hartmann, Marco Patacca, Viola H. A. Heinrich, Katja Kowalski, Maurizio Santoro, Wanda De Keersmaecker, Ruben Van De Kerchove, Martin Herold, and Cornelius Senf
EGUsphere, https://doi.org/10.5194/egusphere-2025-6288,https://doi.org/10.5194/egusphere-2025-6288, 2025
This preprint is open for discussion and under review for Biogeosciences (BG).
Short summary
The European Forest Disturbance Atlas: a forest disturbance monitoring system using the Landsat archive
Alba Viana-Soto and Cornelius Senf
Earth Syst. Sci. Data, 17, 2373–2404, https://doi.org/10.5194/essd-17-2373-2025,https://doi.org/10.5194/essd-17-2373-2025, 2025
Short summary
Meteorological history of low-forest-greenness events in Europe in 2002–2022
Mauro Hermann, Matthias Röthlisberger, Arthur Gessler, Andreas Rigling, Cornelius Senf, Thomas Wohlgemuth, and Heini Wernli
Biogeosciences, 20, 1155–1180, https://doi.org/10.5194/bg-20-1155-2023,https://doi.org/10.5194/bg-20-1155-2023, 2023
Short summary
Persistent impacts of the 2018 drought on forest disturbance regimes in Europe
Cornelius Senf and Rupert Seidl
Biogeosciences, 18, 5223–5230, https://doi.org/10.5194/bg-18-5223-2021,https://doi.org/10.5194/bg-18-5223-2021, 2021
Short summary

Cited articles

Anderson, K.: A model to predict lightning-caused fire occurrences, Int. J. Wildland Fire, 11, 163–172, https://doi.org/10.1071/wf02001, 2002. 
Arevalo, P., Stanimirova, R., Bullock, E., Zhang, Y., Tarrio, K., Turlej, K., Hu, K., McAvoy, K., Pasquarella, V., Woodcock, C., Olofsson, P., Zhu, Z., Gorelick, N., Loveland, T., Barber, C., and Friedl, M.: Global Land Cover Mapping and Estimation Yearly 30 m V001, NASA EOSDIS Land Processes Distributed Active Archive Center [data set], https://doi.org/10.5067/MEaSUREs/GLanCE/GLanCE30.001, 2022. 
Artés, T., Oom, D., De Rigo, D., Durrant, T. H., Maianti, P., Giorgio, L., and San-Miguel-Ayanz, J.: A global wildfire dataset for the analysis of fire regimes and fire behaviour, Sci. Data, 6, 296, https://doi.org/10.1038/s41597-019-0312-2, 2019. 
Benali, A., Russo, A., Sá, A., Pinto, R., Price, O., Koutsias, N., and Pereira, J.: Determining Fire Dates and Locating Ignition Points with Satellite Data, Remote Sens., 8, 326, https://doi.org/10.3390/rs8040326, 2016. 
Download
Short summary
The pan-boreal lightning-ignited wildfire (BoLtFire) dataset spans the entire boreal forest from 2012 to 2022, focusing on fires of at least 200 ha. Developed using a new methodology to match lightning to wildfires in the boreal region, it includes 6902 fires – 4201 in Eurasia and 2701 in North America. BoLtFire provides new opportunities to model the ignition and spread dynamics of boreal wildfires and offers deeper insights into lightning-driven fire activity globally.
Share
Altmetrics
Final-revised paper
Preprint