Articles | Volume 16, issue 10
https://doi.org/10.5194/essd-16-4767-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/essd-16-4767-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
A revised marine fossil record of the Mediterranean before and after the Messinian salinity crisis
Konstantina Agiadi
CORRESPONDING AUTHOR
Department of Geology, University of Vienna, Josef-Holaubek-Platz 2, 1090 Vienna, Austria
Niklas Hohmann
Faculty of Geosciences, Department of Earth Sciences, Utrecht University, Vening Meineszgebouw A, Princetonlaan 8a, 3584 CB Utrecht, the Netherlands
Institute of Evolutionary Biology, University of Warsaw, Krakowskie Przedmieście 26/28, 00-927, Warsaw, Poland
Elsa Gliozzi
Dipartimento di Scienze, Università Roma Tre, L.go S. Leonardo Murialdo, 1 – 00146 Rome, Italy
Danae Thivaiou
Natural History Museum of Basel, Augustinergasse 2, 4001 Basel, Switzerland
Department of Historical Geology and Palaeontology, Faculty of Geology and Geoenvironment, National and Kapodistrian University of Athens, Panepistimioupolis Zografou 15784, Athens, Greece
Francesca R. Bosellini
Dipartimento di Scienze Chimiche e Geologiche, Università degli Studi di Modena e Reggio Emilia, 09124 Cagliari, Italy
Marco Taviani
Institute of Marine Science – National Research Council, ISMAR-CNR, Via Gobetti 101, 40129 Bologna, Italy
Stazione Zoologica “Anton Dohrn”, Villa Comunale, Via Caracciolo, 80122 Naples, Italy
Giovanni Bianucci
Dipartimento di Scienze della Terra, Università di Pisa, Pisa, Italy
Alberto Collareta
Dipartimento di Scienze della Terra, Università di Pisa, Pisa, Italy
Laurent Londeix
Université de Bordeaux/UMR “EPOC” CNRS 5805, allée Geoffroy St-Hilaire, 33615 Pessac CEDEX, France
Costanza Faranda
Dipartimento di Scienze, Università Roma Tre, L.go S. Leonardo Murialdo, 1 – 00146 Rome, Italy
Francesca Bulian
Department of Geology, University of Salamanca, Plaza de Los Caidos s/n, 37008, Salamanca, Spain
Groningen Institute of Archaeology, University of Groningen, Postsraat 6, 9712 Groningen, the Netherlands
Efterpi Koskeridou
Department of Historical Geology and Palaeontology, Faculty of Geology and Geoenvironment, National and Kapodistrian University of Athens, Panepistimioupolis Zografou 15784, Athens, Greece
Francesca Lozar
Department of Earth Sciences, University of Torino, Via Valperga Caluso 35, 10125 Turin, Italy
Alan Maria Mancini
Department of Earth Sciences, University of Torino, Via Valperga Caluso 35, 10125 Turin, Italy
Department of Life and Environmental Science, Università Politecnica delle Marche, 60122 Ancona, Italy
Stefano Dominici
Museo di Storia Naturale, Università degli Studi di Firenze, 50121 Florence, Italy
Pierre Moissette
Department of Historical Geology and Palaeontology, Faculty of Geology and Geoenvironment, National and Kapodistrian University of Athens, Panepistimioupolis Zografou 15784, Athens, Greece
Ildefonso Bajo Campos
Sección de Paleontología, Museo de Alcalá de Guadaíra, Seville, Spain
Enrico Borghi
Società Reggiana di Scienza Naturali, Reggio Emilia, Italy
George Iliopoulos
Department of Geology, University of Patras, University Campus, 26504 Rio, Achaia, Greece
Assimina Antonarakou
Department of Historical Geology and Palaeontology, Faculty of Geology and Geoenvironment, National and Kapodistrian University of Athens, Panepistimioupolis Zografou 15784, Athens, Greece
George Kontakiotis
Department of Historical Geology and Palaeontology, Faculty of Geology and Geoenvironment, National and Kapodistrian University of Athens, Panepistimioupolis Zografou 15784, Athens, Greece
Evangelia Besiou
Department of Historical Geology and Palaeontology, Faculty of Geology and Geoenvironment, National and Kapodistrian University of Athens, Panepistimioupolis Zografou 15784, Athens, Greece
Stergios D. Zarkogiannis
Department of Earth Sciences, University of Oxford, Oxford, UK
Mathias Harzhauser
Natural History Museum, Burgring 7, 1010 Vienna, Austria
Francisco Javier Sierro
Department of Geology, University of Salamanca, Plaza de Los Caidos s/n, 37008, Salamanca, Spain
Angelo Camerlenghi
OGS Istituto Nazionale di Oceanografia e di Geofisica Sperimentale, Trieste, Italy
Daniel García-Castellanos
Geosciences Barcelona (GEO3BCN-CSIC), Solé i Sabarís s/n, Barcelona, Spain
Related authors
Konstantina Agiadi, Iuliana Vasiliev, Antoine Vite, Stergios Zarkogiannis, Alba Fuster-Alonso, Jorge Mestre-Tomás, Efterpi Koskeridou, and Frédéric Quillévéré
EGUsphere, https://doi.org/10.1101/2024.12.28.630586, https://doi.org/10.1101/2024.12.28.630586, 2025
Preprint archived
Short summary
Short summary
How did the different organisms respond to the Pleistocene glacial-interglacial cycles? We tried to answer this question by analysing the chemical and isotopic signals from marine organisms that lived in the Eastern Mediterranean at the time. Our results suggest that while changes in production by phyto- and zooplankton affected biomass in the ocean, temperature changes severely impacted the vertical migration of mesopelagic fishes.
Konstantina Agiadi, Iuliana Vasiliev, Geanina Butiseacă, George Kontakiotis, Danae Thivaiou, Evangelia Besiou, Stergios Zarkogiannis, Efterpi Koskeridou, Assimina Antonarakou, and Andreas Mulch
Biogeosciences, 21, 3869–3881, https://doi.org/10.5194/bg-21-3869-2024, https://doi.org/10.5194/bg-21-3869-2024, 2024
Short summary
Short summary
Seven million years ago, the marine gateway connecting the Mediterranean Sea with the Atlantic Ocean started to close, and, as a result, water circulation ceased. To find out how this phenomenon affected the fish living in the Mediterranean Sea, we examined the changes in the isotopic composition of otoliths of two common fish species. Although the species living at the surface fared pretty well, the bottom-water fish starved and eventually became extinct in the Mediterranean.
Konstantina Agiadi, Efterpi Koskeridou, and Danae Thivaiou
Foss. Rec., 24, 233–246, https://doi.org/10.5194/fr-24-233-2021, https://doi.org/10.5194/fr-24-233-2021, 2021
Short summary
Short summary
Climate and connection between marine basins have formed the modern Mediterranean fish fauna. Here, we present new data for the early stages of the fish fauna, 20–23 million years ago, when the Mediterranean Sea was starting to take its actual shape, and we show its relationship to the fish faunas of the surrounding seas. Two new fish species are described: Ariosoma mesohellenica and Gnathophis elongatus.
Johan Hidding, Emilia Jarochowska, Niklas Hohmann, Xianyi Liu, Peter Burgess, and Hanno Spreeuw
EGUsphere, https://doi.org/10.5194/egusphere-2025-4561, https://doi.org/10.5194/egusphere-2025-4561, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
Short summary
Coral reefs and limestones hold crucial records of Earth's climate history, but scientists have lacked accessible tools to simulate how these systems form over thousands to millions of years. We developed CarboKitten, free software that models how tropical sediments and associated organisms grow under changing sea levels and environmental conditions. The program runs fast on standard computers and can test scientific theories about how these geological features preserve the Earth’s history.
Niklas Hohmann, David De Vleeschouwer, Sietske Batenburg, and Emilia Jarochowska
Geochronology, 7, 427–448, https://doi.org/10.5194/gchron-7-427-2025, https://doi.org/10.5194/gchron-7-427-2025, 2025
Short summary
Short summary
Age–depth models assign ages to sampling locations (e.g., in drill cores), making them crucial to the determined timing and pace of past changes. We present two methods to estimate age–depth models from sedimentological and stratigraphic information, resulting in richer and more empirically realistic age–depth models. As a use case, we (1) determine the timing of the Frasnian–Famennian extinction and (2) examine the duration of the Paleocene–Eocene Thermal Maximum (PETM), a potential deep-time analog for anthropogenic climate change.
Judit Torner, Isabel Cacho, Heather Stoll, Ana Moreno, Joan O. Grimalt, Francisco J. Sierro, Joan J. Fornós, Hai Cheng, and R. Lawrence Edwards
Clim. Past, 21, 465–487, https://doi.org/10.5194/cp-21-465-2025, https://doi.org/10.5194/cp-21-465-2025, 2025
Short summary
Short summary
We offer a clearer view of the timing of three relevant past glacial terminations. By analyzing the climatic signal recorded in stalagmite and linking it with marine records, we revealed differences in the intensity and duration of the ice melting associated with these three key deglaciations. This study shows that some deglaciations began earlier than previously thought; this improves our understanding of natural climate processes, helping us to contextualize current climate change.
Konstantina Agiadi, Iuliana Vasiliev, Antoine Vite, Stergios Zarkogiannis, Alba Fuster-Alonso, Jorge Mestre-Tomás, Efterpi Koskeridou, and Frédéric Quillévéré
EGUsphere, https://doi.org/10.1101/2024.12.28.630586, https://doi.org/10.1101/2024.12.28.630586, 2025
Preprint archived
Short summary
Short summary
How did the different organisms respond to the Pleistocene glacial-interglacial cycles? We tried to answer this question by analysing the chemical and isotopic signals from marine organisms that lived in the Eastern Mediterranean at the time. Our results suggest that while changes in production by phyto- and zooplankton affected biomass in the ocean, temperature changes severely impacted the vertical migration of mesopelagic fishes.
Thibauld M. Béjard, Andrés S. Rigual-Hernández, Javier P. Tarruella, José-Abel Flores, Anna Sanchez-Vidal, Irene Llamas-Cano, and Francisco J. Sierro
Biogeosciences, 21, 4051–4076, https://doi.org/10.5194/bg-21-4051-2024, https://doi.org/10.5194/bg-21-4051-2024, 2024
Short summary
Short summary
The Mediterranean Sea is regarded as a climate change hotspot. Documenting the population of planktonic foraminifera is crucial. In the Sicily Channel, fluxes are higher during winter and positively linked with chlorophyll a concentration and cool temperatures. A comparison with other Mediterranean sites shows the transitional aspect of the studied zone. Finally, modern populations significantly differ from those in the sediment, highlighting a possible effect of environmental change.
Konstantina Agiadi, Iuliana Vasiliev, Geanina Butiseacă, George Kontakiotis, Danae Thivaiou, Evangelia Besiou, Stergios Zarkogiannis, Efterpi Koskeridou, Assimina Antonarakou, and Andreas Mulch
Biogeosciences, 21, 3869–3881, https://doi.org/10.5194/bg-21-3869-2024, https://doi.org/10.5194/bg-21-3869-2024, 2024
Short summary
Short summary
Seven million years ago, the marine gateway connecting the Mediterranean Sea with the Atlantic Ocean started to close, and, as a result, water circulation ceased. To find out how this phenomenon affected the fish living in the Mediterranean Sea, we examined the changes in the isotopic composition of otoliths of two common fish species. Although the species living at the surface fared pretty well, the bottom-water fish starved and eventually became extinct in the Mediterranean.
Mathias Harzhauser, Oleg Mandic, and Werner E. Piller
Biogeosciences, 20, 4775–4794, https://doi.org/10.5194/bg-20-4775-2023, https://doi.org/10.5194/bg-20-4775-2023, 2023
Short summary
Short summary
Bowl-shaped spirorbid microbialite bioherms formed during the late Middle Miocene (Sarmatian) in the central Paratethys Sea under a warm, arid climate. The microbialites and the surrounding sediment document a predominance of microbial activity in the shallow marine environments of the sea at that time. Modern microbialites are not analogues for these unique structures, which reflect a series of growth stages with an initial “start-up stage”, massive “keep-up stage” and termination of growth.
Thibauld M. Béjard, Andrés S. Rigual-Hernández, José A. Flores, Javier P. Tarruella, Xavier Durrieu de Madron, Isabel Cacho, Neghar Haghipour, Aidan Hunter, and Francisco J. Sierro
Biogeosciences, 20, 1505–1528, https://doi.org/10.5194/bg-20-1505-2023, https://doi.org/10.5194/bg-20-1505-2023, 2023
Short summary
Short summary
The Mediterranean Sea is undergoing a rapid and unprecedented environmental change. Planktic foraminifera calcification is affected on different timescales. On seasonal and interannual scales, calcification trends differ according to the species and are linked mainly to sea surface temperatures and carbonate system parameters, while comparison with pre/post-industrial assemblages shows that all three species have reduced their calcification between 10 % to 35 % according to the species.
Jonathan Ford, Angelo Camerlenghi, Francesca Zolezzi, and Marilena Calarco
Solid Earth, 14, 137–151, https://doi.org/10.5194/se-14-137-2023, https://doi.org/10.5194/se-14-137-2023, 2023
Short summary
Short summary
Submarine landslides commonly appear as low-amplitude zones in seismic data. Previous studies have attributed this to a lack of preserved internal structure. We use seismic modelling to show that an amplitude reduction can be generated even when there is still metre-scale internal structure, by simply deforming the bedding. This has implications for interpreting failure type, for core-seismic correlation and for discriminating landslides from other "transparent" phenomena such as free gas.
Simon Blondel, Jonathan Ford, Aaron Lockwood, Anna Del Ben, and Angelo Camerlenghi
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2022-258, https://doi.org/10.5194/essd-2022-258, 2022
Manuscript not accepted for further review
Short summary
Short summary
This manuscript describes the re-processing flow applied to legacy multichannel seismic data in the deepwater Algerian basin, now open-access. The processing flow was designed based on the most robust and modern methods used in the industry and can be taken as example for other marine multi-channel datasets. Many new geological features are succinctly described, and are yet to be understood.
Maria-Gema Llorens, Albert Griera, Paul D. Bons, Ilka Weikusat, David J. Prior, Enrique Gomez-Rivas, Tamara de Riese, Ivone Jimenez-Munt, Daniel García-Castellanos, and Ricardo A. Lebensohn
The Cryosphere, 16, 2009–2024, https://doi.org/10.5194/tc-16-2009-2022, https://doi.org/10.5194/tc-16-2009-2022, 2022
Short summary
Short summary
Polar ice is formed by ice crystals, which form fabrics that are utilised to interpret how ice sheets flow. It is unclear whether fabrics result from the current flow regime or if they are inherited. To understand the extent to which ice crystals can be reoriented when ice flow conditions change, we simulate and evaluate multi-stage ice flow scenarios according to natural cases. We find that second deformation regimes normally overprint inherited fabrics, with a range of transitional fabrics.
Konstantina Agiadi, Efterpi Koskeridou, and Danae Thivaiou
Foss. Rec., 24, 233–246, https://doi.org/10.5194/fr-24-233-2021, https://doi.org/10.5194/fr-24-233-2021, 2021
Short summary
Short summary
Climate and connection between marine basins have formed the modern Mediterranean fish fauna. Here, we present new data for the early stages of the fish fauna, 20–23 million years ago, when the Mediterranean Sea was starting to take its actual shape, and we show its relationship to the fish faunas of the surrounding seas. Two new fish species are described: Ariosoma mesohellenica and Gnathophis elongatus.
Cited articles
Agiadi, K., Hohmann, N., Gliozzi, E., Thivaiou, D., Francesca, B., Taviani, M., Bianucci, G., Collareta, A., Londeix, L., Faranda, C., Bulian, F., Koskeridou, E., Lozar, F., Mancini, A. M., Dominici, S., Moissette, P., Bajo Campos, I., Borghi, E., Iliopoulos, G., Antonarakou, A., Kontakiotis, G., Besiou, E., Zarkogiannis, S. D., Harzhauser, M., Sierro, F., Camerlenghi, A., and Garcia-Castellanos, D.: Revised marine fossil record of the Mediterranean before and after the Messinian Salinity Crisis, Zenodo [data set], https://doi.org/10.5281/zenodo.13358435, 2024.
Airaghi, C.: Echinidi terziari del Piemonte e della Liguria, Palaeontol. Ital., 7, 22–126, 1901.
Amadori, C., Garcia-Castellanos, D., Toscani, G., Sternai, P., Fantoni, R., Ghielmi, M., and Giulio, A. D.: Restored topography of the Po Plain-Northern Adriatic region during the Messinian base-level drop–Implications for the physiography and compartmentalization of the palaeo-Mediterranean basin, Basin Res., 30, 1247–1263, https://doi.org/10.1111/bre.12302, 2018.
Arambourg, C.: Les poissons fossiles d'Oran, Matér, Pour Carte Géologique L'Algérie, 6, 1–218, 1927.
Bache, F., Popescu, S.-M., Rabineau, Gorini, C., Suc, J.-P., Clauzon, G. f, Olivet, J.-L., Rubino, J.-L., Melinte-Dobrinescu, M. C., Estrada, F., Londeix, L., Armijo, R., Meyer, B., Jolivet, L., Jouannic, G., Leroux, E., Aslanian, D., Reis, A. T. D., Mocochain, L., Dumurdžanov, N., Zagorchev, I., Lesić, V., Tomić, D., Namik Çagatay, M., Brun, J.-P., Sokoutis, D., Csato, I., Ucarkus, G., and Çakir, Z.: A two-step process for the reflooding of the Mediterranean after the Messinian Salinity Crisis, Basin Res., 24, 125–153, https://doi.org/10.1111/j.1365-2117.2011.00521.x, 2012.
Benson, R. H.: Changes in the ostracods of the Mediterranean with the Messinian salinity crisis, Palaeogeogr. Palaeocl., 20, 147–170, 1976a.
Benson, R. H.: Miocene deep-sea ostracodes of the Iberian Portal and the Balearic Basin, Mar. Micropaleontol., 1, 249–262, https://doi.org/10.1016/0377-8398(76)90010-4, 1976b.
Berta, A., Kienle, S., Bianucci, G., and Sorbi, S.: A Reevaluation of Pliophoca Etrusca (Pinnipedia, Phocidae) from the Pliocene of Italy: Phylogenetic and Biogeographic Implications, J. Vertebr. Paleontol., 35, e889144, https://doi.org/10.1080/02724634.2014.889144, 2015.
Berta, A., Churchill, M., and Boessenecker, R. W.: The Origin and Evolutionary Biology of Pinnipeds: Seals, Sea Lions, and Walruses, Annu. Rev. Earth Planet. Sci., 46, 203–228, https://doi.org/10.1146/annurev-earth-082517-010009, 2018.
Botto-Micca, L.: Contributo allo studio degli echinidi terziarii del Piemonte, Bolletino Soc. Geol. Ital., 15, 311–374, 1896.
Bouchet, P., Lozouet, P., Maestrati, P., and Heros, V.: Assessing the magnitude of species richness in tropical marine environments: exceptionally high numbers of molluscs at a New Caledonia site, Biol. J. Linn. Soc., 75, 421–436, https://doi.org/10.1046/j.1095-8312.2002.00052.x, 2002.
Butler, R. W. H., Lickorish, W. H., Grasso, M., Pedley, H. M., and Ramberti, L.: Tectonics and sequence stratigraphy in Messinian basins, Sicily: constraints on the initiation and termination of the Mediterranean salinity crisis, Geol. Soc. Am. B., 107, 425–439, https://doi.org/10.1130/0016-7606(1995)107<0425:TASSIM>2.3.CO;2, 1995.
Caracciolo, L., Gramigna, P., Critelli, S., Calzona, A. B., and Russo, F.: Petrostratigraphic analysis of a Late Miocene mixed siliciclastic–carbonate depositional system (Calabria, Southern Italy): Implications for Mediterranean paleogeography, Sediment. Geol., 284–285, 117–132, https://doi.org/10.1016/j.sedgeo.2012.12.002, 2013.
Carnevale, G. and Schwarzhans, W.: Marine life in the Mediterranean during the Messinian salinity crisis: a paleoichthyological perspective, Riv. Ital. Paleontol. S., 128, 283–324, https://doi.org/10.54103/2039-4942/15964, 2022.
Carnevale, G., Gennari, R., Lozar, F., Natalicchio, M., Pellegrino, L., and Dela Pierre, F.: Living in a deep desiccated Mediterranean Sea: An overview of the Italian fossil record of the Messinian salinity crisis, Bolletino Della Soc. Paleontol. Ital., 58, 109–140, 2019.
Cita, M. B.: Biodynamic effects of the Messinian salinity crisis on the evolution of planktonic foraminifera in the Mediterranean, Palaeogeogr. Palaeocl., 20, 23–42, 1976.
Cornacchia, I., Brandano, M., and Agostini, S.: Miocene paleoceanographic evolution of the Mediterranean area and carbonate production changes: A review, Earth-Sci. Rev., 221, 103785, https://doi.org/10.1016/j.earscirev.2021.103785, 2021.
Cornée, J.-J., Münch, P., Melinte-Dobrinescu, M., Moussa, A. B., Quillévéré, F., Drinia, H., Azdimousa, A., Touhami, A. O., Merzeraud, G., Fauquette, S., Corsini, M., Moissette, P., and Feddi, N.: The Early Pliocene reflooding in the Western Mediterranean: New insights from the rias of the Internal Rif, Morocco, C. R. Geosci., 346, 90–98, https://doi.org/10.1016/j.crte.2014.03.002, 2014.
de Muizon, C.: Premier signalement de Monachinae (Phocidae: Mammalia) dans le Sahelien (Miocene superieur) d'Oran (Algerie), Palaeovertebrata, 11, 181–196, 1981.
Desor, E.: Synopsis des echinides fossiles, Reinwald editions, Paris, 490 pp., https://doi.org/10.5962/bhl.title.10163, 1858.
Dominici, S. and Forli, M.: Lower Pliocene molluscs from southern tuscany (Italy), Boll. Della Soc. Paleontol. Ital., 60, 69–98, https://doi.org/10.4435/BSPI.2021.04, 2021.
Dominici, S., Benvenuti, M., Forli, M., Bogi, C., and Guerrini, A.: Upper Miocene molluscs of Monti Livornesi (Tuscany, Italy): Biotic changes across environmental gradients, Palaeogeogr. Palaeocl., 527, 103–117, https://doi.org/10.1016/j.palaeo.2019.04.024, 2019.
Dominici, S., Forli, M., Bogi, C., Guerrini, A., and Benvenuti, M.: Paleobiology from museum collections: Comparing historical and novel data on upper Miocene molluscs of the Livorno Hills, Riv. Ital. Paleontol. S., 126, 65–109, https://doi.org/10.13130/2039-4942/13006, 2020.
Doruk, N.: Neogene and Quaternary Ostracoda of Adana and Antakya Basin (Turkey), in: Taxonomy, biostratigraphy and distribution of Ostracodes, edited by: Krstic, N., Serbian Geological Society, Belgrade, 165–172, 1979.
el Kadiri, K., Serrano, F., Guerra, A., Hlila, R., and Sanz de Galdeano, C.: The Malalyine Pliocene succession (NE Rif, Morocco): sequence stratigraphy and regional correlation, Rev. Soc. Geol. Esp., 23, 57–67, 2010.
Galil, B. S.: A sea under siege – Alien species in the Mediterranean, Biol. Invasions, 2, 177–186, 2000.
Henriquet, M., Dominguez, S., Barreca, G., Malavieille, J., and Monaco, C.: Structural and tectono-stratigraphic review of the Sicilian orogen and new insights from analogue modeling, Earth-Sci. Rev., 208, 103257, https://doi.org/10.1016/j.earscirev.2020.103257, 2020.
Hohmann, N. and Agiadi, K.: Supplementary code for “A revised marine fossil record of the Mediterranean before and after the Messinian Salinity Crisis” (v1.2.0), Zenodo [code], https://doi.org/10.5281/zenodo.13358742, 2024.
Hsü, K. J., Ryan, W. B. F., and Cita, M. B.: Late Miocene Desiccation of the Mediterranean, Nature, 242, 240–244, https://doi.org/10.1038/242240a0, 1973.
Kahle, D. and Wickham, H.: ggmap: Spatial Visualization with ggplot2, R J., 5, 144–161, 2013.
Kroh, A. and Smith, A. B.: The phylogeny and classification of post-Palaeozoic echinoids, J. Syst. Palaeontol., 8, 147–212, https://doi.org/10.1080/14772011003603556, 2010.
Marcott, S. A., Shakun, J. D., Clark, P. U., and Mix, A. C.: A reconstruction of regional and global temperature for the past 11,300 years, Science, 339, 1198–1201, 2013.
Marx, F. G., Lambert, O., and Uhen, M. D.: Cetacean paleobiology, John Wiley & Sons, Inc., 306 pp., https://doi.org/10.1002/9781118561546, 2016.
Mascle, J. and Mascle, G.: Geological and morpho-tectonic map of the Mediterranean domain, CCGM/CGMW, Paris, 2012.
Meneghini, G.: Studi sugli Echinodermi fossili neogenici di Toscana, in: Siena e il suo Territorio, edited by: Lazzari, L., Tipografia del Regio Istituto dei Sordo-Mutti, Siena, 61–89, 1862.
Merzeraud, G., Achalhi, M., Cornee, J., Munch, P., Azdimousa, A., and Ben Moussa, A.: Sedimentology and sequence stratigraphy of the late-Messinian – Early pliocene continental to marine deposits of the Boudinar basin (North Morocco), J. Afr. Earth Sci., 150, 205–223, https://doi.org/10.1016/j.jafrearsci.2018.11.002, 2019.
Micallef, A., Camerlenghi, A., Georgiopoulou, A., Garcia-Castellanos, D., Gutscher, M.-A., Lo Iacono, C., Huvenne, V. A. I., Mountjoy, J. J., Paull, C. K., Le Bas, T., Spatola, D., Facchin, L., and Accettella, D.: Geomorphic evolution of the Malta Escarpment and implications for the Messinian evaporative drawdown in the eastern Mediterranean Sea, Geomorphology, 327, 264–283, https://doi.org/10.1016/j.geomorph.2018.11.012, 2019.
Moissette, P. and Pouyet, S.: Bryozoan faunas and the Messinian salinity crisis, Ann. Inst. Geol. Publ. Hung., 70, 447–453, 1987.
Monegatti, P. and Raffi, S.: The Messinian marine molluscs record and the dawn of the eastern Atlantic biogeography, Palaeogeogr. Palaeocl., 297, 1–11, https://doi.org/10.1016/j.palaeo.2010.06.023, 2010.
Nelson, J. S., Grande, T. C., and Wilson, M. V. H.: Fishes of the World, 5th Edition, John Wiley & Sons Inc., 752 pp., 2016.
Néraudeau, D., Goubert, E., Lacour, D., and Rouchy, J. M.: Changing biodiversity of Mediterranean irregular echinoids from the Messinian to the Present-Day, Palaeogeogr. Palaeocl., 175, 43–60, 2001.
Sissingh, W.: Late Cenozoic ostracoda of the south Aegean island arc, Utrecht Micropaleontol. Bull., 6, 1–163, ISBN 90 300 2556 5, 1972.
Soler, M. G. and Perez-Porro, A.: Science and Innovation Diplomacy in the Mediterranean, Union for the Mediterranean, Barcelona, https://ufmsecretariat.org/info-center/publications/ (last access: 2 October 2024), 2021.
Sorbini, L. and Tirapelle Rancan, R.: Messinian fossil fish of the Mediterranean, Palaeogeogr. Palaeocl., 29, 143–154, 1980.
Steininger, F. F. and Rögl, F.: Paleogeography and palinspastic reconstruction of the Neogene of the Mediterranean and Paratethys, Geol. Soc. Lond. Spec. Publ., 17, 659–668, https://doi.org/10.1144/GSL.SP.1984.017.01.52, 1984.
Wilkinson, M. D., Dumontier, M., Aalbersberg, I. J., Appleton, G., Axton, M., Baak, A., Blomberg, N., Boiten, J.-W., de Silva Santos, L., B., Bourne, P. E., Bouwman, J., Brookes, A. J., Clark, T., Crosas, M., Dillo, I., Dumon, O., Edmunds, S., Evelo, C. T., Finkers, R., Gonzalez-Beltran, A., Gray, A. J. G., Groth, P., Goble, C., Grethe, J. S., Heringa, J., Hoen, P. A. C., Hooft, R., Kuhn, T., Kok, R., Kok, J., Lusher, S. J., Martone, M. E., Mons, A., Packer, A. L., Persson, B., Rocca-Serra, P., Roos, M., van Schaik, R., Sansone, S.-A., Schultes, E., Sengtag, T., Slater, T., Strawn, G., Swertz, M. A., Thompson, M., van der Lei, J., van Mulligen, E., Velterop, J., Waagmeester, A., Wittenburg, P., Wolstencroft, K., Zhao, J., and Mons, B.: The FAIR Guiding Principles for scientific data management and stewardship, Sci. Data, 3, 160018, https://doi.org/10.1038/sdata.2016.18, 2016.
WoRMS Editorial Board: World Register of Marine Species, https://doi.org/10.14284/170, 2024.
Short summary
We present a dataset of 23032 fossil occurrences of marine organisms from the Late Miocene to the Early Pliocene (~11 to 3.6 million years ago) from the Mediterranean Sea. This dataset will allow us, for the first time, to quantify the biodiversity impact of the Messinian salinity crisis, a major geological event that possibly changed global and regional climate and biota.
We present a dataset of 23032 fossil occurrences of marine organisms from the Late Miocene to...
Altmetrics
Final-revised paper
Preprint