Articles | Volume 17, issue 4
https://doi.org/10.5194/essd-17-1613-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/essd-17-1613-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Deep-Time Marine Sedimentary Element Database
Jiankang Lai
State Key Laboratory of Geomicrobiology and Environmental Changes, School of Earth Sciences, China University of Geosciences, Wuhan 430074, China
State Key Laboratory of Geomicrobiology and Environmental Changes, School of Earth Sciences, China University of Geosciences, Wuhan 430074, China
Daoliang Chu
State Key Laboratory of Geomicrobiology and Environmental Changes, School of Earth Sciences, China University of Geosciences, Wuhan 430074, China
Jacopo Dal Corso
State Key Laboratory of Geomicrobiology and Environmental Changes, School of Earth Sciences, China University of Geosciences, Wuhan 430074, China
Erik A. Sperling
Department of Earth and Planetary Sciences, Stanford University, Stanford, CA 94305, USA
Yuyang Wu
CORRESPONDING AUTHOR
State Key Laboratory of Geomicrobiology and Environmental Changes, School of Earth Sciences, China University of Geosciences, Wuhan 430074, China
College of Marine Science and Technology, China University of Geosciences, Wuhan 430074, China
Xiaokang Liu
State Key Laboratory of Geomicrobiology and Environmental Changes, School of Earth Sciences, China University of Geosciences, Wuhan 430074, China
Lai Wei
School of Future Technology, China University of Geosciences, Wuhan 430074, China
Mingtao Li
School of Resources and Environment, Linyi University, Linyi 276000, China
Hanchen Song
State Key Laboratory of Geomicrobiology and Environmental Changes, School of Earth Sciences, China University of Geosciences, Wuhan 430074, China
State Key Laboratory of Geomicrobiology and Environmental Changes, School of Earth Sciences, China University of Geosciences, Wuhan 430074, China
Enhao Jia
State Key Laboratory of Geomicrobiology and Environmental Changes, School of Earth Sciences, China University of Geosciences, Wuhan 430074, China
State Key Laboratory of Geomicrobiology and Environmental Changes, School of Earth Sciences, China University of Geosciences, Wuhan 430074, China
Huyue Song
State Key Laboratory of Geomicrobiology and Environmental Changes, School of Earth Sciences, China University of Geosciences, Wuhan 430074, China
Wenchao Yu
State Key Laboratory of Geomicrobiology and Environmental Changes, School of Earth Sciences, China University of Geosciences, Wuhan 430074, China
Qingzhong Liang
School of Computer Science, China University of Geosciences, Wuhan 430074, China
Xinchuan Li
School of Computer Science, China University of Geosciences, Wuhan 430074, China
School of Computer Science, China University of Geosciences, Wuhan 430074, China
Related authors
Yong Du, Huyue Song, Thomas J. Algeo, Hui Zhang, Jianwei Peng, Yuyang Wu, Jiankang Lai, Xiang Shu, Hanchen Song, Lai Wei, Jincheng Zhang, Eva E. Stüeken, Stephen E. Grasby, Jacopo Dal Corso, Xiaokang Liu, Daoliang Chu, Li Tian, Qingzhong Liang, Xinchuan Li, Hong Yao, and Haijun Song
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-377, https://doi.org/10.5194/essd-2025-377, 2025
Preprint under review for ESSD
Short summary
Short summary
This study presents a global database of nitrogen isotope data from ancient ocean sediments, covering Earth's history from the present back to billions of years ago. The database includes over 71 000 nitrogen isotope records from 424 studies, along with essential geological context and related chemical data. This database will help reveal the mechanisms behind critical events like mass extinctions and major ocean changes, enhancing our understanding of Earth's long-term environmental processes.
Xiang Shu, Haijun Song, Yong Lei, Daoliang Chu, Jacopo Dal Corso, Xiaokang Liu, Qin Ye, Hanchen Song, Lai Wei, Enhao Jia, Yan Feng, Yong Du, Huyue Song, Wenchao Yu, Qingzhong Liang, Xinchuan Li, Hong Yao, and Yuyang Wu
Earth Syst. Sci. Data, 17, 3567–3582, https://doi.org/10.5194/essd-17-3567-2025, https://doi.org/10.5194/essd-17-3567-2025, 2025
Short summary
Short summary
Building on the foundation of Palynodata, the Global Acritarch Database (GAD) added 29 new fields, 4531 new entries, 2 238 366 new metadata points, and 415 new references, resulting in a database comprising 115 860 entries, 43 fields, 3 050 852 metadata points, and 7791 references. GAD represents records from 1146 different sampling sites spanning geological history from the Precambrian to the Phanerozoic, and the fossil records include 1456 genera and 9865 species (excluding sp.).
Yong Du, Huyue Song, Thomas J. Algeo, Hui Zhang, Jianwei Peng, Yuyang Wu, Jiankang Lai, Xiang Shu, Hanchen Song, Lai Wei, Jincheng Zhang, Eva E. Stüeken, Stephen E. Grasby, Jacopo Dal Corso, Xiaokang Liu, Daoliang Chu, Li Tian, Qingzhong Liang, Xinchuan Li, Hong Yao, and Haijun Song
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-377, https://doi.org/10.5194/essd-2025-377, 2025
Preprint under review for ESSD
Short summary
Short summary
This study presents a global database of nitrogen isotope data from ancient ocean sediments, covering Earth's history from the present back to billions of years ago. The database includes over 71 000 nitrogen isotope records from 424 studies, along with essential geological context and related chemical data. This database will help reveal the mechanisms behind critical events like mass extinctions and major ocean changes, enhancing our understanding of Earth's long-term environmental processes.
Cited articles
Algeo, T. J. and Liu, J.: A re-assessment of elemental proxies for paleoredox analysis, Chem. Geol., 540, 119549, https://doi.org/10.1016/j.chemgeo.2020.119549, 2020.
Drevon, D., Fursa, S. R., and Malcolm, A. L.: Intercoder Reliability and Validity of WebPlotDigitizer in Extracting Graphed Data, Behav. Modif., 41, 323–339, https://doi.org/10.1177/0145445516673998, 2017.
FAIR: FAIR Play in geoscience data, Nat. Geosci., 12, 961, https://doi.org/10.1038/s41561-019-0506-4, 2019.
Fan, J., Shen, S., Erwin, D. H., Sadler, P. M., MacLeod, N., Cheng, Q., Hou, X., Yang, J., Wang, X., Wang, Y., Zhang, H., Chen, X., Li, G., Zhang, Y., Shi, Y., Yuan, D., Chen, Q., Zhang, L., Li, C., and Zhao, Y.: A high-resolution summary of Cambrian to Early Triassic marine invertebrate biodiversity, Science, 367, 272–277, https://doi.org/10.1126/science.aax4953, 2020.
Gradstein, F. M., Ogg, J. G., Schmitz, M. D., and Ogg, G. M.: Geologic time scale 2020, Elsevier, ISBN 978-0-12-824360-2, 2020.
Granitto, M., Giles, S. A., and Kelley, K. D.: Global Geochemical Database for Critical Metals in Black Shales, U.S. Geological Survey data release [data set], https://doi.org/10.5066/F71G0K7X, 2017.
Grossman, E. L. and Joachimski, M. M.: Oxygen Isotope Stratigraphy, in: Geologic Time Scale 2020, 279–307, https://doi.org/10.1016/b978-0-12-824360-2.00010-3, 2020.
Jin, C., Li, C., Algeo, T. J., Wu, S., Cheng, M., Zhang, Z., and Shi, W.: Controls on organic matter accumulation on the early-Cambrian western Yangtze Platform, South China, Mar. Petrol. Geol., 111, 75–87, https://doi.org/10.1016/j.marpetgeo.2019.08.005, 2020.
Judd, E. J., Tierney, J. E., Huber, B. T., Wing, S. L., Lunt, D. J., Ford, H. L., Inglis, G. N., McClymont, E. L., O'Brien, C. L., Rattanasriampaipong, R., Si, W., Staitis, M. L., Thirumalai, K., Anagnostou, E., Cramwinckel, M. J., Dawson, R. R., Evans, D., Gray, W. R., Grossman, E. L., Henehan, M. J., Hupp, B. N., MacLeod, K. G., O'Connor, L. K., Sanchez Montes, M. L., Song, H., and Zhang, Y. G.: The PhanSST global database of Phanerozoic sea surface temperature proxy data, Sci. Data, 9, 753, https://doi.org/10.1038/s41597-022-01826-0, 2022.
Lai, J., Song, H., Chu, D., Dal Corso, J., Sperling, E. A., Wu, Y., Liu, X., Wei, L., Li, M., Song, H., Du, Y., Jia, E., Feng, Y., Song, H., Yu, W., Liang, Q., Li, X., and Yao, H.: Deep-Time Marine Sedimentary Element Database, Zenodo [data set], https://doi.org/10.5281/zenodo.14771859, 2025.
Large, R. R., Halpin, J. A., Lounejeva, E., Danyushevsky, L. V., Maslennikov, V. V., Gregory, D., Sack, P. J., Haines, P. W., Long, J. A., Makoundi, C., and Stepanov, A. S.: Cycles of nutrient trace elements in the Phanerozoic ocean, Gondwana Res., 28, 1282–1293, https://doi.org/10.1016/j.gr.2015.06.004, 2015.
Li, Z., Zhang, Y. G., Torres, M., and Mills, B. J. W.: Neogene burial of organic carbon in the global ocean, Nature, 613, 90–95, https://doi.org/10.1038/s41586-022-05413-6, 2023.
Mackenzie, F. T. and Pigott, J. D.: Tectonic controls of Phanerozoic sedimentary rock cycling, J. Geol. Soc., 138, 183–196, https://doi.org/10.1144/gsjgs.138.2.0183, 1981.
Planavsky, N. J., Asael, D., Rooney, A. D., Robbins, L. J., Gill, B. C., Dehler, C. M., Cole, D. B., Porter, S. M., Love, G. D., Konhauser, K. O., and Reinhard, C. T.: A sedimentary record of the evolution of the global marine phosphorus cycle, Geobiology, 21, 168–174, https://doi.org/10.1111/gbi.12536, 2023.
QGIS Development Team: QGIS Geographic Information System (Version 3.16), QGIS Association, https://qgis.org/project/overview/ (last access: 20 July 2024), 2020.
Reinhard, C. T., Planavsky, N. J., Gill, B. C., Ozaki, K., Robbins, L. J., Lyons, T. W., Fischer, W. W., Wang, C., Cole, D. B., and Konhauser, K. O.: Evolution of the global phosphorus cycle, Nature, 541, 386–389, https://doi.org/10.1038/nature20772, 2017.
Rohatgi, A., and Steffen, R. :ankitrohatgi/WebPlotDigitizer: Version 4.1 of WebPlotDigitizer, Zenodo [code], 10.5281/zenodo.592175, 2018.
Schobben, M., Foster, W. J., Sleveland, A. R. N., Zuchuat, V., Svensen, H. H., Planke, S., Bond, D. P. G., Marcelis, F., Newton, R. J., Wignall, P. B., and Poulton, S. W.: A nutrient control on marine anoxia during the end-Permian mass extinction, Nat. Geosci., 13, 640–646, https://doi.org/10.1038/s41561-020-0622-1, 2020.
Schoepfer, S. D., Shen, J., Wei, H., Tyson, R. V., Ingall, E., and Algeo, T. J.: Total organic carbon, organic phosphorus, and biogenic barium fluxes as proxies for paleomarine productivity, Earth-Sci. Rev., 149, 23–52, https://doi.org/10.1016/j.earscirev.2014.08.017, 2015.
Schoepfer, S. D., Algeo, T. J., Ward, P. D., Williford, K. H., and Haggart, J. W.: Testing the limits in a greenhouse ocean: Did low nitrogen availability limit marine productivity during the end-Triassic mass extinction?, Earth Planet. Sc. Lett., 451, 138–148, https://doi.org/10.1016/j.epsl.2016.06.050, 2016.
Scotese, C.: The PALEOMAP Project PaleoAtlas for ArcGIS, version 1, 2, 16–31, ResearchGate [data set], https://doi.org/10.13140/RG.2.1.2011.4162, 2008.
Scotese, C. R. and Wright, N.: PALEOMAP Paleodigital Elevation Models (PaleoDEMS) for the Phanerozoic PALEOMAP Project, Paleomap Proj, https://www.earthbyte.org/paleodem-resource-scotese-and-wright-2018/ (last access: 9 April 2025), 2018.
Scotese, C. R., Song, H., Mills, B. J. W., and van der Meer, D. G.: Phanerozoic paleotemperatures: The earth's changing climate during the last 540 million years, Earth-Sci. Rev., 215, 103503, https://doi.org/10.1016/j.earscirev.2021.103503, 2021.
Scott, C., Planavsky, N. J., Dupont, C. L., Kendall, B., Gill, B. C., Robbins, L. J., Husband, K. F., Arnold, G. L., Wing, B. A., Poulton, S. W., Bekker, A., Anbar, A. D., Konhauser, K. O., and Lyons, T. W.: Bioavailability of zinc in marine systems through time, Nat. Geosci., 6, 125–128, https://doi.org/10.1038/ngeo1679, 2013.
Shen, J., Schoepfer, S. D., Feng, Q., Zhou, L., Yu, J., Song, H., Wei, H., and Algeo, T. J.: Marine productivity changes during the end-Permian crisis and Early Triassic recovery, Earth-Sci. Rev., 149, 136–162, https://doi.org/10.1016/j.earscirev.2014.11.002, 2015.
Song, H., Wignall, P. B., Song, H., Dai, X., and Chu, D.: Seawater Temperature and Dissolved Oxygen over the Past 500 Million Years, J. Earth Sci., 30, 236–243, https://doi.org/10.1007/s12583-018-1002-2, 2019.
Stockey, R. G., Cole, D. B., Farrell, U. C., Agić, H., Boag, T. H., Brocks, J. J., Canfield, D. E., Cheng, M., Crockford, P. W., Cui, H., Dahl, T. W., Del Mouro, L., Dewing, K., Dornbos, S. Q., Emmings, J. F., Gaines, R. R., Gibson, T. M., Gill, B. C., Gilleaudeau, G. J., Goldberg, K., Guilbaud, R., Halverson, G., Hammarlund, E. U., Hantsoo, K., Henderson, M. A., Henderson, C. M., Hodgskiss, M. S. W., Jarrett, A. J. M., Johnston, D. T., Kabanov, P., Kimmig, J., Knoll, A. H., Kunzmann, M., LeRoy, M. A., Li, C., Loydell, D. K., Macdonald, F. A., Magnall, J. M., Mills, N. T., Och, L. M., O'Connell, B., Pagès, A., Peters, S. E., Porter, S. M., Poulton, S. W., Ritzer, S. R., Rooney, A. D., Schoepfer, S., Smith, E. F., Strauss, J. V., Uhlein, G. J., White, T., Wood, R. A., Woltz, C. R., Yurchenko, I., Planavsky, N. J., and Sperling, E. A.: Sustained increases in atmospheric oxygen and marine productivity in the Neoproterozoic and Palaeozoic eras, Nat. Geosci., 17, 667–674, https://doi.org/10.1038/s41561-024-01479-1, 2024.
Sweere, T. C., Dickson, A. J., and Vance, D.: Nickel and zinc micronutrient availability in Phanerozoic oceans, Geobiology, 21, 310–322, https://doi.org/10.1111/gbi.12541, 2023.
Tribovillard, N.: Re-assessing copper and nickel enrichments as paleo-productivity proxies, BSGF – Earth Sciences Bulletin, 192, 54, https://doi.org/10.1051/bsgf/2021047, 2021.
Veizer, J. and Prokoph, A.: Temperatures and oxygen isotopic composition of Phanerozoic oceans, Earth-Sci. Rev., 146, 92-104, https://doi.org/10.1016/j.earscirev.2015.03.008, 2015.
Walker, L. J., Wilkinson, B. H., and Ivany, L. C.: Continental drift and Phanerozoic carbonate accumulation in shallow-shelf and deep-marine settings, J. Geol., 110, 75–87, https://doi.org/10.1086/324318, 2002.
Wang, D., Liu, Y., Zhang, J., Lang, Y., Li, Z., Tong, Z., Xu, L., Su, Z., and Niu, J.: Controls on marine primary productivity variation and organic matter accumulation during the Late Ordovician – Early Silurian transition, Mar. Petrol. Geol., 142, 105742, https://doi.org/10.1016/j.marpetgeo.2022.105742, 2022.
Wilkinson, M. D., Dumontier, M., Aalbersberg, I. J., Appleton, G., Axton, M., Baak, A., Blomberg, N., Boiten, J. W., da Silva Santos, L. B., Bourne, P. E., Bouwman, J., Brookes, A. J., Clark, T., Crosas, M., Dillo, I., Dumon, O., Edmunds, S., Evelo, C. T., Finkers, R., Gonzalez-Beltran, A., Gray, A. J., Groth, P., Goble, C., Grethe, J. S., Heringa, J., t Hoen, P. A., Hooft, R., Kuhn, T., Kok, R., Kok, J., Lusher, S. J., Martone, M. E., Mons, A., Packer, A. L., Persson, B., Rocca-Serra, P., Roos, M., van Schaik, R., Sansone, S. A., Schultes, E., Sengstag, T., Slater, T., Strawn, G., Swertz, M. A., Thompson, M., van der Lei, J., van Mulligen, E., Velterop, J., Waagmeester, A., Wittenburg, P., Wolstencroft, K., Zhao, J., and Mons, B.: The FAIR Guiding Principles for scientific data management and stewardship, Sci. Data, 3, 160018, https://doi.org/10.1038/sdata.2016.18, 2016.
Xiang, L., Schoepfer, S. D., Zhang, H., Cao, C., and Shen, S.: Evolution of primary producers and productivity across the Ediacaran-Cambrian transition, Precambrian Res., 313, 68–77, https://doi.org/10.1016/j.precamres.2018.05.023, 2018.
Zhang, Q., Bendif, E. M., Zhou, Y., Nevado, B., Shafiee, R., and Rickaby, R. E. M.: Declining metal availability in the Mesozoic seawater reflected in phytoplankton succession, Nat. Geosci., 15, 932–941, https://doi.org/10.1038/s41561-022-01053-7, 2022.
Zhao, K., Zhu, G., Li, T., Chen, Z., and Li, S.: Fluctuations of continental chemical weathering control primary productivity and redox conditions during the Earliest Cambrian, Geol. J., 58, 3659–3672, https://doi.org/10.1002/gj.4778, 2023.
Short summary
The Deep-Time Marine Sedimentary Element Database (DM-SED) expands upon the Sedimentary Geochemistry and Paleoenvironments Project (SGP) database, totalling 63 627 entries and covering major and trace elements and some stable isotopes in ancient marine sediments. This database is not only a significant reference for reconstructing Earth's system evolution but is also a valuable resource for studying palaeo-environments, palaeo-climates, and geochemical cycles.
The Deep-Time Marine Sedimentary Element Database (DM-SED) expands upon the Sedimentary...
Altmetrics
Final-revised paper
Preprint