Articles | Volume 17, issue 6
https://doi.org/10.5194/essd-17-2249-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/essd-17-2249-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Distribution and characteristics of lightning-ignited wildfires in boreal forests – the BoLtFire database
School of Life Sciences, Earth Observation for Ecosystem Management, Technical University of Munich, Freising, Germany
Ivan Bratoev
School of Engineering and Design, Architectural Informatics, Technical University of Munich, Munich, Germany
Morgan A. Crowley
Canadian Forest Service (Great Lakes Forestry Centre), Natural Resources Canada, Sault Ste. Marie, Ontario, Canada
Yanan Zhu
Advanced Environmental Monitoring (AEM), Germantown, Maryland, USA
Cornelius Senf
School of Life Sciences, Earth Observation for Ecosystem Management, Technical University of Munich, Freising, Germany
Related authors
No articles found.
Alba Viana-Soto and Cornelius Senf
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-361, https://doi.org/10.5194/essd-2024-361, 2024
Revised manuscript accepted for ESSD
Short summary
Short summary
Europe's forests are undergoing complex changes in response to increasing disturbances driven by climate and land use changes. We present here the European Forest Disturbance Atlas, a satellite-based approach for mapping annual forest disturbances across continental Europe since 1985. Maps provide insights into the year of disturbance occurrence, the actual frequency of disturbances, severity and the underlying causal agent, thus contributing to a future monitoring system envisioned for Europe.
Mauro Hermann, Matthias Röthlisberger, Arthur Gessler, Andreas Rigling, Cornelius Senf, Thomas Wohlgemuth, and Heini Wernli
Biogeosciences, 20, 1155–1180, https://doi.org/10.5194/bg-20-1155-2023, https://doi.org/10.5194/bg-20-1155-2023, 2023
Short summary
Short summary
This study examines the multi-annual meteorological history of low-forest-greenness events in Europe's temperate and Mediterranean biome in 2002–2022. We systematically identify anomalies in temperature, precipitation, and weather systems as event precursors, with noteworthy differences between the two biomes. We also quantify the impact of the most extensive event in 2022 (37 % coverage), underlining the importance of understanding the forest–meteorology interaction in a changing climate.
Cornelius Senf and Rupert Seidl
Biogeosciences, 18, 5223–5230, https://doi.org/10.5194/bg-18-5223-2021, https://doi.org/10.5194/bg-18-5223-2021, 2021
Short summary
Short summary
Europe was affected by an extreme drought in 2018. We show that this drought has increased forest disturbances across Europe, especially central and eastern Europe. Disturbance levels observed 2018–2020 were the highest on record for 30 years. Increased forest disturbances were correlated with low moisture and high atmospheric water demand. The unprecedented impacts of the 2018 drought on forest disturbances demonstrate an urgent need to adapt Europe’s forests to a hotter and drier future.
Related subject area
Domain: ESSD – Land | Subject: Energy and Emissions
Global and national CO2 uptake by cement carbonation from 1928 to 2024
Global Carbon Budget 2024
Imputation of missing land carbon sequestration data in the AR6 Scenarios Database
Europe’s adaptation to the energy crisis: Reshaped gas supply-transmission-consumption structures and driving factors from 2022 to 2024
Meteorological, snow and soil data, CO2, water and energy fluxes from a low-Arctic valley of Northern Quebec
Systematically tracking the hourly progression of large wildfires using GOES satellite observations
GloCAB: global cropland burned area from mid-2002 to 2020
Greenhouse gas emissions and their trends over the last 3 decades across Africa
A coarse pixel-scale ground “truth” dataset based on global in situ site measurements to support validation and bias correction of satellite surface albedo products
Multi-decadal trends and variability in burned area from the fifth version of the Global Fire Emissions Database (GFED5)
Developing a spatially explicit global oil and gas infrastructure database for characterizing methane emission sources at high resolution
An adapted hourly Himawari-8 fire product for China: principle, methodology and verification
A GeoNEX-based high-spatiotemporal-resolution product of land surface downward shortwave radiation and photosynthetically active radiation
Mapping photovoltaic power plants in China using Landsat, random forest, and Google Earth Engine
Le Niu, Songbin Wu, Robbie M. Andrew, Zi Shao, Jiaoyue Wang, and Fengming Xi
Earth Syst. Sci. Data, 17, 2231–2247, https://doi.org/10.5194/essd-17-2231-2025, https://doi.org/10.5194/essd-17-2231-2025, 2025
Short summary
Short summary
This study provides an accurate bottom-up quantification of cement carbonation sinks at national and global levels. It shows that the global CO2 uptake by cement materials increased from 7.74 Mt yr-1 in 1928 to 0.84 Gt yr-1 in 2023; for 2024, this value is projected to be 0.86 Gt yr-1. The accumulated CO2 uptake offsets about 46 % of cement process emissions. Dominance with respect to cement carbon uptake has shifted from the USA, Japan, and some European countries to emerging economies such as China and India.
Pierre Friedlingstein, Michael O'Sullivan, Matthew W. Jones, Robbie M. Andrew, Judith Hauck, Peter Landschützer, Corinne Le Quéré, Hongmei Li, Ingrid T. Luijkx, Are Olsen, Glen P. Peters, Wouter Peters, Julia Pongratz, Clemens Schwingshackl, Stephen Sitch, Josep G. Canadell, Philippe Ciais, Robert B. Jackson, Simone R. Alin, Almut Arneth, Vivek Arora, Nicholas R. Bates, Meike Becker, Nicolas Bellouin, Carla F. Berghoff, Henry C. Bittig, Laurent Bopp, Patricia Cadule, Katie Campbell, Matthew A. Chamberlain, Naveen Chandra, Frédéric Chevallier, Louise P. Chini, Thomas Colligan, Jeanne Decayeux, Laique M. Djeutchouang, Xinyu Dou, Carolina Duran Rojas, Kazutaka Enyo, Wiley Evans, Amanda R. Fay, Richard A. Feely, Daniel J. Ford, Adrianna Foster, Thomas Gasser, Marion Gehlen, Thanos Gkritzalis, Giacomo Grassi, Luke Gregor, Nicolas Gruber, Özgür Gürses, Ian Harris, Matthew Hefner, Jens Heinke, George C. Hurtt, Yosuke Iida, Tatiana Ilyina, Andrew R. Jacobson, Atul K. Jain, Tereza Jarníková, Annika Jersild, Fei Jiang, Zhe Jin, Etsushi Kato, Ralph F. Keeling, Kees Klein Goldewijk, Jürgen Knauer, Jan Ivar Korsbakken, Xin Lan, Siv K. Lauvset, Nathalie Lefèvre, Zhu Liu, Junjie Liu, Lei Ma, Shamil Maksyutov, Gregg Marland, Nicolas Mayot, Patrick C. McGuire, Nicolas Metzl, Natalie M. Monacci, Eric J. Morgan, Shin-Ichiro Nakaoka, Craig Neill, Yosuke Niwa, Tobias Nützel, Lea Olivier, Tsuneo Ono, Paul I. Palmer, Denis Pierrot, Zhangcai Qin, Laure Resplandy, Alizée Roobaert, Thais M. Rosan, Christian Rödenbeck, Jörg Schwinger, T. Luke Smallman, Stephen M. Smith, Reinel Sospedra-Alfonso, Tobias Steinhoff, Qing Sun, Adrienne J. Sutton, Roland Séférian, Shintaro Takao, Hiroaki Tatebe, Hanqin Tian, Bronte Tilbrook, Olivier Torres, Etienne Tourigny, Hiroyuki Tsujino, Francesco Tubiello, Guido van der Werf, Rik Wanninkhof, Xuhui Wang, Dongxu Yang, Xiaojuan Yang, Zhen Yu, Wenping Yuan, Xu Yue, Sönke Zaehle, Ning Zeng, and Jiye Zeng
Earth Syst. Sci. Data, 17, 965–1039, https://doi.org/10.5194/essd-17-965-2025, https://doi.org/10.5194/essd-17-965-2025, 2025
Short summary
Short summary
The Global Carbon Budget 2024 describes the methodology, main results, and datasets used to quantify the anthropogenic emissions of carbon dioxide (CO2) and their partitioning among the atmosphere, land ecosystems, and the ocean over the historical period (1750–2024). These living datasets are updated every year to provide the highest transparency and traceability in the reporting of CO2, the key driver of climate change.
Ruben Prütz, Sabine Fuss, and Joeri Rogelj
Earth Syst. Sci. Data, 17, 221–231, https://doi.org/10.5194/essd-17-221-2025, https://doi.org/10.5194/essd-17-221-2025, 2025
Short summary
Short summary
The AR6 Scenarios Database lacks data on carbon dioxide removal (CDR) via land sinks for many pathways, hindering secondary scenario analyses. We tested and compared regression models, identifying k-nearest neighbors regression as most effective to predict missing CDR data. We provide an imputation dataset for incomplete global scenarios (n = 404) and for regional scenario variants (n = 2358) and discuss the caveats of our study, its use cases, and how our dataset compares to other approaches.
Chuanlong Zhou, Biqing Zhu, Antoine Halff, Steven J. Davis, Zhu Liu, Simon Bowring, Simon Ben Arous, and Philippe Ciais
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-173, https://doi.org/10.5194/essd-2024-173, 2024
Revised manuscript accepted for ESSD
Short summary
Short summary
After Russia's 2022 invasion of Ukraine, Europe's energy dynamics shifted significantly. Our study introduces updated datasets tracking changes in natural gas supply, usage, and transmission within the EU27&UK. We discovered that Europe adapted to losing Russian gas by increasing LNG imports and shifting to renewables. Our insights could shape future energy policies and climate research.
Florent Domine, Denis Sarrazin, Daniel F. Nadeau, Georg Lackner, and Maria Belke-Brea
Earth Syst. Sci. Data, 16, 1523–1541, https://doi.org/10.5194/essd-16-1523-2024, https://doi.org/10.5194/essd-16-1523-2024, 2024
Short summary
Short summary
The forest–tundra ecotone is the transition region between the boreal forest and Arctic tundra. It spans over 13 000 km across the Arctic and is evolving rapidly because of climate change. We provide extensive data sets of two sites 850 m apart, one in tundra and one in forest in this ecotone for use in various models. Data include meteorological and flux data and unique snow and soil physics data.
Tianjia Liu, James T. Randerson, Yang Chen, Douglas C. Morton, Elizabeth B. Wiggins, Padhraic Smyth, Efi Foufoula-Georgiou, Roy Nadler, and Omer Nevo
Earth Syst. Sci. Data, 16, 1395–1424, https://doi.org/10.5194/essd-16-1395-2024, https://doi.org/10.5194/essd-16-1395-2024, 2024
Short summary
Short summary
To improve our understanding of extreme wildfire behavior, we use geostationary satellite data to develop the GOFER algorithm and track the hourly fire progression of large wildfires. GOFER fills a key temporal gap present in other fire tracking products that rely on low-Earth-orbit imagery and reveals considerable variability in fire spread rates on diurnal timescales. We create a product of hourly fire perimeters, active-fire lines, and fire spread rates for 28 fires in California.
Joanne V. Hall, Fernanda Argueta, Maria Zubkova, Yang Chen, James T. Randerson, and Louis Giglio
Earth Syst. Sci. Data, 16, 867–885, https://doi.org/10.5194/essd-16-867-2024, https://doi.org/10.5194/essd-16-867-2024, 2024
Short summary
Short summary
Crop-residue burning is a widespread practice often occurring close to population centers. Its recurrent nature requires accurate mapping of the area burned – a key input into air quality models. Unlike larger fires, crop fires require a specific burned area (BA) methodology, which to date has been ignored in global BA datasets. Our global cropland-focused BA product found a significant increase in global cropland BA (81 Mha annual average) compared to the widely used MCD64A1 (32 Mha).
Mounia Mostefaoui, Philippe Ciais, Matthew J. McGrath, Philippe Peylin, Prabir K. Patra, and Yolandi Ernst
Earth Syst. Sci. Data, 16, 245–275, https://doi.org/10.5194/essd-16-245-2024, https://doi.org/10.5194/essd-16-245-2024, 2024
Short summary
Short summary
Our aim is to assess African anthropogenic greenhouse gas emissions and removals by using different data products, including inventories and process-based models, and to compare their relative merits with inversion data coming from satellites. We show a good match among the various estimates in terms of overall trends at a regional level and on a decadal basis, but large differences exist even among similar data types, which is a limit to the possibility of verification of country-reported data.
Fei Pan, Xiaodan Wu, Qicheng Zeng, Rongqi Tang, Jingping Wang, Xingwen Lin, Dongqin You, Jianguang Wen, and Qing Xiao
Earth Syst. Sci. Data, 16, 161–176, https://doi.org/10.5194/essd-16-161-2024, https://doi.org/10.5194/essd-16-161-2024, 2024
Short summary
Short summary
To effectively tackle the challenges posed by spatial-scale differences and spatial heterogeneity, this paper presents a distinctive coarse pixel-scale ground “truth" dataset by upscaling sparsely distributed in situ measurements. This dataset is a valuable resource for validating and correcting global surface albedo products, enhancing reference data accuracy by 6.04 %. Remarkably, it substantially enhances 17.09 % in regions with strong spatial heterogeneity.
Yang Chen, Joanne Hall, Dave van Wees, Niels Andela, Stijn Hantson, Louis Giglio, Guido R. van der Werf, Douglas C. Morton, and James T. Randerson
Earth Syst. Sci. Data, 15, 5227–5259, https://doi.org/10.5194/essd-15-5227-2023, https://doi.org/10.5194/essd-15-5227-2023, 2023
Short summary
Short summary
Using multiple sets of remotely sensed data, we created a dataset of monthly global burned area from 1997 to 2020. The estimated annual global burned area is 774 million hectares, significantly higher than previous estimates. Burned area declined by 1.21% per year due to extensive fire loss in savanna, grassland, and cropland ecosystems. This study enhances our understanding of the impact of fire on the carbon cycle and climate system, and may improve the predictions of future fire changes.
Mark Omara, Ritesh Gautam, Madeleine A. O'Brien, Anthony Himmelberger, Alex Franco, Kelsey Meisenhelder, Grace Hauser, David R. Lyon, Apisada Chulakadabba, Christopher Chan Miller, Jonathan Franklin, Steven C. Wofsy, and Steven P. Hamburg
Earth Syst. Sci. Data, 15, 3761–3790, https://doi.org/10.5194/essd-15-3761-2023, https://doi.org/10.5194/essd-15-3761-2023, 2023
Short summary
Short summary
We acquire, integrate, and analyze ~ 6 million geospatial oil and gas infrastructure data records based on information available in the public domain and develop an open-access global database including all the major oil and gas facility types that are important sources of methane emissions. This work helps fulfill a crucial geospatial data need, in support of the assessment, attribution, and mitigation of global oil and gas methane emissions at high resolution.
Jie Chen, Qiancheng Lv, Shuang Wu, Yelu Zeng, Manchun Li, Ziyue Chen, Enze Zhou, Wei Zheng, Cheng Liu, Xiao Chen, Jing Yang, and Bingbo Gao
Earth Syst. Sci. Data, 15, 1911–1931, https://doi.org/10.5194/essd-15-1911-2023, https://doi.org/10.5194/essd-15-1911-2023, 2023
Short summary
Short summary
The Himawari-8 fire product is the mainstream fire product with the highest temporal resolution, yet it presents large uncertainties and is not suitable for reliable real-time fire monitoring in China. To address this issue, we proposed an adaptive hourly NSMC (National Satellite Meteorological Center) Himawari-8 fire product for China; the overall accuracy increased from 54 % (original Himawari product) to 80 %. This product can largely enhance real-time fire monitoring and relevant research.
Ruohan Li, Dongdong Wang, Weile Wang, and Ramakrishna Nemani
Earth Syst. Sci. Data, 15, 1419–1436, https://doi.org/10.5194/essd-15-1419-2023, https://doi.org/10.5194/essd-15-1419-2023, 2023
Short summary
Short summary
There has been an increasing need for high-spatiotemporal-resolution surface downward shortwave radiation (DSR) and photosynthetically active radiation (PAR) data for ecological, hydrological, carbon, and solar photovoltaic research. This study produced a new 1 km hourly product of land surface DSR and PAR from the enhanced GeoNEX new-generation geostationary data. Our validation indicated that the GeoNEX DSR and PAR product has a higher accuracy than other existing products.
Xunhe Zhang, Ming Xu, Shujian Wang, Yongkai Huang, and Zunyi Xie
Earth Syst. Sci. Data, 14, 3743–3755, https://doi.org/10.5194/essd-14-3743-2022, https://doi.org/10.5194/essd-14-3743-2022, 2022
Short summary
Short summary
Photovoltaic (PV) power plants have been increasingly built across the world to mitigate climate change. A map of the PV power plants is important for policy management and environmental assessment. We established a map of PV power plants in China by 2020, covering a total area of 2917 km2. Based on the derived map, we found that most PV power plants were situated on cropland. In addition, the installation of PV power plants has generally decreased the vegetation cover.
Cited articles
Anderson, K.: A model to predict lightning-caused fire occurrences, Int. J. Wildland Fire, 11, 163–172, https://doi.org/10.1071/wf02001, 2002.
Arevalo, P., Stanimirova, R., Bullock, E., Zhang, Y., Tarrio, K., Turlej, K., Hu, K., McAvoy, K., Pasquarella, V., Woodcock, C., Olofsson, P., Zhu, Z., Gorelick, N., Loveland, T., Barber, C., and Friedl, M.: Global Land Cover Mapping and Estimation Yearly 30 m V001, NASA EOSDIS Land Processes Distributed Active Archive Center [data set], https://doi.org/10.5067/MEaSUREs/GLanCE/GLanCE30.001, 2022.
Artés, T., Oom, D., De Rigo, D., Durrant, T. H., Maianti, P., Giorgio, L., and San-Miguel-Ayanz, J.: A global wildfire dataset for the analysis of fire regimes and fire behaviour, Sci. Data, 6, 296, https://doi.org/10.1038/s41597-019-0312-2, 2019.
Benali, A., Russo, A., Sá, A., Pinto, R., Price, O., Koutsias, N., and Pereira, J.: Determining Fire Dates and Locating Ignition Points with Satellite Data, Remote Sens., 8, 326, https://doi.org/10.3390/rs8040326, 2016.
Bond, T. C., Doherty, S. J., Fahey, D. W., Forster, P. M., Berntsen, T., Deangelo, B. J., Flanner, M. G., Ghan, S., Kärcher, B., Koch, D., Kinne, S., Kondo, Y., Quinn, P. K., Sarofim, M. C., Schultz, M. G., Schulz, M., Venkataraman, C., Zhang, H., Zhang, S., Bellouin, N., Guttikunda, S. K., Hopke, P. K., Jacobson, M. Z., Kaiser, J. W., Klimont, Z., Lohmann, U., Schwarz, J. P., Shindell, D., Storelvmo, T., Warren, S. G., and Zender, C. S.: Bounding the role of black carbon in the climate system: A scientific assessment, J. Geophys. Res.-Atmos, 118, 5380–5552, https://doi.org/10.1002/jgrd.50171, 2013.
Brandt, J. P.: The extent of the North American boreal zone, Environ. Rev., 17, 101–161, https://doi.org/10.1139/a09-004, 2009.
Brandt, J. P., Flannigan, M. D., Maynard, D. G., Thompson, I. D., and Volney, W. J. A.: An introduction to Canada's boreal zone: ecosystem processes, health, sustainability, and environmental issues, Environ. Rev., 21, 207–226, https://doi.org/10.1139/er-2013-0040, 2013.
Bui, V., Chang, L.-C., and Heckman, S.: A Performance Study of Earth Networks Total Lighting Network (ENTLN) and Worldwide Lightning Location Network (WWLLN), in: 2015 International Conference on Computational Science and Computational Intelligence (CSCI), 7–9 December 2015, Las Vegas, Nevada, USA, 386–391, https://doi.org/10.1109/CSCI.2015.120, 2015.
Canadian Forest Service: Canadian National Fire Database – Agency Fire Data, Natural Resources Canada, Canadian Forest Service, Northern Forestry Centre, Edmonton, Alberta [data set], http://cwfis.cfs.nrcan.gc.ca/en_CA/nfdb (last access: 4 September 2024), 2024.
Cardoso, M. F., Hurtt, G. C., Moore, B., Nobre, C. A., and Bain, H.: Field work and statistical analyses for enhanced interpretation of satellite fire data, Remote Sens. Environ., 96, 212–227, https://doi.org/10.1016/j.rse.2005.02.008, 2005.
Crowley, M. A., Stockdale, C. A., Johnston, J. M., Wulder, M. A., Liu, T., McCarty, J. L., Rieb, J. T., Cardille, J. A., and White, J. C.: Towards a whole-system framework for wildfire monitoring using Earth observations, Global Change Biol., 29, 1423–1436, https://doi.org/10.1111/gcb.16567, 2023.
de Groot, W. J., Flannigan, M. D., and Cantin, A. S.: Climate change impacts on future boreal fire regimes, Forest Ecol. Manage., 294, 35–44, https://doi.org/10.1016/j.foreco.2012.09.027, 2013.
Descals, A., Gaveau, D. L. A., Verger, A., Sheil, D., Naito, D., and Peñuelas, J.: Unprecedented fire activity above the Arctic Circle linked to rising temperatures, Science, 378, 532–537, https://doi.org/10.1126/science.abn9768, 2022.
Engle, B. and Bratoev, I.: BoLtFire Code Release version 1 (v1.0.0), Zenodo [code], https://doi.org/10.5281/zenodo.15425619, 2025.
Engle, B., Bratoev, I., Crowley, M. A., Zhu, Y., and Senf, C.: Distribution and Characteristics of Lightning-Ignited Wildfires in Boreal Forests – the BoLtFire database (3.0), Zenodo [data set], https://doi.org/10.5281/zenodo.14940326, 2024.
Flannigan, M. D. and Wotton, B. M.: Lightning-ignited forest fires in northwestern Ontario, Can. J. Forest Res., 21, 277–287, https://doi.org/10.1139/x91-035, 1991.
Flannigan, M. D., Stocks, B. J., and Wotton, B. M.: Climate change and forest fires, Sci. Total. Environ., 262, 221–229, https://doi.org/10.1016/s0048-9697(00)00524-6, 2000.
Flannigan, M. D., Stocks, B. J., Turetsky, M. R., and Wotton, M.: Impacts of climate change on fire activity and fire management in the circumboreal forest, Global Change Biol., 15, 549–560, https://doi.org/10.1111/j.1365-2486.2008.01660.x, 2009.
Friedl, M. and Sulla-Menashe, D.: MODIS/Terra+Aqua Land Cover Type Yearly L3 Global 500 m SIN Grid V061, NASA EOSDIS Land Processes Distributed Active Archive Center [data set], https://doi.org/10.5067/MODIS/MCD12Q1.061, 2022.
Fusco, E. J., Finn, J. T., Abatzoglou, J. T., Balch, J. K., Dadashi, S., and Bradley, B. A.: Detection rates and biases of fire observations from MODIS and agency reports in the conterminous United States, Remote. Sens. Environ., 220, 30–40, https://doi.org/10.1016/j.rse.2018.10.028, 2019.
Gao, C., Shi, C., Li, J., Yuan, S., Huang, X., Zhang, Q., Qiming, M., and Wu, G.: Igniting lightning, wildfire occurrence, and precipitation in the boreal forest of northeast China, Agr. Forest Meteorol., 354, 110081, https://doi.org/10.1016/j.agrformet.2024.110081, 2024.
Giglio, L., Loboda, T., Roy, D. P., Quayle, B., and Justice, C. O.: An active-fire based burned area mapping algorithm for the MODIS sensor, Remote Sens. Environ., 113, 408–420, https://doi.org/10.1016/j.rse.2008.10.006, 2009.
Giglio, L., Boschetti, L., Roy, D. P., Humber, M. L., and Justice, C. O.: The Collection 6 MODIS burned area mapping algorithm and product, Remote Sens. Environ., 217, 72–85, https://doi.org/10.1016/j.rse.2018.08.005, 2018.
Giglio, L., Boschetti, L., Roy, D., Hoffmann, A., Humber, M., and Hall, J.: Collection 6 MODIS Burned Area Product User's Guide Version 1.3. National Aeronautics and Space Administration (NASA), https://lpdaac.usgs.gov/documents/875/MCD64_User_Guide_V6.pdf (last access: 9 March 2024), 2020.
Gillett, N. P., Weaver, A. J., Zwiers, F. W., and Flannigan, M. D.: Detecting the effect of climate change on Canadian forest fires, Geophys. Res. Lett., 31, 2004GL020876, https://doi.org/10.1029/2004gl020876, 2004.
Hanes, C. C., Wang, X., Jain, P., Parisien, M.-A., Little, J. M., and Flannigan, M. D.: Fire-regime changes in Canada over the last half century, Can. J. Forest Res., 49, 256–269, https://doi.org/10.1139/cjfr-2018-0293, 2019.
Hansen, J. and Nazarenko, L.: Soot climate forcing via snow and ice albedos, P. Natl. Acad. Sci. USA, 101, 423–428, https://doi.org/10.1073/pnas.2237157100, 2003.
Hantson, S., Padilla, M., Corti, D., and Chuvieco, E.: Strengths and weaknesses of MODIS hotspots to characterize global fire occurrence, Remote Sens. Environ., 131, 152–159, https://doi.org/10.1016/j.rse.2012.12.004, 2013.
Hawbaker, T. J., Radeloff, V. C., Syphard, A. D., Zhu, Z., and Stewart, S. I.: Detection rates of the MODIS active fire product in the United States, Remote Sens. Environ., 112, 2656–2664, https://doi.org/10.1016/j.rse.2007.12.008, 2008.
Hessilt, T. D., Abatzoglou, J. T., Chen, Y., Randerson, J. T., Scholten, R. C., van der Werf, G., and Veraverbeke, S.: Future increases in lightning ignition efficiency and wildfire occurrence expected from drier fuels in boreal forest ecosystems of western North America, Environ. Res. Lett., 17, 054008, https://doi.org/10.1088/1748-9326/ac6311, 2022.
Janssen, T. A. J., Jones, M. W., Finney, D., van der Werf, G. R., van Wees, D., Xu, W., and Veraverbeke, S.: Extratropical forests increasingly at risk due to lightning fires, Nat. Geosci., 16, 1136–1144, https://doi.org/10.1038/s41561-023-01322-z, 2023.
Johnston, L. M., Wooster, M. J., Brookes, A., McFayden, C., and Cantin, A. S.: Satellite Detection Limitations of Sub-Canopy Smouldering Wildfires in the North American Boreal Forest, Fire, 1, 28, https://doi.org/10.3390/fire1020028, 2018.
Jones, M. W., Abatzoglou, J. T., Veraverbeke, S., Andela, N., Lasslop, G., Forkel, M., Smith, A. J. P., Burton, C., Betts, R. A., van der Werf, G. R., Sitch, S., Canadell, J. G., Santín, C., Kolden, C., Doerr, S. H., and Le Quéré, C.: Global and Regional Trends and Drivers of Fire Under Climate Change, Rev. Geophys., 60, e2020RG000726, https://doi.org/10.1029/2020rg000726, 2022.
Kasischke, E. S., Williams, D., and Barry, D.: Analysis of the patterns of large fires in the boreal forest region of Alaska, Int. J. Wildland Fire, 11, 131–144, https://doi.org/10.1071/wf02023, 2002.
Kim, Y., Hatsushika, H., Muskett, R. R., and Yamazaki, K.: Possible effect of boreal wildfire soot on Arctic sea ice and Alaska glaciers, Atmos. Environ., 39, 3513–3520, https://doi.org/10.1016/j.atmosenv.2005.02.050, 2005.
Kolden, C. A., Lutz, J. A., Key, C. H., Kane, J. T., and van Wagtendonk, J. W.: Mapped versus actual burned area within wildfire perimeters: Characterizing the unburned, Forest Ecol. Manage., 286, 38–47, https://doi.org/10.1016/j.foreco.2012.08.020, 2012.
Kourtz, P. H. and Todd, J. B.: Predicting the daily occurrence of lightning-caused forest fires, PI-X-112, Petawawa National Forestry Institute, Chalk River, Ont., Canada, 18 pp., ISBN 0662199480, 1992.
Krause, A., Kloster, S., Wilkenskjeld, S., and Paeth, H.: The sensitivity of global wildfires to simulated past, present, and future lightning frequency, J. Geophys. Res.-Biogeo., 119, 312–322, https://doi.org/10.1002/2013jg002502, 2014.
Lapierre, J. L., Laughner, J. L., Geddes, J. A., Koshak, W., Cohen, R. C., and Pusede, S. E.: Observing U.S. Regional Variability in Lightning NO2 Production Rates, J. Geophys. Res.-Atmos., 125, e2019JD031362, https://doi.org/10.1029/2019JD031362, 2020.
Larjavaara, M., Pennanen, J., and Tuomi, T. J.: Lightning that ignites forest fires in Finland, Agr. Forest Meteorol., 132, 171–180, https://doi.org/10.1016/j.agrformet.2005.07.005, 2005.
Latham, D. and Williams, E.: Chapter 11 – Lightning and Forest Fires, in: Forest Fires, edited by: Johnson, A. and Miyanishi, K., Academic Press, 375–418, https://doi.org/10.1016/B978-012386660-8/50013-1, 2001.
Laurent, P., Mouillot, F., Yue, C., Ciais, P., Morenos, V. M., and Nogueira, J. M. P.: FRY, a global database of fire patch functional traits derived from space-borne burned area products, Sci. Data, 5, 180132, https://doi.org/10.1038/sdata.2018.132, 2018.
Lavoué, D., Liousse, C., Cachier, H., Stocks, B. J., and Goldammer, J. G.: Modeling of carbonaceous particles emitted by boreal and temperate wildfires at northern latitudes, J. Geophys. Res.-Atmos., 105, 26871–26890, https://doi.org/10.1029/2000jd900180, 2000.
Liu, C. and Heckman, S.: Using total lightning data in severe storm prediction: Global case study analysis from north America, Brazil and Australia, in: 2011 International Symposium on Lightning Protection, 3–7 October 2011, Fortaleza, Brazil, 20–24, https://doi.org/10.1109/SIPDA.2011.6088433, 2011.
Lizundia-Loiola, J., Otón, G., Ramo, R. and Chuvieco, E.: A spatio-temporal active-fire clustering approach for global burned area mapping at 250 m from MODIS data, Remote. Sens. Environ., 236, 111493, https://doi.org/10.1016/j.rse.2019.111493, 2020.
Loboda, T. V., Hoy, E. E., Giglio, L., and Kasischke, E. S.: Mapping burned area in Alaska using MODIS data: a data limitations-driven modification to the regional burned area algorithm, Int. J. Wildland Fire, 20, 487–496, https://doi.org/10.1071/wf10017, 2011.
Macias Fauria, M. and Johnson, E. A.: Climate and wildfires in the North American boreal forest, Philos. T. Roy. Soc. A, 363, 2315–2327, https://doi.org/10.1098/rstb.2007.2202, 2007.
Mallick, S., Rakov, V. A., Hill, J. D., Gamerota, W. R., Uman, M. A., Heckman, S., Sloop, C. D., and Liu, C.: Calibration of the ENTLN against rocket-triggered lightning data, in: 2013 International Symposium on Lightning Protection (XII SIPDA), 7–11 October 2013, Belo Horizonte, Brazil, 39–46, https://doi.org/10.1109/sipda.2013.6729186, 2013.
Mallick, S., Rakov, V. A., Hill, J. D., Ngin, T., Gamerota, W. R., Pilkey, J. T., Jordan, D. M., Uman, M. A., Heckman, S., Sloop, C., and Liu, C.: Performance characteristics of the ENTLN evaluated using rocket-triggered lightning data, Elect. Pow. Syst. Res. Elect., 118, 15–28, https://doi.org/10.1016/j.epsr.2014.06.007, 2015.
Martell, D. L. and Sun, H.: The impact of fire suppression, vegetation, and weather on the area burned by lightning-caused forest fires in Ontario, Can. J. Forest Res., 38, 1547–1563, https://doi.org/10.1139/x07-210, 2008.
Melillo, J. M., Richmond, T. T., and Yohe, G. W.: Climate change impacts in the United States: Third National Climate Assessment, US Global Change Research Program, 841 pp., https://doi.org/10.7930/J0Z31WJ2, 2014.
Moris, J. V., Conedera, M., Nisi, L., Bernardi, M., Cesti, G., and Pezzatti, G. B.: Lightning-caused fires in the Alps: Identifying the igniting strokes, Agr. Forest Meteorol., 290, 107990, https://doi.org/10.1016/j.agrformet.2020.107990, 2020.
Moris, J. V., Álvarez-Álvarez, P., Conedera, M., Dorph, A., Hessilt, T. D., Hunt, H. G., Libonati, R., Menezes, L. S., Müller, M. M., Pérez-Invernón, F. J., Pezzatti, G. B., Pineda, N., Scholten, R. C., Veraverbeke, S., Wotton, B. M., and Ascoli, D.: A global database on holdover time of lightning-ignited wildfires, Earth Syst. Sci. Data, 15, 1151–1163, https://doi.org/10.5194/essd-15-1151-2023, 2023.
Müller, M. M., Vacik, H., Diendorfer, G., Arpaci, A., Formayer, H., and Gossow, H.: Analysis of lightning-induced forest fires in Austria, Theor. Appl. Climatol., 111, 183–193, https://doi.org/10.1007/s00704-012-0653-7, 2013.
Nash, C. H. and Johnson, E. A.: Synoptic climatology of lightning-caused forest fires in subalpine and boreal forests, Can. J. Forest Res., 26, 1859–1874, https://doi.org/10.1139/x26-211, 1996.
Natali, S. M., Watts, J. D., Rogers, B. M., Potter, S., Ludwig, S. M., Selbmann, A.-K., Sullivan, P. F., Abbot B. W., Arndt K. A., Birch L., Björkman, M. P., Bloom, A. A., Celis, G., Christensen, T. R., Christensen, C. T., Commane, R., Cooper, E. J., Crill, P., Czimczik, C., Davydov, S., Du, J., Egan, J. E., Elberling, B., Euskirchen, E. S., Friborg, T., Genet, H., Göckede, M., Goodrich, J. P., Grogan, P., Helbig, M., Jafarov, E. E., Jastrow, J. D., Kalhori, A. A. M., Kim, Y., Kimball, J., Kutzbach, L., Lara, M. J., Larsen, K. S., Lee, B.-Y., Liu, Z., Loranty, M. M., Lund, M., Lupascu, M., Madani, N., Malhotra, A., Matamala, R., McFarland, J., McGuire, A. D., Michelsen, A., Minions, C., Oechel, W. C., Olefeldt, D., Paramentier, F.-J. W., Pirk, N., Poulter, B., Quinton, W., Rezanezhad, F., Risk, D., Sachs, T., Schaefer, K., Schmidt, N. M., Schuur, E. A. G., Semenchuk, P. R., Shaver, G., Sonnentag, O., Starr, G., Treat, C. C., Waldrop, M. P., Wang, Y., Welker, J., Wille, C., Xu, X., Zhang, Z., Zhuang, Q., and Zona, D.: Large loss of CO2 in winter observed across the northern permafrost region, Nat. Clim. Change, 9, 852–857, https://doi.org/10.1038/s41558-019-0592-8, 2019.
Olson, D. M., Dinerstein, E., Wikramanayake, E. D., Burgess, N. D., Powell, G. V. N., Underwood, E. C., D'amico, J. A., Itoua, I., Strand, H. A., Morrison, J. C., Loucks, C. J., Allnutt, T. F., Ricketts, T. H., Kura, Y., Lamoreux, J. F., Wettengel, W. W., Hedao, P., and Kassem, K. R.: Terrestrial Ecoregions of the World: A New Map of Life on Earth, BioScience, 51, 933, https://doi.org/10.1641/0006-3568(2001)051[0933:teotwa]2.0.co;2, 2001.
Pan, Y., Birdsey, R. A., Fang, J., Houghton, R., Kauppi, P. E., Kurz, W. A., Phillips, O. L., Shvidenko, A., Lewis, S. L., Canadell, J. G., Ciais, P., Jackson, R. B., Pacala, S. W., McGuire, A. D., Piao, S., Rautiainen, A., Sitch, S., and Hayes, D.: A Large and Persistent Carbon Sink in the World's Forests, Science, 333, 988–993, https://doi.org/10.1126/science.1201609, 2011.
Pérez-Invernón, F. J., Moris, J. V., Gordillo-Vázquez, F. J., Füllekrug, M., Pezzatti, G. B., Conedera, M., Lapierre, J., and Huntrieser, H.: On the Role of Continuing Currents in Lightning-Induced Fire Ignition, J. Geophys. Res.-Atmos., 128, e2023JD038891, https://doi.org/10.1029/2023jd038891, 2023.
Pineda, N. and Rodríguez, O.: ERA5 Reanalysis of Environments Conducive to Lightning-Ignited Wildfires in Catalonia, Atmosphere, 14, 936, https://doi.org/10.3390/atmos14060936, 2023.
Pineda, N., Montanyà, J., and Van Der Velde, O. A.: Characteristics of lightning related to wildfire ignitions in Catalonia, Atmos. Res., 135–136, 380–387, https://doi.org/10.1016/j.atmosres.2012.07.011, 2014.
Pineda, N., Peña, J. C., Soler, X., Aran, M., and Pérez-Zañón, N.: Synoptic weather patterns conducive to lightning-ignited wildfires in Catalonia, Adv. Sci. Res., 19, 39–49, https://doi.org/10.5194/asr-19-39-2022, 2022.
Podur, J., Martell, D. L., and Csillag, F.: Spatial patterns of lightning-caused forest fires in Ontario, 1976–1998, Ecol. Model., 164, 1–20, https://doi.org/10.1016/s0304-3800(02)00386-1, 2003.
Post, E., Alley, R. B., Christensen, T. R., Macias-Fauria, M., Forbes, B. C., Gooseff, M. N., Iler, A., Kerby, J. T., Laidre, K. L., Mann, M. E., Olofsson, J., Stroeve, J. C., Ulmer, F., Virginia, R. A., and Wang, M.: The polar regions in a 2 °C warmer world, Sci. Adv., 5, eaaw9883, https://doi.org/10.1126/sciadv.aaw9883, 2019.
Rodger, C. J., Brundell, J. B., Dowden, R. L., and Thomson, N. R.: Location accuracy of long distance VLF lightning location network, Ann. Geophys., 22, 747–758, https://doi.org/10.5194/angeo-22-747-2004, 2004.
Rogers, B. M., Soja, A. J., Goulden, M. L., and Randerson, J. T.: Influence of tree species on continental differences in boreal fires and climate feedbacks, Nat. Geosci., 8, 228–234, https://doi.org/10.1038/ngeo2352, 2015.
Roy, D. P., Jin, Y., Lewis, P. E., and Justice, C. O.: Prototyping a global algorithm for systematic fire-affected area mapping using MODIS time series data, Remote Sens. Environ., 97, 137–162, https://doi.org/10.1016/j.rse.2005.04.007, 2005.
Scholten, R. C., Jandt, R., Miller, E. A., Rogers, B. M., and Veraverbeke, S.: Overwintering fires in boreal forests, Nature, 593, 399–404, https://doi.org/10.1038/s41586-021-03437-y, 2021.
Schultz, C. J., Nauslar, N. J., Wachter, J. B., Hain, C. R., and Bell, J. R.: Spatial, Temporal and Electrical Characteristics of Lightning in Reported Lightning-Initiated Wildfire Events, Fire, 2, 18, https://doi.org/10.3390/fire2020018, 2019.
Seidl, R., Honkaniemi, J., Aakala, T., Aleinikov, A., Angelstam, P., Bouchard, M., M., Boulanger, Y., Burton, P. J., Grandpre, L., Gauthier, S., Hansen, W. D., Jepsen, J. U., Jogiste, K., Kneesbaw, D. D., Kuuluvainen, T., Lisitsyna, O., Makoto, K., Mori, A. S., Purswaran, D. S., Shorobova, E., Shubnitsina, E., Taylor, A. R., Vladimirova, N., Vodde, F., and Senf, C.: Globally consistent climate sensitivity of natural disturbances across boreal and temperate forest ecosystems, Ecography, 43, 967–978, https://doi.org/10.1111/ecog.04995, 2020.
Sofronov, M. A., Volokitina, A. V., and Shvidenko, A. Z.: Wildland fires in the north of Central Siberia, Commonwealth Forest. Rev., 77, 124–127, 1998.
Soja, A. J., Tchebakova, N. M., French, N. H. F., Flannigan, M. D., Shugart, H. H., Stocks, B. J., Sukhinin, A. I., Parfenova, E. I., Chapin III, F. S., and Stackhouse, P. W.: Climate-induced boreal forest change: Predictions versus current observations, Global Planet. Change, 56, 274–296, https://doi.org/10.1016/j.gloplacha.2006.07.028, 2007.
Stocks, B. J., Fosberg, M. A., Lynham, T. J., Mearns, L., Wotton, B. M., Yang, Q., Jin, J.-Z., Lawrence, K., Hartley, G. R., Mason, J. A., and McKenney, D. W.: Climate Change and Forest Fire Potential in Russian and Canadian Boreal Forests, Climatic Change, 38, 1–13, https://doi.org/10.1023/a:1005306001055, 1998.
Stocks, B. J., Wotton, B. M., Flannigan, M. D., Fosberg, M. A., Cahoon, D. R., and Goldammer, J. G.: Boreal Forest Fire Regimes and Climate Change, in: Advances in Global Change Research, Remote Sensing and Climate Modeling: Synergies and Limitations, edited by: Beniston, M. and Verstraete, M. M., Springer, Dordrecht, the Netherlands, 233–246, https://doi.org/10.1007/0-306-48149-9_10, 2001.
Stocks, B. J., Mason, J. A., Todd, J. B., Bosch, E. M., Wotton, B. M., Amiro, B. D., Flannigan, M. D., Hirsch, K. G., Logan, K. A., Martell, D. L., and Skinner, W. R.: Large forest fires in Canada, 1959–1997, J. Geophys. Res.-Atmos., 107, 8149, https://doi.org/10.1029/2001jd000484, 2002.
Stohl, A.: Characteristics of atmospheric transport into the Arctic troposphere. J. Geophys. Res.-Atmos., 111, 2005JD006888, https://doi.org/10.1029/2005jd006888, 2006.
Talucci, A. C., Loranty, M. M., and Alexander, H. D.: Siberian taiga and tundra fire regimes from 2001–2020, Environ. Res. Lett., 17, 025001, https://doi.org/10.1088/1748-9326/ac3f07, 2022.
Turner, M. G.: Disturbance and landscape dynamics in a changing world, Ecology, 91, 2833–2849, https://doi.org/10.1890/10-0097.1, 2010.
US Department of the Interior, Bureau of Land Management (BLM), and Alaska Fire Service: BLM AFS Alaska Statewide fire History Locations 1939–2023 points, NAD83 [data set], https://fire.ak.blm.gov/ (last access: 14 March 2024), 2024a.
US Department of the Interior, Bureau of Land Management (BLM), and Alaska Fire Service: BLM AFS Alaska Statewide Fire History Perimeters 1940–2023 Polygons, AKAlbersNAD83 [data set], https://fire.ak.blm.gov/ (last access: 14 March 2024), 2024b.
Vajda, A., Venäläinen, A., Suomi, I., Junila, P., and Mäkelä, H. M.: Assessment of forest fire danger in a boreal forest environment: description and evaluation of the operational system applied in Finland, Meteorol. Appl., 21, 879–887, https://doi.org/10.1002/met.1425, 2013.
Van Wagner, C. E.: Development and structure of the Canadian forest fire weather index system, Canadian Forestry Service, Headquarters, Ottawa, 36 pp., ISBN 0-662-15198-4, 1987.
Van Wagner, C. E.: Fire behaviour in northern conifer forests and shrublands, in: The Role of Fire in Northern Circumpolar Ecosystems, edited by: Wein, R. W. and MacLean, D. A., John Wiley and Sons, New York, NY, USA, 65–80, ISBN 978-0471102229, 1983.
Veraverbeke, S., Rogers, B. M., Goulden, M., Jandt, R. R., Miller, C. E., Wiggins, E. B., and Randerson, J. T.: Lightning as a major driver of recent large fire years in North American boreal forests, Nat. Clim. Change, 7, 529–534, https://doi.org/10.1038/nclimate3329, 2017.
Vitolo, C., Di Giuseppe, F., Barnard, C., Coughlan, R., San-Miguel-Ayanz, J., Libertá, G., and Krzeminski, B.: ERA5-based global meteorological wildfire danger maps, Sci. Data., 7, 216, https://doi.org/10.1038/s41597-020-0554-z, 2020.
Watts, J. D., Farina, M., Kimball, J. S., Schiferl, L. D., Liu, Z., Arndt, K. A., Zona, D., Ballantyne, E. S., Parmentier, F.-J. W., Helbig, M., Sonnentag, O., Tagesson, T., Rinne., J., Ikawa, H., Ueyama, M., Kobayashi, H., Sachs, T., Nadeau, D. F., Kochendorfer, J., Jackowicz-Korczynski, M., Virkkala, A., Aurela, M., Commane, R., Byrne, B., Birch, L., Johnson, M. S., Madani, N., Rogers, B., Du, J., Endsley, A., Savage, K., Poulter, B., Zhang, Z., Burhwiler, L. M., Miller, C. E., Goetz, S., and Oechel, W. C.: Carbon uptake in Eurasian boreal forests dominates the high-latitude net ecosystem carbon budget, Global Change Biol., 29, 1870–1889, https://doi.org/10.1111/gcb.16553, 2023.
Wendler, G., Conner, J., Moore, B., Shulski, M., and Stuefer, M.: Climatology of Alaskan wildfires with special emphasis on the extreme year of 2004, Theor. Appl. Climatol., 104, 459–472, https://doi.org/10.1007/s00704-010-0357-9, 2011.
Wierzchowski, J., Heathcott, M., and Flannigan, M. D.: Lightning and lightning fire, central cordillera, Canada. Int. J. Wildland Fire, 11, 41–51, https://doi.org/10.1071/wf01048, 2002.
Woolford, D. G., Martell, D. L., McFayden, C. B., Evens, J., Stacey, A., Wotton, B. M., and Boychuk, D.: The development and implementation of a human-caused wildland fire occurrence prediction system for the province of Ontario, Canada, Can. J. Forest Res., 51, 303–325, https://doi.org/10.1139/cjfr-2020-0313, 2021.
World Bank: World Bank Official Boundaries: Admin 0, 10 meter boundary, World Bank, [data set], https://datacatalog.worldbank.org/search/dataset/0038272/World-Bank-Official-Boundaries (last access: 12 May 2024), 2020.
Wotton, B. M. and Martell, D. L.: A lightning fire occurrence model for Ontario, Can. J. Forest Res., 35, 1389–1401, https://doi.org/10.1139/x05-071, 2005.
Xu, W., Scholten, R. C., Hessilt, T. D., Liu, Y., and Veraverbeke, S.: Overwintering fires rising in eastern Siberia, Environ. Res. Lett., 17, 045005, https://doi.org/10.1088/1748-9326/ac59aa, 2022.
Zheng, B., Ciais, P., Chevallier, F., Yang, H., Canadell, J. G., Chen, Y., Van Der Velde, I. R., Aben, I., Chuvieco, E., Favis, S. J., Deeter, M., Hong, C., Kong, Y., Xin Lin, H. L., He, K., and Zhang, Q.: Record-high CO2 emissions from boreal fires in 2021, Science, 379, 912–917, https://doi.org/10.1126/science.ade0805, 2023.
Zhu, C., Kobayashi, H., Kanaya, Y., and Saito, M.: Size-dependent validation of MODIS MCD64A1 burned area over six vegetation types in boreal Eurasia: Large underestimation in croplands, Sci. Rep., 7, 4181, https://doi.org/10.1038/s41598-017-03739-0, 2017a.
Zhu, Y., Rakov, V. A., Tran, M. D., Stock, M. G., Heckman, S., Liu, C., Sloop, D. M., Uman, M. A., Caicedo, J. A., Kotovsky, D. A., Wilkes, R. A., Carvalho, F. L., Ngin, T., Gamerota, W. R., Pilkey, J. T., and Hare, B. M.: Evaluation of ENTLN Performance Characteristics Based on the Ground Truth Natural and Rocket-Triggered Lightning Data Acquired in Florida, J. Geophys. Res.-Atmos., 122, 9858–9866, https://doi.org/10.1002/2017jd027270, 2017b.
Zhu, Y., Stock, M., Lapierre, J., and DiGangi, E.: Upgrades of the Earth Networks Total Lightning Network in 2021, Remote Sens., 14, 2209, https://doi.org/10.3390/rs14092209, 2022.
Short summary
The pan-boreal lightning-ignited wildfire (BoLtFire) dataset spans the entire boreal forest from 2012 to 2022, focusing on fires of at least 200 ha. Developed using a new methodology to match lightning to wildfires in the boreal region, it includes 6902 fires – 4201 in Eurasia and 2701 in North America. BoLtFire provides new opportunities to model the ignition and spread dynamics of boreal wildfires and offers deeper insights into lightning-driven fire activity globally.
The pan-boreal lightning-ignited wildfire (BoLtFire) dataset spans the entire boreal forest from...
Altmetrics
Final-revised paper
Preprint