Articles | Volume 16, issue 1
https://doi.org/10.5194/essd-16-595-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/essd-16-595-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Tephra data from varved lakes of the Last Glacial–Interglacial Transition: towards a global inventory and better chronologies on the Varved Sediments Database (VARDA)
Anna Beckett
CORRESPONDING AUTHOR
Centre for Quaternary Research, Department of Geography, Royal Holloway University of London, Egham, TW20 0EX, UK
Cecile Blanchet
GFZ German Research Center for Geoscience, Section Climate Dynamics and Landscape Evolution, Telegrafenberg, 14473 Potsdam, Germany
Alexander Brauser
GFZ German Research Center for Geoscience, Section Climate Dynamics and Landscape Evolution, Telegrafenberg, 14473 Potsdam, Germany
Rebecca Kearney
GFZ German Research Center for Geoscience, Section Climate Dynamics and Landscape Evolution, Telegrafenberg, 14473 Potsdam, Germany
Celia Martin-Puertas
Centre for Quaternary Research, Department of Geography, Royal Holloway University of London, Egham, TW20 0EX, UK
Ian Matthews
Centre for Quaternary Research, Department of Geography, Royal Holloway University of London, Egham, TW20 0EX, UK
Konstantin Mittelbach
GFZ German Research Center for Geoscience, Section Climate Dynamics and Landscape Evolution, Telegrafenberg, 14473 Potsdam, Germany
Adrian Palmer
Centre for Quaternary Research, Department of Geography, Royal Holloway University of London, Egham, TW20 0EX, UK
Arne Ramisch
GFZ German Research Center for Geoscience, Section Climate Dynamics and Landscape Evolution, Telegrafenberg, 14473 Potsdam, Germany
now at: Institute of Geology, University of Innsbruck, Innrain 52, 6020 Innsbruck, Austria
Achim Brauer
GFZ German Research Center for Geoscience, Section Climate Dynamics and Landscape Evolution, Telegrafenberg, 14473 Potsdam, Germany
Related authors
No articles found.
Laura Boyall, Andrew C. Parnell, Paul Lincoln, Antti Ojala, Armand Hernández, and Celia Martin-Puertas
Clim. Past, 21, 1465–1480, https://doi.org/10.5194/cp-21-1465-2025, https://doi.org/10.5194/cp-21-1465-2025, 2025
Short summary
Short summary
We present a new approach to reconstructing annual mean temperature using geochemical data from lake sediments. This paper uses Bayesian inference, a type of statistical approach, and creates a model called Simulating Climate Using Bayesian Inference with proxy Data Observations (SCUBIDO), which takes the high-resolution geochemical data and transforms them into quantitative climate information at an annual resolution. We show the results from two lakes in England and Finland to produce temperature reconstructions for the past 8000 years with data every year.
Shailendra Pratap, Yannis Markonis, and Cécile Blanchet
Clim. Past Discuss., https://doi.org/10.5194/cp-2024-68, https://doi.org/10.5194/cp-2024-68, 2024
Preprint withdrawn
Short summary
Short summary
Our study investigates the influence of oceanic changes on regional hydroclimate (precipitation and temperature) patterns, in Europe and North America during the Medieval Climate Anomaly period. Our findings suggest that centennial-scale variations in terrestrial thermodynamics, sea surface temperatures, and shifts in the Intertropical Convergence Zone likely played a role in shaping regional hydroclimate patterns. Our outcomes will offer insights into how hydroclimate may evolve in the future.
Ido Sirota, Rik Tjallingii, Sylvia Pinkerneil, Birgit Schroeder, Marlen Albert, Rebecca Kearney, Oliver Heiri, Simona Breu, and Achim Brauer
Biogeosciences, 21, 4317–4339, https://doi.org/10.5194/bg-21-4317-2024, https://doi.org/10.5194/bg-21-4317-2024, 2024
Short summary
Short summary
Hypoxia has spread in Tiefer See (NE Germany) due to increased human activity. The onset of hypoxia indicated by varve preservation is dated to ~1920 at the lake’s depocenter, which responds faster and more severely to the reduction in oxygen level. The spread of hypoxic conditions is a gradual process that has lasted nearly 100 years, and the chemistry of the sediments shows that the depletion of oxygen in the lake started several decades before the onset of varve preservation.
Marcel Ortler, Achim Brauer, Stefano C. Fabbri, Jean Nicolas Haas, Irka Hajdas, Kerstin Kowarik, Jochem Kueck, Hans Reschreiter, and Michael Strasser
Sci. Dril., 33, 1–19, https://doi.org/10.5194/sd-33-1-2024, https://doi.org/10.5194/sd-33-1-2024, 2024
Short summary
Short summary
The lake drilling project at Lake Hallstatt (Austria) successfully cored 51 m of lake sediments. This was achieved through the novel drilling platform Hipercorig. A core-log seismic correlation was created for the first time of an inner Alpine lake of the Eastern Alps. The sediments cover over 12 000 years before present with 10 (up to 5.1 m thick) instantaneous deposits. Lake Hallstatt is located within an UNESCO World Heritage area which has a rich history of human salt mining.
Paula A. Vignoni, Francisco E. Córdoba, Rik Tjallingii, Carla Santamans, Liliana C. Lupo, and Achim Brauer
Geochronology, 5, 333–344, https://doi.org/10.5194/gchron-5-333-2023, https://doi.org/10.5194/gchron-5-333-2023, 2023
Short summary
Short summary
Radiocarbon dating is a widely used tool to establish chronologies for sediment records. We show that modern aquatic plants in the Laguna del Peinado lake system (Altiplano–Puna Plateau) give overestimated ages due to reservoir effects from the input of old groundwater and volcanic CO2. Our results reveal a spatial variability in the modern reservoir effect within the lake basin, which has implications for radiocarbon-based chronologies in paleoclimate studies in this (and similar) regions.
Markus Czymzik, Rik Tjallingii, Birgit Plessen, Peter Feldens, Martin Theuerkauf, Matthias Moros, Markus J. Schwab, Carla K. M. Nantke, Silvia Pinkerneil, Achim Brauer, and Helge W. Arz
Clim. Past, 19, 233–248, https://doi.org/10.5194/cp-19-233-2023, https://doi.org/10.5194/cp-19-233-2023, 2023
Short summary
Short summary
Productivity increases in Lake Kälksjön sediments during the last 9600 years are likely driven by the progressive millennial-scale winter warming in northwestern Europe, following the increasing Northern Hemisphere winter insolation and decadal to centennial periods of a more positive NAO polarity. Strengthened productivity variability since ∼5450 cal yr BP is hypothesized to reflect a reinforcement of NAO-like atmospheric circulation.
Bernhard Diekmann, Werner Stackebrandt, Roland Weiße, Margot Böse, Udo Rothe, Boris Biskaborn, and Achim Brauer
DEUQUA Spec. Pub., 4, 5–17, https://doi.org/10.5194/deuquasp-4-5-2022, https://doi.org/10.5194/deuquasp-4-5-2022, 2022
Achim Brauer, Ingo Heinrich, Markus J. Schwab, Birgit Plessen, Brian Brademann, Matthias Köppl, Sylvia Pinkerneil, Daniel Balanzategui, Gerhard Helle, and Theresa Blume
DEUQUA Spec. Pub., 4, 41–58, https://doi.org/10.5194/deuquasp-4-41-2022, https://doi.org/10.5194/deuquasp-4-41-2022, 2022
Achim Brauer and Markus J. Schwab
DEUQUA Spec. Pub., 4, 1–3, https://doi.org/10.5194/deuquasp-4-1-2022, https://doi.org/10.5194/deuquasp-4-1-2022, 2022
Yoav Ben Dor, Francesco Marra, Moshe Armon, Yehouda Enzel, Achim Brauer, Markus Julius Schwab, and Efrat Morin
Clim. Past, 17, 2653–2677, https://doi.org/10.5194/cp-17-2653-2021, https://doi.org/10.5194/cp-17-2653-2021, 2021
Short summary
Short summary
Laminated sediments from the deepest part of the Dead Sea unravel the hydrological response of the eastern Mediterranean to past climate changes. This study demonstrates the importance of geological archives in complementing modern hydrological measurements that do not fully capture natural hydroclimatic variability, which is crucial to configure for understanding the impact of climate change on the hydrological cycle in subtropical regions.
Cécile L. Blanchet, Rik Tjallingii, Anja M. Schleicher, Stefan Schouten, Martin Frank, and Achim Brauer
Clim. Past, 17, 1025–1050, https://doi.org/10.5194/cp-17-1025-2021, https://doi.org/10.5194/cp-17-1025-2021, 2021
Short summary
Short summary
The Mediterranean Sea turned repeatedly into an oxygen-deprived basin during the geological past, as evidenced by distinct sediment layers called sapropels. We use here records of the last sapropel S1 retrieved in front of the Nile River to explore the relationships between riverine input and seawater oxygenation. We decipher the seasonal cycle of fluvial input and seawater chemistry as well as the decisive influence of primary productivity on deoxygenation at millennial timescales.
Arne Ramisch, Alexander Brauser, Mario Dorn, Cecile Blanchet, Brian Brademann, Matthias Köppl, Jens Mingram, Ina Neugebauer, Norbert Nowaczyk, Florian Ott, Sylvia Pinkerneil, Birgit Plessen, Markus J. Schwab, Rik Tjallingii, and Achim Brauer
Earth Syst. Sci. Data, 12, 2311–2332, https://doi.org/10.5194/essd-12-2311-2020, https://doi.org/10.5194/essd-12-2311-2020, 2020
Short summary
Short summary
Annually laminated lake sediments (varves) record past climate change at seasonal resolution. The VARved sediments DAtabase (VARDA) is created to utilize the full potential of varves for climate reconstructions. VARDA offers free access to a compilation and synchronization of standardized climate-proxy data, with applications ranging from reconstructing regional patterns of past climate change to validating simulations of climate models. VARDA is freely accessible at https://varve.gfz-potsdam.de
Cited articles
Beckett, A., Blanchet, C., Brauser, A., Kearney, R., Martin-Puertas, C., Matthews, I., Mittelbach, K., Palmer, A., Ramisch, A., and Brauer, A.: Major Element and Trace Element Compositions of Tephra Layers Found in European Varved Lake Records, V. 2.0, GFZ Data Services [data set], https://doi.org/10.5880/fidgeo.2023.015, 2022.
Blockley, S. P. E., Pyne-O'Donnell, S. D. F., Lowe, J. J., Matthews, I. P., Stone, A., Pollard, A. M., Turney, C. S. M., and Molyneux, E. G.: A new and less destructive laboratory procedure for the physical separation of distal glass tephra shards from sediments, Quaternary Sci. Rev., 24, 1952–1960, https://doi.org/10.1016/j.quascirev.2004.12.008, 2005.
Bonk, A., Müller, D., Ramisch, A., Kramkowski, M. A., Noryśkiewicz, A. M., Sekudewicz, I., Gąsiorowski, M., Luberda-Durnaś, K., Słowiński, M., Schwab, M., Tjallingii, R., Brauer, A., and Błaszkiewicz, M.: Varve microfacies and chronology from a new sediment record of Lake Gościąż (Poland), Quaternary Sci. Rev., 251, 106715, https://doi.org/10.1016/j.quascirev.2020.106715, 2021.
Brauer, A.: Annually Laminated Lake Sediments and Their Palaeoclimatic Relevance, in: The Climate in Historical Times: Towards a Synthesis of Holocene Proxy Data and Climate Models, edited by: Fischer, H., Kumke, T., Lohmann, G., Flöser, G., Miller, H., von Storch, H., and Negendank, J. F. W., Springer, Berlin, Heidelberg, 109–127, https://doi.org/10.1007/978-3-662-10313-5_7, 2004.
Brauer, A., Haug, G. H., Dulski, P., Sigman, D. M., and Negendank, J. F. W.: An abrupt wind shift in western Europe at the onset of the Younger Dryas cold period, Nat. Geosci., 1, 520–523, https://doi.org/10.1038/ngeo263, 2008.
Bronk Ramsey, C., Housley, R. A., Lane, C. S., Smith, V. C., and Pollard, A. M.: The RESET tephra database and associated analytical tools, Quaternary Sci. Rev., 118, 33–47, https://doi.org/10.1016/j.quascirev.2014.11.008, 2015a.
Bronk Ramsey, C., Albert, P. G., Blockley, S. P., Hardiman, M., Housley, R. A., Lane, C. S., Lee, S., Matthews, I. P., Smith, V. C., and Lowe, J. J.: Improved age estimates for key Late Quaternary European tephra horizons in the RESET lattice, Quaternary Sci. Rev., 118, 18–32, https://doi.org/10.1016/j.quascirev.2014.11.007, 2015b.
Clark, J. S., Merkt, J., and Muller, H.: Post-Glacial Fire, Vegetation, and Human History on the Northern Alpine Forelands, South-Western Germany, J. Ecol., 77, 897–925, https://doi.org/10.2307/2260813, 1989.
Dörfler, W., Feeser, I., van den Bogaard, C., Dreibrodt, S., Erlenkeuser, H., Kleinmann, A., Merkt, J., and Wiethold, J.: A high-quality annually laminated sequence from Lake Belau, Northern Germany: Revised chronology and its implications for palynological and tephrochronological studies, Holocene, 22, 1413–1426, https://doi.org/10.1177/0959683612449756, 2012.
Dräger, N., Theuerkauf, M., Szeroczyńska, K., Wulf, S., Tjallingii, R., Plessen, B., Kienel, U., and Brauer, A.: Varve microfacies and varve preservation record of climate change and human impact for the last 6000 years at Lake Tiefer See (NE Germany), Holocene, 27, 450–464, https://doi.org/10.1177/0959683616660173, 2017.
Haenssler, E., Nadeau, M.-J., Vött, A., and Unkel, I.: Natural and human induced environmental changes preserved in a Holocene sediment sequence from the Etoliko Lagoon, Greece: New evidence from geochemical proxies, Quatern. Int., 308–309, 89–104, https://doi.org/10.1016/j.quaint.2012.06.031, 2013.
Haflidason, H., Regnéll, C., Pyne-O'Donnell, S., and Svendsen, J. I.: Extending the known distribution of the Vedde Ash into Siberia: occurrence in lake sediments from the Timan Ridge and the Ural Mountains, northern Russia, Boreas, 48, 444–451, https://doi.org/10.1111/bor.12354, 2019.
Jones, G., Lane, C. S., Brauer, A., Davies, S. M., de Bruijn, R., Engels, S., Haliuc, A., Hoek, W. Z., Merkt, J., Sachse, D., Turner, F., and Wagner-Cremer, F.: The Lateglacial to early Holocene tephrochronological record from Lake Hämelsee, Germany: a key site within the European tephra framework, Boreas, 47, 28–40, https://doi.org/10.1111/bor.12250, 2018.
Jones, G., Davies, S. M., Staff, R. A., Loader, N. J., Davies, S. J., and Walker, M. J. C.: Traces of volcanic ash from the Mediterranean, Iceland and North America in a Holocene record from south Wales, UK, J. Quaternary Sci., 35, 163–174, https://doi.org/10.1002/jqs.3141, 2020.
Kearney, R., Albert, P. G., Staff, R. A., Pál, I., Veres, D., Magyari, E., and Ramsey, C. B.: Ultra-distal fine ash occurrences of the Icelandic Askja-S Plinian eruption deposits in Southern Carpathian lakes: New age constraints on a continental scale tephrostratigraphic marker, Quaternary Sci. Rev., 188, 174–182, https://doi.org/10.1016/j.quascirev.2018.03.035, 2018.
Lane, C. S., Blockley, S. P. E., Bronk Ramsey, C., and Lotter, A. F.: Tephrochronology and absolute centennial scale synchronisation of European and Greenland records for the last glacial to interglacial transition: A case study of Soppensee and NGRIP, Quatern. Int., 246, 145–156, https://doi.org/10.1016/j.quaint.2010.11.028, 2011a.
Lane, C. S., Andrič, M., Cullen, V. L., and Blockley, S. P. E.: The occurrence of distal Icelandic and Italian tephra in the Lateglacial of Lake Bled, Slovenia, Quaternary Sci. Rev., 30, 1013–1018, https://doi.org/10.1016/j.quascirev.2011.02.014, 2011b.
Lane, C. S., Brauer, A., Blockley, S. P. E., and Dulski, P.: Volcanic ash reveals time-transgressive abrupt climate change during the Younger Dryas, Geology, 41, 1251–1254, https://doi.org/10.1130/G34867.1, 2013.
Lane, C. S., Brauer, A., Martín-Puertas, C., Blockley, S. P. E., Smith, V. C., and Tomlinson, E. L.: The Late Quaternary tephrostratigraphy of annually laminated sediments from Meerfelder Maar, Germany, Quaternary Sci. Rev., 122, 192–206, https://doi.org/10.1016/j.quascirev.2015.05.025, 2015.
Lauterbach, S., Brauer, A., Andersen, N., Danielopol, D. L., Dulski, P., Hüls, M., Milecka, K., Namiotko, T., Obremska, M., Von Grafenstein, U., and Participants, D.: Environmental responses to Lateglacial climatic fluctuations recorded in the sediments of pre-Alpine Lake Mondsee (northeastern Alps), J. Quaternary Sci., 26, 253–267, https://doi.org/10.1002/jqs.1448, 2011a.
Lauterbach, S., Brauer, A., Andersen, N., Danielopol, D. L., Dulski, P., Hüls, M., Milecka, K., Namiotko, T., Plessen, B., Grafenstein, U. V., and Participants, D.: Multi-proxy evidence for early to mid-Holocene environmental and climatic changes in northeastern Poland, Boreas, 40, 57–72, https://doi.org/10.1111/j.1502-3885.2010.00159.x, 2011b.
Macleod, A., Brunnberg, L., Wastegård, S., Hang, T., and Matthews, I. P.: Lateglacial cryptotephra detected within clay varves in Östergötland, south-east Sweden, J. Quaternary Sci., 29, 605–609, https://doi.org/10.1002/jqs.2738, 2014.
Mahony, S. H., Barnard, N. H., Sparks, R. S. J., and Rougier, J. C.: VOLCORE, a global database of visible tephra layers sampled by ocean drilling, Sci. Data, 7, 330, https://doi.org/10.1038/s41597-020-00673-1, 2020.
Martin-Puertas, C., Walsh, A. A., Blockley, S. P. E., Harding, P., Biddulph, G. E., Palmer, A., Ramisch, A., and Brauer, A.: The first Holocene varve chronology for the UK: Based on the integration of varve counting, radiocarbon dating and tephrostratigraphy from Diss Mere (UK), Quat. Geochronol., 61, 101134, https://doi.org/10.1016/j.quageo.2020.101134, 2021.
Merkt, J., Müller, H., Knabe, W., Müller, P., and Weiser, T.: The early Holocene Saksunarvatn tephra found in lake sediments in NW Germany, Boreas, 22, 93–100, https://doi.org/10.1111/j.1502-3885.1993.tb00168.x, 1993.
Müller, D., Tjallingii, R., Płóciennik, M., Luoto, T. P., Kotrys, B., Plessen, B., Ramisch, A., Schwab, M. J., Błaszkiewicz, M., Słowiński, M., and Brauer, A.: New insights into lake responses to rapid climate change: the Younger Dryas in Lake Gościąż, central Poland, Boreas, 50, 535–555, https://doi.org/10.1111/bor.12499, 2021.
Newton, A. J., Dugmore, A. J., and Gittings, B. M.: Tephrabase: tephrochronology and the development of a centralised European database, J. Quaternary Sci., 22, 737–743, https://doi.org/10.1002/jqs.1094, 2007.
Ojala, A. E. K., Francus, P., Zolitschka, B., Besonen, M., and Lamoureux, S. F.: Characteristics of sedimentary varve chronologies – A review, Quaternary Sci. Rev., 43, 45–60, https://doi.org/10.1016/j.quascirev.2012.04.006, 2012.
Palmer, A. P., Matthews, I. P., Lowe, J. J., MacLeod, A., and Grant, R.: A revised chronology for the growth and demise of Loch Lomond Readvance (“Younger Dryas”) ice lobes in the Lochaber area, Scotland, Quaternary Sci. Rev., 248, 106548, https://doi.org/10.1016/j.quascirev.2020.106548, 2020.
Ramisch, A., Brauser, A., Dorn, M., Blanchet, C., Brademann, B., Köppl, M., Mingram, J., Neugebauer, I., Nowaczyk, N., Ott, F., Pinkerneil, S., Plessen, B., Schwab, M. J., Tjallingii, R., and Brauer, A.: VARDA (VARved sediments DAtabase) – providing and connecting proxy data from annually laminated lake sediments, Earth Syst. Sci. Data, 12, 2311–2332, https://doi.org/10.5194/essd-12-2311-2020, 2020.
Rasmussen, S. O., Vinther, B. M., Clausen, H. B., and Andersen, K. K.: Early Holocene climate oscillations recorded in three Greenland ice cores, Quaternary Sci. Rev., 26, 1907–1914, https://doi.org/10.1016/j.quascirev.2007.06.015, 2007.
Reinig, F., Wacker, L., Jöris, O., Oppenheimer, C., Guidobaldi, G., Nievergelt, D., Adolphi, F., Cherubini, P., Engels, S., Esper, J., and Land, A.: Precise date for the Laacher See eruption synchronizes the Younger Dryas. Nature, 595, 66–69, https://doi.org/10.1038/s41586-021-03608-x, 2021.
Schmidt, R., van den Bogaard, C., Merkt, J., and Müller, J.: A new Lateglacial chronostratigraphic tephra marker for the south-eastern Alps: The Neapolitan Yellow Tuff (NYT) in Längsee (Austria) in the context of a regional biostratigraphy and palaeoclimate, Quatern. Int., 88, 45–56, https://doi.org/10.1016/S1040-6182(01)00072-6, 2002.
Stihler, S. D., Stone, D. B., and Beget, J. E.: “Varve” counting vs. tephrochronology and 137Cs and 210Pb dating: A comparative test at Skilak Lake, Alaska, Geology, 20, 1019–1022, https://doi.org/10.1130/0091-7613(1992)020<1019:VCVTAC>2.3.CO;2, 1992.
Swierczynski, T., Lauterbach, S., Dulski, P., and Brauer, A.: Late Neolithic Mondsee Culture in Austria: living on lakes and living with flood risk?, Clim. Past, 9, 1601–1612, https://doi.org/10.5194/cp-9-1601-2013, 2013.
Timms, R. G. O., Matthews, I. P., Lowe, J., Palmer, A. P., Weston, D. J., MacLeod, A., and Blockley, S. P. E.: Establishing tephrostratigraphic frameworks to aid the study of abrupt climatic and glacial transitions: a case study of the Last Glacial-Interglacial Transition in the British Isles (c. 16–8 ka BP), Earth-Sci. Rev., 192, 34–64, https://doi.org/10.1016/j.earscirev.2019.01.003, 2019.
Vogel, H., Zanchetta, G., Sulpizio, R., Wagner, B., and Nowaczyk, N.: A tephrostratigraphic record for the last glacial–interglacial cycle from Lake Ohrid, Albania and Macedonia, J. Quaternary Sci., 25, 320–338, https://doi.org/10.1002/jqs.1311, 2010.
von Grafenstein, U., Erlenkeuser, H., Müller, J., Jouzel, J., and Johnsen, S.: The cold event 8200 years ago documented in oxygen isotope records of precipitation in Europe and Greenland, Clim. Dynam., 14, 73–81, https://doi.org/10.1007/s003820050210, 1998.
von Grafenstein, U., Erlenkeuser, H., Brauer, A., Jouzel, J., and Johnsen, S. J.: A Mid-European Decadal Isotope-Climate Record from 15,500 to 5000 Years B.P., Science, 284, 1654–1657, https://doi.org/10.1126/science.284.5420.1654, 1999.
Wagner, B., Aufgebauer, A., Vogel, H., Zanchetta, G., Sulpizio, R., and Damaschke, M.: Late Pleistocene and Holocene contourite drift in Lake Prespa (Albania/F.Y.R. of Macedonia/Greece), Quatern. Int., 274, 112–121, https://doi.org/10.1016/j.quaint.2012.02.016, 2012.
Wallace, K. L., Bursik, M. I., Kuehn, S., Kurbatov, A. V., Abbott, P., Bonadonna, C., Cashman, K., Davies, S. M., Jensen, B., Lane, C., Plunkett, G., Smith, V. C., Tomlinson, E., Thordarsson, T., and Walker, J. D.: Community established best practice recommendations for tephra studies – from collection through analysis, Sci. Data, 9, 447, https://doi.org/10.1038/s41597-022-01515-y, 2022.
Walsh, A. A., Blockley, S. P. E., Milner, A. M., Matthews, I. P., and Martin-Puertas, C.: Complexities in European Holocene cryptotephra dispersal revealed in the annually laminated lake record of Diss Mere, East Anglia, Quat. Geochronol., 66, 101213, https://doi.org/10.1016/j.quageo.2021.101213, 2021.
Walsh, A. A., Blockley, S. P. E., Milner, A. M., and Martin-Puertas, C.: Updated age constraints on key tephra markers for NW Europe based on a high-precision varve lake chronology, Quaternary Sci. Rev., 300, 107897, https://doi.org/10.1016/j.quascirev.2022.107897, 2023.
Wulf, S., Kraml, M., Brauer, A., Keller, J., and Negendank, J. F. W.: Tephrochronology of the 100 ka lacustrine sediment record of Lago Grande di Monticchio (southern Italy), Quatern. Int., 122, 7–30, https://doi.org/10.1016/j.quaint.2004.01.028, 2004.
Wulf, S., Kraml, M., and Keller, J.: Towards a detailed distal tephrostratigraphy in the Central Mediterranean: The last 20,000 yrs record of Lago Grande di Monticchio, J. Volcanol. Geoth. Res., 177, 118–132, https://doi.org/10.1016/j.jvolgeores.2007.10.009, 2008.
Wulf, S., Keller, J., Paterne, M., Mingram, J., Lauterbach, S., Opitz, S., Sottili, G., Giaccio, B., Albert, P. G., Satow, C., Tomlinson, E. L., Viccaro, M., and Brauer, A.: The 100–133 ka record of Italian explosive volcanism and revised tephrochronology of Lago Grande di Monticchio, Quaternary Sci. Rev., 58, 104–123, https://doi.org/10.1016/j.quascirev.2012.10.020, 2012.
Wulf, S., Ott, F., Słowiński, M., Noryśkiewicz, A. M., Dräger, N., Martin-Puertas, C., Czymzik, M., Neugebauer, I., Dulski, P., Bourne, A. J., Błaszkiewicz, M., and Brauer, A.: Tracing the Laacher See Tephra in the varved sediment record of the Trzechowskie palaeolake in central Northern Poland, Quaternary Sci. Rev. 76, 129–139, https://doi.org/10.1016/j.quascirev.2013.07.010, 2013.
Wulf, S., Dräger, N., Ott, F., Serb, J., Appelt, O., Guðmundsdóttir, E., van den Bogaard, C., Słowiński, M., Błaszkiewicz, M., and Brauer, A.: Holocene tephrostratigraphy of varved sediment records from Lakes Tiefer See (NE Germany) and Czechowskie (N Poland), Quaternary Sci. Rev., 132, 1–14, https://doi.org/10.1016/j.quascirev.2015.11.007, 2016.
Zillén, L. M., Wastegård, S., and Snowball, I. F.: Calendar year ages of three mid-Holocene tephra layers identified in varved lake sediments in west central Sweden, Quaternary Sci. Rev., 21, 1583–1591, https://doi.org/10.1016/S0277-3791(02)00036-7, 2002.
Zolitschka, B., Francus, P., Ojala, A. E. K., and Schimmelmann, A.: Varves in lake sediments – a review, Quaternary Sci. Rev., 117, 1–41, https://doi.org/10.1016/j.quascirev.2015.03.019, 2015.
Short summary
This paper focuses on volcanic ash (tephra) in European annually laminated (varve) lake records from the period 25 to 8 ka. Tephra enables the synchronisation of these lake records and their proxy reconstructions to absolute timescales. The data incorporate geochemical data from tephra layers across 19 varve lake records. We highlight the potential for synchronising multiple records using tephra layers across continental scales whilst supporting reproducibility through accessible data.
This paper focuses on volcanic ash (tephra) in European annually laminated (varve) lake records...
Altmetrics
Final-revised paper
Preprint