Articles | Volume 17, issue 4
https://doi.org/10.5194/essd-17-1501-2025
https://doi.org/10.5194/essd-17-1501-2025
Data description paper
 | 
11 Apr 2025
Data description paper |  | 11 Apr 2025

MDG625: a daily high-resolution meteorological dataset derived by a geopotential-guided attention network in Asia (1940–2023)

Zijiang Song, Zhixiang Cheng, Yuying Li, Shanshan Yu, Xiaowen Zhang, Lina Yuan, and Min Liu

Related authors

Temporal and spatial variations in atmospheric unintentional PCB emissions in Chinese mainland from 1960 to 2019
Ye Li, Ye Huang, Yunshan Zhang, Wei Du, Shanshan Zhang, Tianhao He, Yan Li, Yan Chen, Fangfang Ding, Lin Huang, Haibin Xia, Wenjun Meng, Min Liu, and Shu Tao
Atmos. Chem. Phys., 23, 1091–1101, https://doi.org/10.5194/acp-23-1091-2023,https://doi.org/10.5194/acp-23-1091-2023, 2023
Short summary
Multi-scenario urban flood risk assessment by integrating future land use change models and hydrodynamic models
Qinke Sun, Jiayi Fang, Xuewei Dang, Kepeng Xu, Yongqiang Fang, Xia Li, and Min Liu
Nat. Hazards Earth Syst. Sci., 22, 3815–3829, https://doi.org/10.5194/nhess-22-3815-2022,https://doi.org/10.5194/nhess-22-3815-2022, 2022
Short summary
Compound flood potential from storm surge and heavy precipitation in coastal China: dependence, drivers, and impacts
Jiayi Fang, Thomas Wahl, Jian Fang, Xun Sun, Feng Kong, and Min Liu
Hydrol. Earth Syst. Sci., 25, 4403–4416, https://doi.org/10.5194/hess-25-4403-2021,https://doi.org/10.5194/hess-25-4403-2021, 2021
Short summary
SCAN-TO-BIM METHODOLOGY ADAPTED FOR DIFFERENT APPLICATION
V. Badenko, A. Fedotov, D. Zotov, S. Lytkin, D. Volgin, R. D. Garg, and M. Liu
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-5-W2, 1–7, https://doi.org/10.5194/isprs-archives-XLII-5-W2-1-2019,https://doi.org/10.5194/isprs-archives-XLII-5-W2-1-2019, 2019

Related subject area

Domain: ESSD – Atmosphere | Subject: Meteorology
Observations of surface energy fluxes and meteorology in the seasonally snow-covered high-elevation East River watershed during SPLASH, 2021–2023
Christopher J. Cox, Janet M. Intrieri, Brian J. Butterworth, Gijs de Boer, Michael R. Gallagher, Jonathan Hamilton, Erik Hulm, Tilden Meyers, Sara M. Morris, Jackson Osborn, P. Ola G. Persson, Benjamin Schmatz, Matthew D. Shupe, and James M. Wilczak
Earth Syst. Sci. Data, 17, 1481–1499, https://doi.org/10.5194/essd-17-1481-2025,https://doi.org/10.5194/essd-17-1481-2025, 2025
Short summary
The SAIL dataset of marine atmospheric electric field observations over the Atlantic Ocean
Susana Barbosa, Nuno Dias, Carlos Almeida, Guilherme Amaral, António Ferreira, António Camilo, and Eduardo Silva
Earth Syst. Sci. Data, 17, 1393–1405, https://doi.org/10.5194/essd-17-1393-2025,https://doi.org/10.5194/essd-17-1393-2025, 2025
Short summary
A new high-resolution multi-drought-index dataset for mainland China
Qi Zhang, Chiyuan Miao, Jiajia Su, Jiaojiao Gou, Jinlong Hu, Xi Zhao, and Ye Xu
Earth Syst. Sci. Data, 17, 837–853, https://doi.org/10.5194/essd-17-837-2025,https://doi.org/10.5194/essd-17-837-2025, 2025
Short summary
HighResClimNevada: a high-resolution climatological dataset for a high-altitude region in Southern Spain (Sierra Nevada)
Matilde García-Valdecasas Ojeda, Feliciano Solano-Farias, David Donaire-Montaño, Emilio Romero-Jiménez, Juan José Rosa-Cánovas, Yolanda Castro-Díez, Sonia Raquel Gámiz-Fortis, and María Jesús Esteban-Parra
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-522,https://doi.org/10.5194/essd-2024-522, 2024
Revised manuscript accepted for ESSD
Short summary
The PAZ polarimetric radio occultation research dataset for scientific applications
Ramon Padullés, Estel Cardellach, Antía Paz, Santi Oliveras, Douglas C. Hunt, Sergey Sokolovskiy, Jan-Peter Weiss, Kuo-Nung Wang, F. Joe Turk, Chi O. Ao, and Manuel de la Torre Juárez
Earth Syst. Sci. Data, 16, 5643–5663, https://doi.org/10.5194/essd-16-5643-2024,https://doi.org/10.5194/essd-16-5643-2024, 2024
Short summary

Cited articles

Atkinson, P. M.: Downscaling in remote sensing, Int. J. Appl. Earth Obs. Geoinf., 22, 106–114, https://doi.org/10.1016/j.jag.2012.04.012, 2013. a
Berrang-Ford, L., Ford, J. D., and Paterson, J.: Are we adapting to climate change?, Global Environ. Change, 21, https://doi.org/10.1016/j.gloenvcha.2010.09.012, 25–33, 2011. a
Bevilacqua, M., Roumy, A., Guillemot, C., and Alberi-Morel, M. L.: Low-complexity single-image super-resolution based on nonnegative neighbor embedding, in: The British Machine Vision Conference, 3–7 September 2012, Surrey, UK, 1–10, https://doi.org/10.5244/C.26.135, 2012. a
Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., and Tian, Q.: Accurate medium-range global weather forecasting with 3D neural networks, Nature, 619, 533–538, https://doi.org/10.1038/s41586-023-06185-3, 2023. a
Bonanno, R., Lacavalla, M., and Sperati, S.: A new high-resolution meteorological reanalysis Italian dataset: MERIDA, Q. J. Roy. Meteorol. Soc., 145, 1756–1779, https://doi.org/10.1002/qj.3530, 2019. a
Download
Short summary
It is hard to access long-time series and high-resolution meteorological data for past years. In this paper, we propose the Geopotential-guided Attention Network (GeoAN) for downscaling which can produce high-resolution data using given low-resolution data. Quantitative and visual comparisons reveal our GeoAN produces better results with regard to most metrics. Using GeoAN, a historical meteorological dataset called MDG625 has been produced daily for the period since 1940.
Share
Altmetrics
Final-revised paper
Preprint